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Matthieu Romagny

April 20, 2009

Abstract

Let R be a discrete valuation ring with fraction field K and X a flat R-scheme. Given a
faithful action of a K-group scheme GK over the generic fibre XK , we study models G of GK

acting on X. In various situations, we prove that if such a model G exists, then there exists
another model G′ that acts faithfully on X. This model is the schematic closure of G inside the
fppf sheaf AutR(X) ; the major difficulty is to prove that it is representable by a scheme. For
example, this holds if X is locally of finite type, separated, flat and pure and G is finite flat.
Pure schemes (a notion recalled in the text) have many nice properties : in particular, we prove
that they are the amalgamated sum of their generic fibre and the family of their finite flat closed
subschemes. We also provide versions of our results in the setting of formal schemes.

1 Introduction

The present paper is interested in the reduction of algebraic varieties with group action. Let us
fix a discrete valuation ring R with fraction field K and residue field k. Algebraic and arithmetic
geometers study all kinds of varieties, or varieties with additional structures, defined over K. In
various situations, these objects have a unique model over R or over a finite extension ; this is
so each time that one has a proper moduli space for the objects, but not only. Let us mention a
few of these well-known models : stable models of curves (Deligne, Mumford), Néron models of
abelian varieties (Néron), semiabelic pairs as models of principally polarized varieties (Alexeev),
stable maps as models of morphisms from a curve to a fixed variety (Abramovich, Vistoli). If
a group G acts faithfully on the K-variety and the model satisfies some unicity property, the
action extends to it.

Our concern is, in fact, exclusively in the reduction of the group action. The point is that
even though most of the time the action of G extends as just indicated, in general the action on
the special fibre is not faithful, and one wishes to consider other models of G whose action is
better-behaved in reduction. For typical examples, assume that R has unequal characteristics
(0, p) and G is a finite p-group. If A is an abelian scheme over R, or the Néron model of an
abelian variety AK of dimension g, such that the p-torsion AK [p] is rational, then G = Z/p2gZ

acts by translations. This action extends to A and, for lack of p-torsion points in characteristic p,
the action has a nontrivial kernel on the special fibre. For another example, consider a smooth
pointed curve (CK , xK) endowed with a faithful action of G leaving xK fixed, and assume that
(CK , xK) has a stable pointed model (C, x) over R. We wish to understand the reduction of
the action, especially around the reduction xk. We are led to focus on the orbit Z ⊂ Ck of the
irreducible component of xk. After throwing away all components of Ck not in Z, we get an
open R-curve, and we are asking for the best model for the induced action of G.
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Mathematics Subject Classification: 14L15, 14L30, 14D06, 14G22, 11G25
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In the example above of an abelian scheme A, the R-group scheme of p-torsion G′ = A[p]
is the obvious choice of a good model. We can recover it as follows : to the action of G is
associated a morphism of R-group schemes GR → AutR(A), where GR is the constant R-group
scheme defined by G. Then G′ is the schematic image of this morphism ; the special properties
of schematic images and closures over a discrete valuation ring ensure that G′ is flat over R.
In the examples of a Néron model or an open curve, we would like to do the same thing. But
there comes a problem : these schemes are not proper, and the automorphism functor is not
representable by a scheme or an algebraic space. Still, it is a sheaf for the fppf topology, and
Raynaud has given a definition of schematic closures in this setting ; but representability of these
closures is by no means obvious, and indeed, it does not happen in general. The main theorems
of this article prove that these schematic images are often representable by flat group schemes
when we consider actions on pure schemes, the notion of purity being a (very) weak version of
properness. For example, faithfully flat R-schemes with geometrically irreducible fibres without
embedded components are pure. Here are some of our most striking results :

Theorem A. (i) Let X be an R-scheme locally of finite type, separated, flat and pure. Let G
be a proper flat R-group scheme acting on X, faithfully on the generic fibre. Let N denote the
kernel of the action. Then the schematic image of G in AutR(X) is representable by a flat group
scheme of finite type G′ if and only if Nk is finite. Moreover, in this case G′ is proper.

(ii) Let X be an affine R-scheme, equal to the spectrum of a ring A such that the map A→ ΠA/Iλ
to the product of the finite flat quotients of A is universally injective. Let G be an R-group
scheme locally of finite type, flat and pure, acting on X, faithfully on the generic fibre. Then
the schematic image of G in AutR(X) is representable by a flat R-group scheme G′. If G is
quasi-compact, or affine, or finite, then G′ has the same property.

When it is representable, we call the schematic image the effective model of G for its action
on X. We have also versions of these results in the setting of formal schemes.

The affine version in case (ii) is interesting because it applies not only to rings of finite type,
flat and pure (by theorem B below) but also for example to rings arising from the completion of
smooth R-schemes along a section, and also because the assumptions made on the group G are
very light. Let us now focus on case (i). As it turns out, this result does not have much to do
with groups. The crucial facts that govern the proof are the good properties of R-schemes locally
of finite type and pure. Such a scheme X is the amalgamated sum of its generic fibre XK and
the family of all its closed subschemes finite flat over R, the latter family being schematically
dense in a very strong sense. In fact, we prove :

Theorem B. Assume that R is henselian. Let X be an R-scheme locally of finite type, flat
and pure. Then, the family of all closed subschemes Zλ ⊂ X finite flat over R is R-universally
schematically dense, and for all separated R-schemes Y and all diagrams in solid arrows

∐Zλ,K //
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��

��1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

∐Zλ
//

))R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

X

!!
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there exists a unique morphism X → Y making the full diagram commutative.

Here also, there is an analogue for formal schemes. Using Theorem B, we prove repre-
sentability results for schematic images of schemes or formal schemes inside functors of the type
HomR(X,Y ). Theorem A above is essentially an application of the particular case X = Y .
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The effective models defined in the present article have been studied in full detail, for the
cyclic group of order p2 in unequal characteristics, in the recent Ph.D. thesis of D. Tossici ([To1],
[To2]). His results provide more examples of effective models, and show some of their general
features. Related to this work is also the note [Ab] of Abramovich. There, some group schemes
over stable curves are considered. They are not unrelated with our effective models, and we
plan to compare the two approaches more precisely in the near future. This will hopefully lead
to some new insights on the reduction of the moduli space of admissible Galois covers of stable
curves (see [BR]). The latter question is open at the moment, and it was the most important
motivation for the present work.

1.1 Overview of the article

Here is a short description of the contents of the article, together with precise references to
the statements of the main results. In section 2, we recall some results on purity and provide
some complements. We prove openness results for some properties of the fibres of morphisms
of finite presentation, flat and pure, that have some independent interest (theorem 2.2.1). In
section 3 we study schematically dominant families of morphisms from flat schemes to a fixed
scheme X. We prove the density of finite flat closed subschemes (theorem 3.2.4) as well as
the amalgamme property (propositions 3.1.5, 3.2.5, 3.2.6) which together give the statement of
Theorem B. In the beginning of section 4 we introduce schematic images and we prove some
useful general results on kernels for scheme or group scheme actions. Then the stage is set to
prove representability of schematic images in various situations : we start with images of schemes
inside Hom functors and then we prove representability of images of groups in the scheme case
(theorems 4.3.4 and 4.3.5) and in the formal scheme case (theorems 4.4.4 and 4.4.5). Theorem A
is the combination of these results. We also give some properties enjoyed by the effective model
of a finite flat group scheme (proposition 4.3.9). Finally, in section 5 we give some examples.
Notably, we compute explicitly the schematic image in two different cases of degeneration of
torsors under the cyclic group of order p2 in equal characteristic p > 0 (see 5.2). We observe in
particular that for a normal subgroup H ⊂ G, the effective model of G/H acting on X/H may
be different from G′/H ′.

1.2 Notations and conventions

Everywhere in the paper, we abbreviate the notation of a discrete valuation ring R with fraction
field K, residue field k, and chosen uniformizer π, by the tuple (R,K, k, π). In general, the
residue characteristic is denoted p ≥ 0. For schemes or morphisms defined over R, we use
subscripts (·)K and (·)k to denote the restrictions to the generic and the special fibre.

When R is complete, we consider also formal R-schemes. A formal scheme X may be identi-
fied with a direct system of ordinary schemes Xn over the ring Rn = R/(πn). We refer to [BL1]
for basic facts on formal and rigid geometry, and in particular for the notion of admissible formal
blowing-up. Admissible formal schemes in [BL1] are flat formal schemes locally of finite type.
Raynaud’s theorem ([BL1], theorem 4.1) asserts that there is an equivalence between the cate-
gory of quasi-compact admissible formal R-schemes, localised by admissible formal blowing-ups,
and the category of quasi-compact and quasi-separated rigid K-spaces. The K-space associated
to a formal scheme X is called its generic fibre and denoted Xrig.

1.3 Acknowledgements

This paper is the final version of the preprint [Ro], which it renders outdated and replaces. I
wish to thank José Bertin and Laurent Moret-Bailly for sharing their ideas with me when the
first outlines of proofs were written. For various interesting suggestions and remarks, I am also
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2 Complements on purity

2.1 Purity, projectivity and adic topologies

We first recall some definitions from Gruson-Raynaud [GR].

2.1.1 Definition. Let X → S be a morphism of schemes and M be a quasi-coherent OX-
module.

(i) The relative assassin of M over S, denoted Ass(M/S) is the union over all s ∈ S of the
associated points x ∈ X ⊗ k(s) of M⊗ k(s). If M = OX we set Ass(X/S) = Ass(M/S).

(ii) Assume that X → S is locally of finite type and M is of finite type. We say that M is S-pure
if the following condition is satisfied : for any s ∈ S, if (S̃, s̃) denotes a henselization of (S, s),
then the closure of any point x̃ ∈ Ass(M ×S S̃/S̃) meets X ⊗ k(s̃). We say that X is S-pure if
OX is S-pure.

2.1.2 Examples. (1) If X → S is proper, then it is pure.

(2) If X → S is faithfully flat with geometrically irreducible fibres without embedded compo-
nents, then it is pure.

(3) Let R be a henselian discrete valuation ring and X1 = Spec(R[ε, x]/(ε2, εx)). Let X be the
complement in X1 of the closed point defined by the ideal (π, ε, x). Then X is not pure over R.
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Here is one of the main results of [GR] (théorème 3.3.5 in part I of loc. cit.) :

2.1.3 Theorem (Gruson, Raynaud) Let A be a ring, B an A-algebra of finite presentation,
M a B-module of finite presentation, flat over A. Then M is a projective A-module if and only
if it is pure over A.

In what follows, we shall provide some complements on the notion of purity. In particular,
given an S-scheme X, we will explain the relation between purity of X and the property that
X may have an open covering by affine schemes with function rings separated for some adic
topologies coming from S (in particular, when S is a local scheme, the maximal-adic topology).
We also give some applications.

2.1.4 Lemma. Let S be a scheme and X,Y be S-schemes locally of finite type. Let f : X → Y
be an fppf morphism over S. Then Y is S-pure if X is S-pure. If furthermore f is pure, then
the converse holds.

Proof : We may assume that S is a local henselian scheme and since the locus of the base where
a map is pure is open ([GR], I.3.3.8), it is enough to test purity at the closed point s ∈ S. Now
let y ∈ Ass(Y/S). Choose some associated point x ∈ Xy so x ∈ Ass(X/S). Then there exists
a ∈ Xs meeting the closure of x, so f(a) meets the closure of y. So Y is S-pure.

Conversely, assume that f is pure and let x ∈ Ass(X/S) and y = f(x). Thus x ∈ Ass(X/Y )
and y ∈ Ass(Y/S) ([GR], I.3.2.4). Since Y is S-pure, the closure of y meets Ys at some point b.
Let (Ỹ , b̃) be a henselization of (Y, b), let X̃ = X×Y Ỹ , and x̃ = (x, b̃) ∈ X̃ so that x̃ ∈ Ass(X̃/Ỹ )
by [GR], I.3.2.3. Thus the closure of x̃ inside X̃ meets X̃eb at a point ã. The image of ã in X

lies in the closure of x and above b̃, thus in Xs. Therefore X is S-pure. �

2.1.5 Definition. Let n ≥ 1 be an integer. We say that a morphism of schemes X → S is of
type (FA)n is every set of n points of X whose images lie in an affine open set of S lie in an
affine open set of X. We say that X → S is of type (FA) if it is of type (FA)n for all n ≥ 1.

2.1.6 Lemma. Assume that S is affine. Let X → S be of finite presentation and of type (FA)n.
Then there exists a scheme S0 of finite type over Z and a morphism S → S0, an S0-scheme X0

of finite presentation of type (FA)n, such that X ≃ X0 ×S0
S.

Proof : Since S is affine and X → S is quasicompact, to say that X → S is of type (FA)n means
that there exists a finite cover by open affine schemes Ui (1 ≤ i ≤ m) such that ∐(Ui)

n → Xn

is surjective. Thus using [EGA] IV.8.10.5 (vi), there exists a scheme S0 of finite type over Z, an
S0-scheme X0 of finite presentation, and an open cover U0,i of X0 such that Ui ≃ U0,i ×S0

S for
all i, X ≃ X0 ×S0

S, and ∐(Ui,0)
n → (X0)

n is surjective. �

In the next lemma, we relate the notion of purity for a scheme over a noetherian henselian
local ring (R,m) with the property of separation of the function rings with respect to the m-adic
topology. We will say that an R-algebra A is strongly separated for the m-adic topology if and
only if for all prime ideals q ⊂ m, the ring A/qA is separated for the m/q-adic topology.

2.1.7 Lemma. Let R be a noetherian henselian local ring with maximal ideal m. Let X be a
scheme locally of finite type and flat over R. Consider the following conditions :

(i) X is R-pure.

(ii) X has an open covering by affine schemes whose function algebras are free R-modules.
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(iii) X has an open covering by affine schemes whose function algebras are strongly m-adically
separated.

Then, we have (ii) ⇒ (iii) ⇒ (i). Assume moreover that R is a discrete valuation ring and X
is quasicompact and of type (FA)n+1, where n is the number of associated points of the generic
fibre. Then all three conditions (i), (ii), (iii) are equivalent. Furthermore, we may choose an
open covering {Ui} as in (ii)-(iii) so that all intersections Ui∩Uj are R-pure again. Finally, the
R-module H0(X,OX) is free.

Proof : The fact that (ii) implies (iii) is clear since any free R-module is strongly separated for
the m-adic topology. Let us check that (iii) implies (i). Let x ∈ Ass(X/R) and U = Spec(A)
be an open affine containing x, with A strongly m-adically separated. Let p ⊂ A (resp. q ⊂ R)
be the prime ideal corresponding to x (resp. the image of x in S) and let k(q) = Aq/qAq be
the residue field of q. If the closure of x in U does not meet the special fibre, there exist u ∈ p
and v ∈ m such that 1 = u+ v. But by assumption, there is a ∈ A such that the image of p in
A ⊗ k(q) is the annihilator AnnA⊗k(q)(a). Hence there exists s ∈ R \ q such that sua ∈ qA. In
the ring A/qA, we get sa = sav = savn for all n ≥ 1 hence sa lies in ∩n≥0 (m/q)n(A/q). The
latter intersection is zero by assumption, hence sa = 0 in A/q and a = 0 in A ⊗ k(q). This is
impossible. By contrapositive, X is pure.

We now prove that under the additional assumptions, we have (i) ⇒ (ii). Call x1, . . . , xn

the associated points of the generic fibre of X. By purity, for each i the closure of xi meets the
closed fibre in at least one point x′i. Since it is assumed that X → Spec(R) is of type (FA)n+1,
for each x ∈ X we may find an open affine Ux = Spec(A) containing x, x′1, . . . , x

′
n. Obviously Ux

is R-pure, so it follows from 2.1.3 that A is a projective R-module, i.e. a free R-module since
R is a principal ideal domain. Since X is quasicompact, we can extract from {Ux} a finite open
cover, and since each of them contains x′1, . . . , x

′
n, the intersections Ui ∩ Uj are R-pure.

Finally we prove that H0(X,OX ) is free. Let Ui = Spec(Ai) be an open covering by affine
schemes whose function algebras are free R-modules. Since X is quasi-compact, finitely many of
the Ui are sufficient. Since a submodule of a free R-module is free, the injection H0(X,OX ) →֒
ΠH0(Ui,OUi

) gives the desired result. �

2.1.8 Remark. The special case where X is affine of finite type and flat over a discrete
valuation ring will be useful later in the paper. In this case, the proof above shows that X is
pure if and only if Γ(X,OX ) is a free R-module, if and only if Γ(X,OX) is separated for the
π-adic topology.

We now point out some features of pure schemes over a discrete valuation ring, and in
particular a relation between purity and the topology of the neighbourhoods of the special fibre.
Note that the notions of schematic density and schematic dominance will receive a more complete
treatment in section 3 ; we refer to it for more details.

2.1.9 Lemma. Let (R,K, k, π) be a discrete valuation ring. The following properties hold.

(1) Let f : Z → X be a morphism of R-schemes with X flat over R. Then f is schematically
dominant if and only if fK is schematically dominant.

(2) Let X be an R-scheme locally of finite type and pure. Then any open neighbourhood of
the closed fibre Xk is schematically dense in X. If moreover X is flat over R, then such a
neighbourhood is R-universally schematically dense.
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(3) Let X,Y be R-schemes of finite type with X pure and Y separated. Let R̂, X̂, Ŷ be the
π-adic formal completions of R, X, Y . Then, the completion map

HomR(X,Y )→ Hom bR(X̂, Ŷ ) , f 7→ f̂

is injective.

Proof : (1) This is clear, since XK is schematically dense in X.
(2) Let U be an open neighbourhood of the closed fibre Xk. To prove that U is schematically
dense, we may replace R by its henselization and hence assume that R is henselian. Then it is
enough to prove that Ass(X) ⊂ U . If x ∈ Ass(X), then by [EGA] IV.3.3.1 it is an associated
point in its fibre Xs, where s is the image of x in s. Since X is pure, the closure of x meets Xk,
hence it meets U , so x ∈ U and we are done. If moreover X is flat over R, then using point (1)
we see that UK is schematically dense in XK . Since Uk = Xk is schematically dense in Xk and U
is flat over R, it is R-universally schematically dense.
(3) Let f, g : X → Y be such that f̂ = ĝ. In order to prove that f = g, we may pass to the
henselization of R and hence assume that R is henselian. By [EGA] I.10.9.4, there is an open
neighbourhood U ⊂ X of Xk where f and g are equal. It follows from (1) that U is schematically
dense in X. Since f = g on a schematically dense open subscheme of X, we get f = g on X. �

2.1.10 Remark. Point (2) of this lemma allows to compare pure schemes with other schemes
by looking at ”how close” a scheme is to its special fibre. If we arrange R-schemes by increasing
distance to their special fibre, we have k-schemes, then formal R-schemes, then pure R-schemes,
then general R-schemes.

2.1.11 Lemma. Let X → S be a morphism of schemes. Assume that X is locally noetherian
and S is affine. Let s ∈ S and let p ⊂ Γ(S,OS) be the corresponding ideal. Then there is an open
neighbourhood of the fibre Xs that is covered by affine schemes whose function ring is separated
for the p-adic topology.

Proof : Let x ∈ Xs and let U1 = Spec(A1) be an affine neighbourhood with A1 noetherian.
Let m ⊂ A1 be the prime ideal corresponding to x, so pA1 ⊂ m. Let I1 = ∩n≥0 p

nA1. Since
OX,x is local noetherian, it is separated for the p-adic topology, hence I1 lies in the kernel of
the localization morphism A1 → OX,x. Since I1 is finitely generated, there is s1 ∈ A1 \m such
that s1I1 = 0. In other words, if we set A2 = A1[1/s1] then I1 maps to 0 under A1 → A2. By
induction, after we have defined Ar, we let Ir = ∩n≥0 p

nAr, we argue that there is sr ∈ Ar \m
such that srIr = 0, and we define Ar+1 = Ar[1/sr]. Because A1 is noetherian, the increasing
sequence of ideals Kr = ker(A1 → Ar) must stabilise at some ρ. One checks that Iρ = 0, that
is, Aρ is separated for the p-adic topology. �

2.2 Application to the fibres of morphisms

We now mention an application of these results to the study of the fibres of morphisms of
schemes. Namely, one can weaken the assumptions in some theorems of [EGA] IV, § 12.2, by
requiring purity instead of properness.

2.2.1 Theorem. Let f : X → S be of finite presentation, flat and pure. Then the following
sets are open in S :

(i) The locus of points s ∈ S such that the fibre Xs is geometrically reduced.
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(ii) The locus of points s ∈ S such that Xs is geometrically reduced and connected.

(iii) The locus of points s ∈ S such that Xs is geometrically integral.

Furthermore the statement in (ii) may be refined : if f has geometrically reduced fibres, then
the function which associates to s ∈ S the number of connected components of Xs is lower
semicontinuous.

Proof : The assertions to be proven are local on S so we may assume S = Spec(R) affine. By
limit arguments using [GR], corollaire 3.3.10, and other usual results of [EGA] IV, §§ 8–11, we
reduce to the case where R is noetherian.

Now let P be one of the properties reduced, reduced and connected, or integral. The loci we
are interested in are constuctible so it is enough to prove that they are stable under generization.
By [EGA] II.7.1.7 one reduces to R = (R,K, k, π) equal to a discrete valuation ring, which we
may assume henselian. Then we assume that the closed fibre has the geometric property P , and
we have to prove that the generic fibre has it also. For this it is enough to prove that for all
finite field extensions L/K, the scheme X ⊗K L has property P . Replacing R by its integral
closure in L we reduce to K = L. By lemma 2.1.11 there is an open neighbourhood U of the
special fibre of X that is covered by open affine subschemes with function ring separated for the
π-adic topology, i.e. pure. By lemma 2.1.9 this U is universally schematically dense so if U has
the property P then X also. Therefore we may replace X by U and hence assume that X is
covered by pure open affine subschemes. We now consider the three cases separately.

(i) Let U = Spec(A) be a pure open affine subscheme of X. It is enough to prove that A is
reduced. Let x ∈ A be nilpotent. Since A is separated for the π-adic topology and has no
π-torsion, if x is nonzero we may assume that x 6∈ πA. But then we have a contradiction with
the fact that Ak is reduced. So x = 0, and A is reduced.

(ii) From (i) we know that XK is reduced. We shall prove that the number of connected
components of XK is less than that of Xk : this proves the refinement on lower semicontinuity, of
which (ii) is a direct consequence. Let B = H0(X,OX ). From the injection Bk →֒ H0(Xk,OXk

)
we learn that Bk is reduced. This, together with an easy calculation, proves that the idempotents
of B and those of BK are the same. So XK and X have the same number of connected
components ; call it u. Then B splits as a product of rings B1 × · · · × Bu, with Bi 6= 0 for
i = 1, . . . , u. Since B is a free R-module (lemma 2.1.7), each of the Bi is free, and hence
Bi,k 6= 0. Hence Bk has at least 2u idempotents, so Xk has at least u connected components.

(iii) From (ii) we know that XK is reduced and connected. It is enough to prove that all pure
open affine subschemes U = Spec(A) of X are integral. But if xy = 0 in A, and x, y are nonzero,
we may as above assume that they do not belong to πA. Then this contradicts the fact that Ak

is integral. �

2.2.2 Counter-examples. Obviously the corollary does not extend to all properties listed in
[EGA], IV, § 12.2. We give counter-examples for some of them. Let (R,K, k, π) be a discrete
valuation ring.

(1) geometrically connected. Let A = R[t]/(t2−πt) and X = Spec(A). Then Xk is geometrically
connected but XK has two connected components.

(2) geometrically pointwise integral. Let A = R[e, x, y]/I where I is the ideal generated by the
four elements xy, e2−e+π, (1−e)x−πx, ey−πy. Let X = Spec(A). Then Xk is geometrically
pointwise integral (with two connected components), but XK is not, for it is geometrically
connected and AK has zerodivisors x, y.
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(3) smooth, geometrically normal, etc. Let X be a flat finite type R-scheme with geometrically
integral fibres without embedded components. Let U be the complement in X of the singular
locus of Xk. Then U is again pure over R, with smooth special fibre, but the generic fibre can
be chosen to haved arbitrary singularities.

3 Reconstructing a scheme from flat closed subschemes

In this section, we consider two types of situations :

(I) Ordinary : a discrete valuation ring (R,K, k, π) and an R-scheme X with a family of mor-
phisms of R-schemes Zλ → X indexed by a set L.

(II) Formal : a complete discrete valuation ring (R,K, k, π) and a formal R-scheme X with a
family of morphisms of formal R-schemes Zλ → X indexed by a set L.

Most of the time, we write this family as a single morphism f : ∐Zλ → X. After some
generalities in subsection 3.1, we specialise in subsection 3.2 to the case where f is the family
of all (formal) closed subschemes of X finite flat over R. The general theme is to find some
conditions under which X is the amalgamated sum of its generic fibre XK and the subschemes
Zλ along the subschemes Zλ,K (in the formal case, the generic fibres are the rigid analytic spaces
Xrig and Zλ,rig). As a matter of notation, when no confusion seems possible, we will allow
ourselves a slight abuse by maintaining the letter f to denote the restriction Zλ0

→֒ ∐Zλ → X,
for a given λ0 ∈ L. For example, we will write f∗OZλ

instead of (f|Zλ
)∗OZλ

.

3.1 Schematically dominant morphisms

We will need various notions of dominant morphisms ; see also [EGA] IV.11.10.

3.1.1 Definitions. Let f : ∐Zλ → X, λ ∈ L, be a family of morphisms of R-schemes.

(1) If X is affine, f is called affinely dominant the intersection of the kernels of the maps
Γ(X,OX ) → Γ(Zλ,OZλ

) is 0. If X is arbitrary, f is called weakly schematically dominant if
there exists a covering of X by open affine subschemes Ui such that f−1(Ui) → Ui is affinely
dominant for all i.

(2) The map f is called schematically dominant if the intersection of the kernels of the maps of
sheaves OX → (fλ)∗OZλ

is 0, or equivalently, if for all open affine subschemes U ⊂ X, the map
f−1(U)→ U is affinely dominant.

If one of these properties is true after any base change R→ R′, we say that it is true universally.

The family of maps∐n≥0 Spec(R/πn)→ Spec(R) is affinely dominant, hence weakly schemat-
ically dominant, but not schematically dominant.

If X is affine, it is equivalent to say that f is affinely dominant or that for any two morphisms
u, v : U → X ′ to an affine R-scheme X ′, f ◦ u = f ◦ v implies u = v. If X is arbitrary, it is
equivalent to say that f is schematically dominant or that for any open set U ⊂ X, and any
two morphisms u, v : U → X ′ to a separated R-scheme X ′, if the compositions of u and v with
the restriction f−1(U)→ U are equal, then u = v. In the case where each f|Zλ

is an immersion,
this gives the notion of a schematically dense family of subschemes.

If we consider a family of morphisms of formal R-schemes f : ∐Zλ → X, λ ∈ L, the same
definitions and remarks apply word for word.

In the sequel, we will meet one particular case where weakly schematically dominant are
schematically dominant. In order to explain this, we recall the following standard notation : if

9



I, J are ideals in a ring A, we write (I : J)A or simply (I : J) for the ideal of elements a ∈ A
such that aJ ⊂ I, and we write (I : J∞) for the increasing union of the ideals (I : Jn). The
following definition applies in the case of schemes or formal schemes.

3.1.2 Definition. We say that the torsion in f∗OZλ
is bounded uniformly in λ if and only if

for all U ⊂ X open, for all t ∈ OX(U), there exists an integer c ≥ 1 such that for all λ ∈ L, we
have (0 : t∞) = (0 : tc) as ideals of (f∗OZλ

)(U).

3.1.3 Lemma. Let f : ∐Zλ → X, λ ∈ L, be a family of morphisms of R-schemes or formal
R-schemes. Assume that either L is finite, or the torsion in f∗OZλ

is bounded uniformly in λ.
Then f is schematically dominant if and only if it is weakly schematically dominant.

Proof : Only the if part needs a proof. Let U = Spec(A) in the scheme case, resp. U = Spf(A)
in the formal scheme case, be an open affine such that f−1(U) → U is affinely dominant.
Let Bλ = (f∗OZλ

)(U), ϕλ : A → Bλ the map corresponding to fλ, and Iλ = ker(ϕλ). The
intersection of the ideals Iλ is zero and we have to prove that for all t ∈ A, the intersection of
the kernels of the maps ϕλ[1/t] : A[1/t]→ Bλ[1/t] is zero. Let a be in this intersection. Clearly
it is enough to take a ∈ A. For all λ there is an integer cλ ≥ 0 such that tcλϕλ(a) = 0. If the
torsion in f∗OZλ

is bounded uniformly in λ, there is an integer c such that for all λ we have
tcϕλ(a) = 0. If L is finite, this is also true with c = sup{cλ , λ ∈ L}. It follows that tca is in the
intersection of the Iλ, hence zero by assumption. Thus a = 0 in A[1/t]. �

We now use more specifically the properties of flat modules over the discrete valuation ring R.
The first lemma below is stated as a useful observation to keep in mind. Then we continue with
some properties of schemes dominated by flat families.

3.1.4 Lemma. For a morphism of R-modules u : M → N with N flat, the following conditions
are equivalent :

(1) u is universally injective.

(2) u is injective and uk is injective.

(3) u is injective and coker(u) is flat.

If N is a direct product of flat modules Nλ, λ ∈ L, and we denote by Iλ the kernel of M → Nλ,
these conditions are also equivalent to :

(4) ∩
λ∈L

Iλ = 0 and ∩
λ∈L

Iλ,k = 0.

Proof : This is classical. �

The main point of the following result is to say that X satisfies the property of the amal-
gamated sum of XK and the Zλ along their respective generic fibres, for morphisms to affine
R-schemes Y .

3.1.5 Proposition. Let f : ∐Zλ → X be a family of morphisms of R-schemes with Zλ flat
over R, for all λ ∈ L. Assume moreover that we are in one of the following cases.

(i) X has a covering by open affine schemes Ui whose function algebras are π-adically separated
and the restriction of fk to f−1(Ui)k is affinely dominant.

(ii) X is locally noetherian and fk is schematically dominant.

Then the following properties hold.
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(1) X is flat over R.

(2) f , equivalently fK , is weakly schematically dominant (in case (ii) one needs to assume also
that X is locally of finite type and pure).

(3) For all affine R-schemes Y and all diagrams in solid arrows

∐Zλ,K //

��

XK

��

��1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

∐Zλ
//

))R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

X

!!
Y

there exists a unique morphism X → Y making the full diagram commutative.

Proof : Observe that after we have proven that X is flat, in order to prove the amalgamated
sum property to affine schemes, since X is flat and Y is separated, the map g : X → Y is unique
if it exists. Thus we may define it locally on X and glue. It follows that all assertions to be
established are local.

In case (i) we are immediately reduced to the situation where X = Spec(A) with A separated
for the π-adic topology. We keep the notations of the proof of lemma 3.1.3 and we also set
B = ΠBλ, ϕ = Πϕλ and I = ker(ϕ). From the injection A/I →֒ B it follows that A/I has no
π-torsion hence is flat over R. If a ∈ I, then since ϕk is injective, there exists a1 ∈ A such that
a = πa1. Since A/I has no π-torsion, a1 himself lies in I, and by induction we obtain a ∈ ∩πnA.
So a = 0 by the assumption on A. This proves that A is torsion-free, hence flat over R, and also
that f is weakly schematically dominant. Now we have a diagram with all morphisms injective :

B // BK

A //

OO

AK

OO

Obviously, in order to prove the amalgamated sum property for maps to affine schemes, it is
enough to show that A is isomorphic to the fibred product AK ×BK

B. Since A is separated for
the π-adic topology, a nonzero element in B ∩ AK may be written a/πd with a ∈ A and d ∈ Z

minimal, such that there exists b ∈ B with a = πdb in B. If d > 1, reducing modulo π we find
that the image of a vanishes in Bk. Since Ak → Bk is injective, it follows that a ∈ πA, and this
contradicts the minimality of d. Hence d ≤ 0, so a/πd ∈ A and we are done.

In case (ii), in order to prove flatness it is enough to look at points of the special fibre Xk.
By lemma 2.1.11, such a point has an affine neighbourhoood Spec(A) with A separated for
the π-adic topology. From case (i) follows that X is flat. Also, in this way we have found a
neighbourhood U of the special fibre which is covered by open affine schemes whose function
algebras are π-adically separated. From case (i) follows that the restriction of f to f−1(U) is
weakly schematically dominant. So if X is locally of finite type and pure, U is schematically
dominant in X by lemma 2.1.9, hence f itself is weakly schematically dominant. Finally, to
prove the amalgamated sum property, it is enough to define g in a neighbourhood of all closed
points x ∈ Xk. By lemma 2.1.11 we may choose a neighbourhood Spec(A) where A is π-adically
separated. Then we are reduced to case (i). �

It is possible to formulate an analogue of the amalgamated sum property for formal schemes
finite type, using the definition of the generic fibre as a rigid analytic K-space as in [BL1].
Since we have to impose the assumption of finite type, the direct formal analogue of the affine
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version 3.1.5 is not relevant. Hence we will content ourselves with a statement of the properties
needed in order to prove 3.2.6.

3.1.6 Proposition. Assume that R is complete. Let f : ∐Zλ → X be a family of morphisms
of formal R-schemes locally of finite type, with Zλ flat over R for all λ ∈ L, such that fk is
schematically dominant. Then,

(1) X is flat over R.

(2) f (equivalently fK) is weakly schematically dominant.

Proof : (1) We may restrict to an open affine formal subscheme Spf(A). Then A is π-adically
separated and the arguments of the proof of point (1) in proposition 3.1.5 carry on.

(2) The arguments are the same as in point (2) in proposition 3.1.5. �

In the sequel of the paper, we will be mainly interested in the case where L is infinite.
Concerning the case where L is finite (this is essentially the case where L has just one element,
for, one may consider Z = ∐Zλ), the following property is still worth recording :

3.1.7 Proposition. Let S be a scheme and let f : Z → X be a morphism of flat S-schemes
of finite presentation. Assume that X is pure. Let S0 ⊂ S be the locus of points s ∈ S such
that fs is schematically dominant, X0 = X ×S S0, Z0 = Z ×S S0. Then S0 is open in S an
f|Z0

: Z0 → X0 is S0-universally schematically dominant.

Proof : As in the proof of theorem 2.2.1, one reduces to the case where S is the spectrum of
a henselian discrete valuation ring R with uniformizer π, and fk is schematically dominant. By
lemma 2.1.11, there is an open neighbourhood U of the special fibre of X that is covered by
open affine schemes whose function algebras are π-adically separated. By 3.1.5(2) and 3.1.3,
the restriction of f to U is schematically dominant. Since U is schematically dense in X by
lemma 2.1.9, then f is schematically dominant. The fact that f|Z0

: Z0 → X0 is S0-universally
schematically dominant is a consequence of [EGA] IV, 11.10.9. �

3.2 Glueing along the finite flat subschemes

We continue with the ordinary (I) and formal (II) situations presented at the beginning of
section 3. From now on, the family Zλ will always be the family of all closed subschemes of X
in case (I), resp. closed formal subschemes of X in case (II), that are finite and flat over R.
We denote this family by F(X). Under some mild conditions, we will prove that this family is
R-universally schematically dense in X and we will improve proposition 3.1.5 by extending the
amalgamated sum property to morphisms to arbitrary separated (formal) schemes Y .

We keep the notation f : ∐ Zλ → X for the canonical morphism induced by the inclusions
Zλ ⊂ X. Note that F(X) is naturally an inductive system, if we consider it together with
the closed immersions Zλ →֒ Zµ. Moreover, we can define the union of two finite flat closed
subschemes by the intersection of the defining ideals ; this is again a finite flat closed subscheme.
In this way, we see that F(X) is filtering.

Let us start our programme. We start with a well-known property.

3.2.1 Lemma. Consider one of the two situations :

(I) X is an R-scheme locally of finite type. Assume that X is flat over R, or more generally
that Xred is flat over R.
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(II) R is complete and X is a flat formal R-scheme locally of finite type.

Then F(X) attains all the closed points of Xk. In case (I) the converse is true : if F(X) attains
all the closed points of Xk then Xred is flat over R.

Proof : In case (I), first note that Xred is flat if and only if no irreducible component of X
is included in the special fibre. Hence if Xred is flat, for each closed point x ∈ Xk, there is
an irreducible component W ⊂ X at x that is not contained in Xk. Then the claim follows
from proposition 10.1.36 of [Liu] applied to W . Conversely if Xred is not flat then there is an
irreducible component included in the special fibre, and it is clear that this component contains
at least one point not lying on any Z ∈ F(X). In case (II) this is just [BL1], proposition 3.5. �

For the sequel, a crucial ingredient is a theorem of Eisenbud and Hochster (see [EH]) which
we recall for convenience :

3.2.2 Theorem (Eisenbud, Hochster) Let A be a ring, and let P be a prime ideal of A.
Let N be a set of maximal ideals m such that Am/Pm is a regular local ring, and such that

⋂

m∈N

m = P .

If M is a finitely generated P -coprimary module annihilated by P e, then

⋂

m∈N

meM = 0 .

As a preparation for the proof of theorem 3.2.4 below, we first establish a lemma. We refer
to Bruns-Herzog [BH] for more details on the following notions. Let (A,m) be a noetherian
local ring of dimension r, and write lgA(M) or simply lg(M) for the length of an A-module M .
For an arbitrary ideal of definition q ⊂ A, one defines the Hilbert-Samuel multiplicity e(q)
as the coefficient of ir/r! in the polynomial-like function i 7→ lgA(A/qi). The Hilbert-Samuel
multiplicity of A itself is defined to be e(m). If A is Cohen-Macaulay and q is a parameter ideal
(that is, an ideal generated by a system of parameters), we have e(q) = lg(A/q). If moreover
the residue field is infinite, there exists a parameter ideal q such that e(q) = e(m) (see exercise
4.5.14 in [BH]).

3.2.3 Lemma. Let k be a separably closed field and X = Spec(A) an affine scheme of finite
type over k. Then there exists an integer c ≥ 1, a set of Cohen-Macaulay closed points M ⊂ X,
and for all points x ∈M a parameter ideal qx ⊂ OX,x satisfying dimk(OX,x/qx) ≤ c, such that

⋂

x∈M

q′x = 0

where q′x is the preimage of qx in A.

Proof : Let 0 = I1 ∩ · · · ∩ Ir be a primary decomposition of the sub-A-module 0 ⊂ A, where
Ij is a Pj-primary ideal, Pj =

√
Ij . For each 1 ≤ j ≤ r let ej be such that (Pj)

ej ⊂ Ij. The
closed subscheme Zj defined by the ideal Pj is a variety, in particular it is reduced. On one
hand, by classical properties of schemes of finite type over a field, there is a dense open set
Uj ⊂ Zj of points that are regular in Zj and Cohen-Macaulay in X. On the other hand, let
ka be an algebraic closure of k, and let Sj be the smooth locus of the reduced subscheme of
Zj ⊗k k

a. It is defined over a finite purely inseparable extension ℓj/k, whose degree we call γj.
Hence there is a smooth ℓj-scheme Vj whose pullback to ka is Sj. Since ℓj is separably closed,
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the set of ℓj-rational points of Vj is dense. Therefore, the set Mj = Uj ∩ Vj(ℓj) is dense in Zj.
By theorem 3.2.2 applied with N = Mj and M = A/Ij , we have

⋂

x∈Mj

mejA ⊂ Ij

where m denotes the maximal ideal of A corresponding to the point x. We call e = max(ej),
M = ∪Mj, γ = max(γj). Then, for all x ∈M, we have [k(x) : k] ≤ γ, and

⋂

x∈M

meA ⊂ I1 ∩ · · · ∩ Ir = 0 .

We now choose suitable parameter ideals qx. For x ∈ X we let e(x) denote the Hilbert-Samuel
multiplicity of the local ring at x. This is an upper-semicontinuous function, hence it is bounded
on X by some constant α. By the remarks preceding the lemma, for each Cohen-Macaulay
closed point x ∈ X, we can find a parameter ideal q = (r1, . . . , rs) with e(q) = e(x), where
s = dim(OX,x) ≤ n = dim(X). Now qx := ((r1)

e, . . . , (rs)
e) is again a parameter ideal, with

qx ⊂ m
e. It follows from the above that if q′x denotes the preimage of qx in A then

⋂

x∈M

q′x = 0 .

Furthermore one sees readily that if β = s(e− 1) + 1 then qβ ⊂ qx. Thus,

lg(OX,x/qx) = e(qx) ≤ e(qβ) = βs
e(q) ≤ βsα .

Finally, since the degree of the residue fields of points x ∈M is bounded by γ, we have

dimk(OX,x/qx) = [k(x) : k] lg(OX,x/qx) ≤ γβsα ≤ γ(n(e− 1) + 1)nα .

If we set c := γ(n(e− 1) + 1)nα, we have proven all the assertions of the lemma. �

3.2.4 Theorem. Consider one of the two situations :

(I) R is henselian and X is an R-scheme locally of finite type, flat and pure.

(II) R is complete and X is a flat formal R-scheme locally of finite type.

Then the family F(X) of all closed (formal) subschemes Zλ ⊂ X finite flat over R is R-
universally schematically dense.

Proof : We start with case (I). We first assume that R is strictly henselian. By lemma 2.1.11,
there is an open neighbourhood U of the special fibre of X that is covered by open affine
subschemes with function ring separated for the π-adic topology. Lemma 2.1.9 implies that U
is R-universally schematically dense in X. Therefore we may replace X by U and hence assume
that X is covered by open affine subschemes with function ring separated for the π-adic topology.
Since the result is local on X we may finally assume that X is affine, with function ring A of
finite type over R, separated for the π-adic topology (and in fact free, by remark 2.1.8).

By lemma 3.2.3, there exists a constant c ≥ 1, a set of Cohen-Macaulay closed points
M ⊂ Xk, and parameter ideals qx ⊂ OXk,x satisfying dimk(OXk ,x/qx) ≤ c and such that the
ideals q′x = qx ∩Ak have zero intersection. We let {Zc

λ}, λ ∈ L
c, denote the family of all closed

subschemes of X, finite flat over R, of degree less than c, and we write f c : ∐Zc
λ → X for the

canonical morphism.

14



The ideal qx is generated by a regular sequence r = (r1, . . . , rs), where s = dim(OXk ,x). Let
r̃ be a sequence obtained by lifting the ri in OX,x and let Y = Spec(OX,x/(r̃)). As r is a regular
sequence, it follows that Y is flat over R. Furthermore Yk is artinian, hence Y is quasi-finite
over R. Since R is henselian, Y is in fact finite over R. Thus Y → X is a proper monomorphism,
hence a closed immersion. So Y is one of the schemes Zc

λ.

Since the k-algebras of functions of Zc
λ,k are free of rank less than c, the Cayley-Hamilton

theorem implies that in the terminology of definition 3.1.2, the torsion in (f c
k)∗OZc

λ,k
is bounded

uniformly in λ (in a strong form, since the bound c is independent of the local sections t).
As the intersection of the ideals q′x = qx ∩ Ak is zero, lemma 3.1.3 applies and proves that f c

k

is schematically dominant. Moreover, the R-algebras of functions of Zc
λ are free of rank less

than c, so the argument used above works again and by proposition 3.1.5 we get that f c and
f c

K are schematically dominant. Applying [EGA] IV, 11.10.9, it follows that f c is R-universally
schematically dominant. A fortiori, the family F(X) is R-universally schematically dense.

It remains to treat the case of a general henselian discrete valuation ring R. Let Rsh be a
strict henselization, and Xsh = X ⊗R Rsh. By the preceding discussion we know that F(Xsh)
is universally schematically dense in Xsh. Since Rsh is an integral extension of R, the canonical
morphism j : Xsh → X is integral. Thus the schematic image of any finite Rsh-flat closed
subscheme Zsh ⊂ Xsh is an R-flat closed subscheme Z of X, integral over R, hence a finite flat R-
scheme. This proves that the family {j−1(Z)}, with Z ∈ F(X), is a cofinal subfamily of F(Xsh),
thus it is universally schematically dense in Xsh. By faithfully flat descent ([EGA] IV.11.10.5),
so is F(X) in X.

In case (II), we follow the same strategy of proof. We start with the case where R is strictly
henselian. We reduce to the formal affine case X = Spf(A), with A topologically of finite type
over R. Such an A is automatically separated for the π-adic topology. Then we consider the
family {Zc

λ} of all closed formal subschemes of X, finite flat over R, of degree less than c. We
apply lemma 3.2.3 again, and as before, for each Cohen-Macaulay closed point x in M ⊂ Xk,
we can realize the subscheme defined by the parameter ideal qx ⊂ OXk,x as the special fibre of
some Zc

λ. Then we use proposition 3.1.6 to get that f c and f c
K are schematically dense. It makes

no difficulty to adapt [EGA] IV, 11.10.9 to formal schemes and conclude that f c and a fortiori
F(X) is R-universally schematically dense. Also the argument from [EGA] to descend from the
strict henselization to R is easily adapted. �

3.2.5 Proposition. Let X be an R-scheme locally of finite type and flat. Let {Zλ} be the
family of all closed subschemes of X finite flat over R, and assume that the family {Zλ,k} is
schematically dense in Xk (e.g. R is henselian and X is pure, by theorem 3.2.4). Then for all
separated R-schemes Y and all diagrams in solid arrows

∐Zλ,K //

��

XK

��
β

��1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

∐Zλ
//

α

))R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

X

!!
Y

there exists a unique morphism g : X → Y making the full diagram commutative.

Proof : In fact flatness of X follows from the other assumptions, by proposition 3.1.5. Let
f : ∐Zλ → X, α : ∐Zλ → Y and β : XK → Y be the maps in the diagramme. By the same
argument as in the proof of proposition 3.1.5, the map g : X → Y is unique if it exists. Thus
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we may define it locally on X and glue. It is enough to define g in a neighbourhood of all
closed points x ∈ Xk. We know from lemma 3.2.1 that f is surjective on closed points of the
special fibre. So the given point x is equal to f(z) for some λ and z ∈ Zλ. Let y = α(x), let
V = Spec(C) be an open affine neighbourhood of y in Y , and let U be an open subscheme of X
containing x. We will prove that x does not belong to the closure in X of XK \β

−1(V ). Indeed,
otherwise there is a point η ∈ XK \ β

−1(V ) such that x ∈ W := {η}. Thanks to lemma 3.2.1
applied to W , we may replace η by a closed point of WK and hence assume that η is closed in
XK . In this case W is one of the Zλ, so it makes sense to speak about the images of x and η
under α. Then,

x ∈ {η} implies that y = α(x) ∈ {α(η)} = {β(η)}

and this is a contradiction with the fact that β(η) 6∈ V . Therefore, we may shrink U and assume
that UK ⊂ β

−1(V ). Then by lemma 2.1.11 we may shrink U further to the spectrum of a ring A
separated for the π-adic topology. Therefore, we reduce to X = Spec(A) and Y = Spec(C), and
proposition 3.1.5 applies. �

3.2.6 Proposition. Assume that R is complete. Let X be a flat formal R-scheme of finite type.
Let {Zλ} be the family of all closed formal subschemes of X finite flat over R and f : ∐Zλ → X
the canonical map. Then the analogue of the amalgamated sum property of proposition 3.2.5
holds, if we understand a morphism from a rigid analytic K-space Z to a formal R-scheme Y
to be a morphism Z → Yrig. More precisely, given

• a separated formal R-scheme Y ,

• a morphism of formal R-schemes α : ∐Zλ → Y ,

• a morphism of rigid spaces β : Xrig → Yrig

such that αrig = β ◦ frig, there exists a unique morphism g : X → Y such that grig = β and
g ◦ f = α.

Proof : The proof of 3.2.5 works again in this setting, with some adaptations which we now
sketch. If g, g′ : X → Y are two solutions to the problem, then in particular grig = g′rig. By
Raynaud’s theorem ([BL1], th. 4.1) there exists an admissible formal blowing-up s : X ′ → X
such that g ◦ s = g′ ◦ s. Since s is schematically dominant and Y is separated, we get g = g′.
Because of this unicity statement, as far as existence is concerned, we may define g locally on
X and glue. Also we need to know that F(X)k is schematically dense, which is granted by
theorem 3.2.4. Then, by the same method as above, we reduce to the affine case X = Spf(A)
and Y = Spf(C). Now the arguments of the proof of point (3) in proposition 3.1.5 carry on. �

4 Schematic images inside Hom and Aut functors

Throughout this section, we fix a discrete valuation ring (R,K, k, π). We first recall the definition
of schematic closures and images for fppf sheaves over a discrete valuation ring R. After a brief
discussion of kernels, we prove the main theorems of the paper on representability of schematic
images.
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4.1 Definitions

Recall that in the context of schemes, if f : W → X is a morphism of R-schemes such that
f∗OW is quasi-coherent, there exists a smallest closed subscheme X ′ ⊂ X such that f factors
through X ′. We call it the schematic image of f . If is equivalent to say that the schematic
image of f is X, or that f is schematically dominant.

If W is a closed subscheme of the generic fibre of X and f is the canonical immersion, then
the schematic image is called the schematic closure of W in X. It is the unique closed subscheme
of X which is flat over R and whose generic fibre is W ([EGA] IV.2.8.5).

These definitions may be adapted to morphisms of sheaves as follows (see [Ra]) :

4.1.1 Definitions. Let F be an fppf sheaf over the category of R-schemes.

(1) Let G be a subsheaf of the generic fibre FK . Then the schematic closure of G in F is the
fppf sheaf G′ associated to the presheaf G♭ defined as follows. Given an R-scheme T , G♭(T ) is
the set of all morphisms f : T → F such that there exists a factorization

T //

f   @
@

@

@

@

@

@

@

T ′

g

��
F

with T ′ flat over R and g(T ′
K) ⊂ G.

(2) We say that F is flat over R if it is equal to the schematic closure of its generic fibre.

(3) Let h : H → F be a morphism of fppf sheaves over R, with H flat. Let G be the image sheaf
of hK : HK → FK . Then the schematic image of H in F is defined to be the schematic closure
of G inside F .

The following properties are formal consequences of the definitions. The formation of the
schematic closure commutes with flat extensions of discrete valuation rings. Let F1, F2 be sheaves
over the category of R-schemes. Let G1 ⊂ F1,K , G2 ⊂ F2,K be subsheaves, and let G′

1, G
′
2 be

the schematic closures. For a morphism of sheaves α : F1 → F2 such that α(G1) ⊂ G2, we have
α(G′

1) ⊂ G
′
2. As a consequence, the schematic closure of G in F is the only subsheaf of F which

is flat over R and has generic fibre equal to G. Finally the formation of the schematic closure
commutes with products ; it follows that if F is a group (resp. monoid) sheaf i.e. a group (resp.
monoid) object in the category of fppf sheaves, and G is a subgroup (resp. submonoid) sheaf of
FK , then the schematic closure G′ is a subgroup (resp. submonoid) sheaf of F .

In general, even if F is representable by a scheme, one needs rather strong conditions on
the monomorphism G → FK if one wants representability of the schematic closure G′. As we
recalled above, one pleasant case is when G→ FK is a closed immersion ; then G′ → F is also a
closed immersion. However, we will see now that already in the case of an open immersion, the
schematic closure is not representable by a scheme in general.

4.1.2 Lemma. Let X be an R-scheme, UK ⊂ XK the complement of a Cartier divisor. Then
the schematic closure of UK in X is representable by an inductive limit of affine X-schemes.

Proof : We first construct U ′. Fix an integer n ≥ 0. For each open affine V = Spec(A) in X,
me may choose an equation f ∈ A for XK \ UK . Define UV,n to be the spectrum of the ring

(
A[xn]

xnf − πn

)

0
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where the subscript 0 means the quotient by the π-torsion ideal (0 : π∞). There are maps
UV,n → UV,n+1 given by xn+1 7→ πxn, and we define U ′

V to be the limit of the schemes UV,n.
This construction glues over all V to give an X-scheme U ′. It is not hard to see that this is
independent of the choice of local equations f , up to isomorphism. Finally we check that U ′ is
the desired schematic closure. Let g : T → X be a morphism with T flat over R and g(TK) ⊂ UK .
Let V = Spec(A) be an open affine in X and W = Spec(B) open affine in T , with g(W ) ⊂ V ;
let f ∈ A be an equation for XK \UK . Then we have a morphism of rings ϕ : A→ B such that
ϕ(f) is invertible in BK , i.e. there exists n ≥ 0 and t ∈ B such that ϕ(f)t = πn. Furthermore,
since B is R-flat, t is uniquely determined, as well as the morphism of A-algebras

(
A[xn]

xnf − πn

)

0

→ B

given by xn 7→ t. These morphisms glue to a unique map T → U ′. �

4.2 Kernels

Let S be a base scheme and let Γ,X, Y be schemes over S. We consider a morphism of S-schemes
ϕ : Γ×S X → Y , which we view as an action of Γ on X with values in Y . Equivalently, we have
a morphism of functors ϕ′ : Γ→ HomS(X,Y ). We say that Γ acts faithfully on X, or that ϕ is
faithful, if ϕ′ is a monomorphism. We can relate this to the morphism :

ϕ′ × ϕ′ : Γ×S Γ→ HomS(X,Y )×S HomS(X,Y ) .

4.2.1 Definition. The kernel of ϕ is the preimage of the diagonal of HomS(X,Y ) under the
morphism ϕ′ × ϕ′. It is denoted ker(ϕ).

Obviously, it is equivalent to say that Γ acts faithfully on X, or that the natural monomor-
phism ∆ → ker(ϕ) is an isomorphism, ∆ ⊂ Γ ×S Γ being the diagonal of Γ. When this holds,
we shall also say by abuse that ker(ϕ) is trivial.

If X = Y and G is a group scheme acting on X, the relation between the kernel we have just
defined and the usual kernel H := (ϕ′)−1(idX) is given by the isomorphism G × H → ker(ϕ)
taking (g, h) to (g, gh). We use the notation ker(ϕ) in both situations, because the context will
never allow confusions.

The lemma below collects some cases where one knows that the kernel is representable by a
closed subscheme of Γ ×S Γ. One of this case involves essentially free morphisms of schemes, a
notion which can be slightly (and fruitfully) generalized to essentially semireflexive (see [SGA 3],
Exposé VIII, § 6 and [To2], § 1). Recall that a module M over a ring A is called semireflexive
if the natural morphism M →M∨∨ to the linear bidual is injective. It is equivalent to say that
M can be embedded into a product module AI , for some set I. A morphism of schemes X → S
is called essentially free (resp. essentially semireflexive) over S, if there exists a covering of S
by open affine schemes Si, for all i an affine scheme S′

i faithfully flat over Si, and a covering of
X ′

i = X ×S S
′
i by open affine schemes X ′

i,j , such that for all i, j the function ring of X ′
i,j is a

free (resp. semireflexive) module over the function ring of S′
i. It is clear that an essentially free

morphism is essentially semireflexive.

4.2.2 Lemma. Let X → S be flat and Y → S separated. Then ker(ϕ) → Γ ×S Γ is a closed
immersion in any of the following cases :

(i) X → S is essentially semireflexive,

(ii) S is regular noetherian of dimension 1 and X → S is locally of finite type, flat and pure,
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(iii) X → S is proper and X,Y are locally of finite presentation over S.

We see that under one of these three conditions, faithfulness of ϕ implies separation of Γ.
We remark also that it is not hard to see that if X → S is flat and Y → S is separated, then
ker(ϕ)→ Γ×S Γ satisfies the valuative criterion of properness. What is more difficult is to check
that it is of finite type.

Proof : For case (i) we refer to [SGA 3], Exposé VIII, § 6 and [To2], lemma 1.16. In case (iii),
the functor HomS(X,Y ) is a separated algebraic space, by Artin’s theorems, so the result is
clear. It remains to consider case (ii). We may assume that S is the spectrum of a henselian
discrete valuation ring R. By lemma 2.1.11, there is an open neighbourhood U of the special
fibre of X that is covered by open affine subschemes Ui with function ring Ai separated for the
π-adic topology. Besides, Ui is pure over R and Ai is a free R-module, by 2.1.8. It follows that
U is essentially free over S, hence the kernel NU := ker(Γ×S U → Y ) is a closed subscheme of
Γ×S Γ by case (i). Consider the map induced by the action :

ψ : NU ×S X → Y ×S Y

given on the points by

(γ1, γ2, x) 7→ (ϕ(γ1)(x), ϕ(γ2)(x)) .

By definition, the restriction of ψ to NU ×S U factors through the diagonal of Y . Since U is
R-universally schematically dense in X (lemma 2.1.9), then NU ×S U is schematically dense in
NU ×SX. Thus ψ factors through the diagonal, that is, NU → Γ×S Γ factors through the kernel
N := ker(Γ ×S X → Y ). This gives an inverse for the obvious morphism N → NU and proves
that N ≃ NU . In particular, N is a closed subscheme of Γ×S Γ, as claimed. �

4.2.3 Lemma. Let X, Y , Γ be R-schemes. Consider one of the two situations :

(1) R is henselian, X is locally of finite type, flat and pure, Y is separated, Γ is noetherian.

(2) X is affine and the family of its closed subschemes finite flat over R is universally affinely
dominant (definition 3.1.1), Y is affine, Γ is noetherian.

Consider an action ϕ : Γ×X → Y faithful on the generic fibre. Then there exists a finite R-flat
closed subscheme Z ⊂ X such that the induced action Γ× Z → Y has the same kernel as ϕ.

Proof : Note that in case (2), the scheme X is semireflexive, so that in both cases the kernels
are closed subschemes of Γ × Γ by lemma 4.2.2. Let N = ker(ϕ). Let Z1 ⊂ X be a finite flat
closed subscheme and let N1 be the kernel of the restricted action Γ × Z1 → Y . If N1 6= N ,
there exists Z2 ⊂ X with Z1 ⊂ Z2 such that N1 ) N2. For, otherwise N1 would act trivially on
all the finite flat closed subschemes Z ⊃ Z1, which are universally schematically dense in X (by
theorem 3.2.4 in case (1)), hence N1 would act trivially on X, a contradiction. For s ≥ 1, as
long as Ns 6= N , we iterate this process and obtain a sequence N1 ) N2 ) N3 ) . . . Since Γ×Γ
is noetherian, for some s we obtain that Ns = N . We can choose Z = Zs. �

4.3 Representability of schematic images

We now come to the main results of this paper.

19



4.3.1 Lemma. Let R be a discrete valuation ring. Let X,Y be R-schemes locally of finite
type, with X flat and pure and Y separated. Consider a finite flat R-scheme Γ and an action
ϕ : Γ×X → Y faithful on the generic fibre. Then the schematic image of Γ in HomR(X,Y ) is
representable by a finite flat R-scheme Γ′.

We stress again that HomR(X,Y ) is far from being representable, in general.

Proof : We start with the case where R is henselian. By lemma 4.2.3, there is a finite R-flat
closed subscheme Z0 ⊂ X such that ΓK acts faithfully on Z0,K . Let {Zλ}λ∈L be the family of
all finite R-flat closed subschemes of X containing Z0. This family carries the filtering order
by inclusion of subschemes : λ ≤ µ if and only if Zλ ⊂ Zµ. Since Zλ is finite flat over R, the
functor HomR(Zλ, Y ) is representable by a scheme. Moreover, since Zλ ⊃ Z0 and Γ is finite,
the map ΓK → HomK(Zλ,K , YK) is a closed immersion. For each λ we define Γ′

λ to be the
schematic image of the map Γ → HomR(Zλ, Y ). If λ ≤ µ in L, there is a restriction morphism
HomR(Zµ, Y ) → HomR(Zλ, Y ) and taking schematic closures gives maps Γ′

µ → Γ′
λ. Let Γ′ be

the filtering projective limit of the system {Γ′
λ}. This is an affine, flat, integral R-scheme ; it is

dominated by Γ hence finite over R. Applying proposition 3.2.5 to the diagram

∐ Γ′
K × Zλ,K

��

≃ // Γ′
K ×∐ Zλ,K

// Γ′
K ×XK

��

��

∐ Γ′ × Zλ
≃ //

//

Γ′ ×∐ Zλ
// Γ′ ×X

$$
Y

we obtain an action of Γ′ on X with values in Y . This action is clearly universally faithful,
because the morphism ∐Γ′ ×R Zλ → Γ′ ×R X is universally schematically dominant (apply
theorem 3.2.4 to X and pull back to Γ′ ×R X). So Γ′ has the characterizing properties of the
schematic closure of Γ in HomR(X,Y ), and this proves the theorem.

If R is an arbitrary discrete valuation ring, let Rh be a henselization of R. By the pre-
ceding discussion, Γ ⊗R Rh is representable by a finite flat Rh-scheme. So by descent using
[BLR] 6.2/D.4, Γ is representable by a finite flat R-scheme. �

There is also a version in the affine case, where one can relax the assumptions of finite type.
For example, it applies to rings arising from the completion of smooth R-schemes along a section.

4.3.2 Lemma. Let X be an affine flat R-scheme such that the family of its closed subschemes
finite flat over R is universally affinely dominant (definition 3.1.1). Let Y be an affine R-scheme
and Γ an R-scheme locally of finite type, flat and pure. Consider an action ϕ : Γ × X → Y
faithful on the generic fibre. Then the schematic image of Γ in HomR(X,Y ) is representable by
a flat R-scheme which is affine if Γ is, and finite if Γ is.

Proof : Observe that the assumptions imply that X is semireflexive over R, therefore kernels
of actions are representable by closed subschemes, by lemma 4.2.2. Let X = Spec(A) and
Zλ = Spec(Bλ), λ ∈ L, be the family of the finite flat closed subschemes of X, and let B = ΠBλ.
The proof goes in three steps.

First step : Γ is finite. In this case we follow the proof of lemma 4.3.1. All references to
theorem 3.2.4 are replaced by the assumption made on X. The reference to proposition 3.2.5
is replaced by a reference to proposition 3.1.5. The conclusion is that the schematic image is
representable by a finite flat R-scheme Γ′.
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Second step : Γ is affine. Let Γ = Spec(C) and call ∆µ = Spec(Dµ), µ ∈ M the family of
all finite R-flat closed subschemes of Γ. By the first step, for all µ the schematic image of ∆µ

in HomR(X,Y ) is representable by a finite flat R-scheme ∆′
µ = Spec(D′

µ). Let D = ΠDµ,
D′ = ΠD′

µ. We have injective ring homomorphisms C →֒ D and D′ →֒ D. Let C ′ be the
intersection of C and D′ inside D, and Γ′ = Spec(C ′). We claim that {∆′

µ}µ∈M is the family
of all finite flat closed subschemes of Γ′. Indeed, it is easy to see that C ′ → D′

µ is surjective,
i.e. ∆′

µ is a finite flat closed subscheme of Γ′. Moreover, for each finite flat closed subscheme
T ′ ⊂ Γ′, we can consider T ′

K as a closed subscheme of ΓK , we set ∆µ equal to the schematic
closure of T ′

K in Γ, then obviously T ′ = ∆′
µ. Now we prove that Γ′ acts on X. For this, note

that coker(C ′ → D′) injects into coker(C → D) and hence is R-flat. It follows from lemma 3.1.4
that the family of finite flat closed subschemes of Γ′ is universally affinely dominant. Then the
affine scheme Γ′×X has a family of finite flat subschemes ∆′

µ×Zλ which is universally affinely
dominant. Using proposition 3.1.5, one obtains an action Γ′ × X → Y . It is clear that this
action has trivial kernel, hence Γ′ is the schematic image of Γ.

Third step : Γ is arbitrary. By lemma 2.1.7 and lemma 2.1.11, there is an open neighbourhood
of the special fibre of Γ that is covered by pure open affine subschemes Ui. For each i, by
the second step the schematic image of Ui is representable by an affine flat R-scheme U ′

i . By
unicity of the schematic image, the formation of U ′

i is compatible with localisation, so that the
various U ′

i glue to give a flat R-scheme U ′. Since U ′
K ≃ UK we can glue U ′ and ΓK along their

intersection to get a flat R-scheme Γ′. It is clear that this is the schematic image of Γ. �

In the sequel, we examine the most interesting case of images of groups acting on schemes
by group homomorphisms. We introduce some terminology.

4.3.3 Definition. If an R-group scheme G acts on an R-scheme X in such a way that the
action on the generic fibre is faithful, then the schematic image of G in AutR(X) is called the
effective model of G for its action on X.

4.3.4 Theorem. Let X be an affine flat R-scheme whose closed subschemes finite flat over R
form a universally affinely dominant family. Let G be an R-group scheme locally of finite type,
flat and pure, acting on X, faithfully on the generic fibre. Then the effective model G′ of the
action is representable by a flat R-group scheme. If G is quasi-compact, or affine, or finite, then
G′ has the same property.

Proof : Let G′′ be the schematic image of G inside HomR(X,X). By the previous lemma G′′

is representable by a flat R-scheme. Since AutR(X) is an open subfunctor of HomR(X,X), the
preimage of G′′ in AutR(X) is flat over R and hence is the schematic image G′. It follows from
the general remarks of subsection 4.1 that G′ is a sub-R-group scheme of AutR(X).

If G is quasi-compact, let (U ′
i)i∈I be an open cover of G′. Let Ui be the preimage of U ′

i in G.
By assumption, a finite number of open sets U1, . . . , Un cover G. The scheme G′ is covered by
the schematic images of U1, . . . , Un which are none other than U ′

1, . . . , U
′
n. It follows that G′ is

quasi-compact.

If G is affine, then G′′ is affine by lemma 4.3.2, hence G′ is quasi-affine. Let H be the affine
hull of G′. This is a flat group scheme containing G′ as an open subgroup. Moreover, the special
fibre G′

k is schematically dense in the special fibre Hk, and since these are k-group schemes, we
have in fact G′

k = Hk. It follows that G′ = H is affine.

If G finite, then G→ G′ is surjective and it follows easily that G′ is finite. �

These representability results extend obviously to the case where X is covered by invariant
open affine subschemes satisfying the relevant assumptions. When X is locally of finite type but
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not necessarily affine, it is more difficult to prove that schematic images are representable. In
fact, it is easy to provide a group scheme Gc which is a candidate to be the image, but in order
to prove that it acts on X using proposition 3.2.5, one needs Gc to be of finite type. This is
the major difficulty of our method. Moreover, it seems that in numerous situations one can not
expect the schematic image G′ to be of finite type unless the kernel of the action of G is very
small. The following two results give examples of this.

4.3.5 Theorem. Let X be an R-scheme locally of finite type, separated, flat and pure. Let G
be a flat proper R-group scheme acting on X, faithfully on the generic fibre. Let N denote the
kernel of the action. Then the effective model G′ is representable by a flat group scheme of finite
type if and only if Nk is finite. Moreover, in this case G′ is proper.

Proof : First, assume that Nk is finite. We adapt the proof of lemma 4.3.1. By lemma 4.2.3,
there is a finite R-flat closed subscheme Z0 ⊂ X such that GK acts faithfully on Z0,K . Let G0

be the schematic image of G inside HomR(Z0,X), which is representable since Z0 is finite. We
claim that the morphism u : G → G0 is finite. Indeed, on the special fibre uk factors as the
composition of the finite quotient Gk → Gk/Nk and the monomorphism Gk/Nk → G0,k given by
the embedding in Homk(Zk,Xk). It follows that u is quasi-finite, hence finite since G is proper.

Now let {Zλ}λ∈L be the family of all finite R-flat closed subschemes of X containing Z0. For
each λ, let G′′

λ be the schematic image of the map G→ HomR(Zλ,X). Since G→ G′′
λ → G0 is

finite and schematically dominant, then G→ G′′
λ and G′′

λ → G0 are finite schematically dominant
also. Let G′′ be the filtering projective limit of the system {G′′

λ}. This is a scheme which is finite
over G0. Also, G → G′′ is finite, thus G′′ is of finite type over R by the Artin-Tate theorem
(see [Ei], exercise 4.32). Applying proposition 3.2.5 like in the proof of theorem 4.3.1, we obtain
an action of G′′ on X with values in X. Let G′ be the preimage of G′′ under the inclusion
AutR(X) ⊂ HomR(X,X). This is the schematic image of G in AutR(X). Since G → G′ is
finite, then G′ is proper.

Conversely, assume that G′ is representable by a flat group scheme of finite type over R. A
result of Anantharaman asserts that a separated morphism u between flat R-group schemes of
finite type such that uK has affine kernel is affine ([An], chap. II, prop. 2.3.2). It follows that
G→ G′ is affine. Since it is also proper, it is in fact finite. It follows easily that Nk is finite. �

4.3.6 Remark. It is a well-known fact that a proper flat group scheme over R is in fact
projective. Here is one way to see it. Given a finite extension K∗/K, write G∗ for the extension
of G to R∗, the integral closure of R in K∗. By a result of Raynaud and Faltings ([PY],
corollary A.4) there is a finite extension K∗/K such that the normalization morphism (G̃∗)red →
(G∗)red is finite and (G̃∗)red is smooth. Hence it is the product of an abelian scheme by an étale
finite group, hence projective. It follows that (G∗)red is projective, hence also G∗ and G itself.
Another way to check that G is projective is to reduce to the connected case. Then G is
commutative and one can apply [An], chap. II, prop. 2.2.1.

4.3.7 Remark. Under the assumptions of theorem 4.3.5, it seems plausible that if Nk is finite,
then G′ is representable whether G is proper or not. The only point that needs a verification is
that u : G→ G0 is finite (with the notations of the proof of the proposition). Even though uK

and uk are finite, I was not able to prove this.

4.3.8 Proposition. Let X be an R-scheme locally of finite type, separated, flat and pure. Let G
be a reductive R-group scheme acting on X, faithfully on the generic fibre. Assume furthermore
that either k has characteristic p 6= 2, or that no normal subgroup of GK is isomorphic to
SO2n+1 for some n ≥ 1. Let N denote the kernel of the action. Then the effective model G′ is
representable by a flat group scheme of finite type if and only if N = 1.
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Proof : This is in fact a rigidity property of reductive groups. Assume thatG′ is representable by
a flat group scheme of finite type. Since X is flat and separated, then AutR(X) is a separated
sheaf. It follows that G′ is separated. Then G′ is affine by [An], chap. II, prop. 2.3.1. By
corollary 1.3 of [PY], we obtain that G → G′ is a closed immersion. It follows that G acts
faithfully on X, in other words N = 1. The converse is obvious. �

From this proposition follows that if G is a finite group scheme of order prime to p = char(k)
acting on an R-scheme locally of finite type, separated, flat and pure X, then G acts faithfully
as soon as GK acts faithfully on XK . Indeed, the effective model is a finite flat group scheme G′

by theorem 4.3.5. Since G is reductive by the assumption on its order, we get N = 1. We prove
a refinement of this result in proposition 4.3.9 below. There, we also give other properties of the
effective model of a finite group scheme, especially in the case where the action is admissible,
which means that X can be covered by G-stable open affine subschemes. In this case, there
exist quotient schemes X/G and X/G′, and we want to compare them.

4.3.9 Proposition. Let X be an R-scheme satisfying the assumptions of theorem 4.3.4 or of
theorem 4.3.5. Let G be a finite flat R-group scheme acting on X and let G′ be its effective
model. Then :

(i) Let W be a closed or an open subscheme of X. If W is G-stable, then it is G′-stable. In
particular, if G acts admissibly, then G′ also acts admissibly.

(ii) The effective model of a finite flat subgroup H ⊂ G, for the restricted action on X, is the
schematic image of H in G′. If H is normal in G, then H ′ is normal in G′.

(iii) Assume that G is étale and let p = char(k). Let N ⊳G be the (unique) subgroup of G such
that Nk is the kernel of the action on Xk. Then, the effective model of N is a connected p-group.

In the sequel, we assume that G acts admissibly on X.

(iv) The identity of X induces an isomorphism X/G ≃ X/G′.

(v) Assume that there is an open subset U ⊂ X which is universally schematically dense, such
that G′ acts freely on U . Then for any closed normal subgroup H ⊳ G, the effective model of
G/H acting on X/H is G′/H ′.

(vi) Under assumptions (iii) and (v), the group G′ has a connected-étale sequence

1→ N ′ → G′ → G/N → 1 .

Proof : (i) If W is a closed subscheme of X, then it follows from the general remarks of
subsection 4.1 that the morphism G ×W → W extends to a morphism G′ ×W → W . Now
assume that W is open. It is enough to prove that the underlying set of W is stable under G′.
Let w ∈ W be a point and let Ω be its orbit, by which we mean the schematic image of
G×Spec(k(w)) in X. This is a closed subscheme of X, hence G′-stable. Since Ω ⊂W , it follows
that W is G′-stable.

(ii) This is clear.

(iii) Since the composition Nk → N ′
k →֒ Autk(Xk) is trivial as a morphism of sheaves, the

morphism Nk → N ′
k also is. Moreover, N → N ′ is dominant and closed hence surjective. Hence

N ′
k is infinitesimal so N ′ is a p-group. Let us show that it is connected. We may and do assume

that R is henselian. Then N ′ has a connected-étale sequence whose étale quotient we denote by
N ′

ét. The composition t : N → N ′ → N ′
ét is trivial on the special fibre. Moreover, t is determined

by its restriction to the special fibre because it is a morphism between étale schemes. So it is
globally trivial. As t is dominant we get N ′

ét = 1 thus N ′ is connected.
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(iv) The quotient X → X/G is described, locally on a G-stable open affine U = Spec(A), by the
invariant ring AG = { a ∈ A, µG(a) = 1⊗ a } where µG : A→ RG⊗A is the coaction. Now µG

factors through the coaction µG′ corresponding to the action of G′ :

A→ RG′ ⊗A →֒ RG⊗A

Therefore, AG′

= { a ∈ A, µG′(a) = 1⊗ a } = AG. The result follows.

(v) Clearly H acts admissibly, and X/H ≃ X/H ′ by (ii). We just have to show that G′/H ′

acts faithfully on X/H ′. This is true since G′/H ′ acts freely on the image of U in X/H ′, by the
assumptions on U .

(vi) Apply (v) to H = N . �

In 5.2 and 5.3 below, we will give an example where the effective model G′ does not act
freely on some schematically dense open subscheme, and the claim in (v) does not hold.

4.4 Schematic images for formal schemes

The same methods as in subsection 4.3 yield analogous representability results in the category
of formal schemes locally of finite type. Since the proofs are completely similar, we will simply
indicate how the objects are defined and then state the results. In this subsection, the discrete
valuation ring (R,K, k, π) is complete and we write Rn := R/πn. With a slight abuse, we use
the notation in for both closed immersions Spec(Rn) →֒ Spec(Rn+1) and Spec(Rn) →֒ Spec(R),
since confusions are not likely to arise.

4.4.1 Formal sheaves. We first recall some notations and definitions. By a presheaf over R
we mean a contravariant functor from the category of R-schemes to the category of sets. As
usual, we have the notion of a group presheaf and most of what will be said hereafter is valid for
group presheaves. Schemes over R are identified with their functor of points and hence can be
viewed as presheaves. Presheaves over R form a category denoted PSh /R. Of course what we
just said works for any base ring.

Let i∗n : PSh /Rn+1 → PSh /Rn be the pullback defined by i∗nF = F ×Spec(Rn+1) Spec(Rn).
An fppf formal sheaf over R is a functor from the category of formal R-schemes to the category
of sets satisfying the sheaf condition for fppf coverings. It may be identified with a direct system
of fppf sheaves over Rn, i.e. a sequence (Fn) such that Fn = i∗nFn+1 for all n ≥ 1. Precisely, the
identification goes as follows : to a formal sheaf F , we associate the direct system Fn = i∗nF .
To a direct system (Fn) of fppf sheaves over Rn, we associate the functor F = lim

−→
Fn defined

by F (X) = lim
←−

Fn(Xn) where X = (Xn). These mappings are inverse to each other. We say
that F is locally of finite presentation (or locally of finite type, since R is noetherian) if each Fn

is locally of finite presentation, i.e. satisfies the usual condition of commutation with filtering
direct limits of rings ([EGA] IV.8.14.2).

4.4.2 Formal groups. Given formal R-schemes of finite type X and Y , we have two important
examples of formal sheaves locally of finite type : the homomorphism sheaf HomR(X,Y ) =
lim
−→

HomRn(Xn, Yn) and the automorphism sheaf AutR(X) = lim
−→

AutRn(Xn).

Let G be a flat formal scheme in groups of finite type and X a flat separated formal scheme
of finite type over R. An action of G on X is given by a morphism of formal schemes G×X → X
(satisfying the usual axioms) or equivalently by a morphism of formal sheaves in groups G →
AutR(X). The kernel N of the action is defined as usual. As in lemma 4.2.2, one shows that N is
representable by a closed formal subscheme of G. As in lemma 4.2.3, one shows that there exists
a finite R-flat formal closed subscheme Z ⊂ X such that the induced action G × Z → X has
kernel equal to G×N (here the kernel is understood as a subobject of G×G, see subsection 4.2).
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An action is faithful if and only if N = 1, and one can also define faithfulness by requiring that
no nontrivial R-flat closed subscheme of G acts trivially on X.

4.4.3 Schematic images. Let Rig /K denote the category of quasi-compact, quasi-separated
rigid analytic K-spaces. As we recalled, Raynaud’s point of view gives an equivalence between
Rig /K and the category of flat formal R-schemes of finite type localised by admissible formal
blowing-ups. Using the existence of flat models for flat morphisms of rigid spaces (see [BL2]),
one can set up a satisfactory theory of fppf descent in Rig /K. It is not our intention to provide
the details of such a theory, as there are more qualified experts to do this. We quote these facts
without further justification ; they give a meaning to what an fppf sheaf on Rig /K is.

Recall that a model of a rigid K-space XK is a pair (X, i) where X is a flat formal scheme
of finite type and i is an isomorphism between Xrig and XK . A map between models (X1, i1)
and (X2, i2) is a morphism of formal schemes X1 → X2 compatible with the given isomorphisms
i1, i2. We define the generic fibre Frig of an fppf formal sheaf locally of finite type F to be the
fppf sheaf on Rig /K defined as follows. For any quasi-compact, quasi-separated rigid analytic
space XK , we set :

Frig(XK) = lim
−→

Xrig=XK

F (X)

where the limit is taken with respect to all models X of XK . If F is representable by a formal
scheme locally of finite type, this definition coincides with the definition of the generic fibre
of a formal scheme by [dJ], proposition 7.1.7. Then the definitions of the schematic closure
of a subsheaf G of the generic fibre Frig, schematic image and related notions are the obvious
extensions of the definitions in subsection 4.1. We can now state our results for formal schemes.

4.4.4 Theorem. Let X be an affine flat formal R-scheme of finite type. Let G be a flat
formal R-scheme in groups of finite type acting on X, faithfully on the generic fibre. Then the
effective model G′ of the action is representable by a flat formal R-scheme in groups which is
not necessarily of finite type. If G is quasi-compact, or affine, or finite, then G′ has the same
property.

4.4.5 Theorem. Let X be a flat, separated formal R-scheme of finite type. Let G be a proper
flat formal R-scheme in groups acting on X, faithfully on the generic fibre. Let N denote the
kernel of the action and assume that Nk is finite. Then the effective model G′ is representable
by a proper flat formal R-group scheme.

5 Examples

5.1 Schematic closure of a K-group scheme

When it is representable, it is clear that the schematic image G′ depends only on the generic
fibre of G. One may start from an action of a finite K-group scheme GK and wonder if its
schematic closure in AutR(X) is representable by a finite flat R-scheme. This is not true in
general, simply because the action of G may fail to extend to the special fibre. For an example
of this, consider the ring of power series R = k[[λ]] over a field of characteristic 0. Consider the
projective completion of the affine R-curve with equation y2 = x(x− 1)(x− λ), and let E/R be
the complement of the unique singular point of the special fibre. Thus EK is the Legendre elliptic
curve over K. The 2-torsion EK [2] is rational and contains in particular the point A = (0, 0)
generating a group of translations GK ≃ (Z/2Z)K . This point has singular reduction, and it is
easy to see that the image of the nontrivial point of GK under GK → AutR(E) is a closed point.
Therefore, the schematic closure is the group obtained by glueing GK and the unit section 1R ;
it is not finite over R.
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5.2 Two effective models of Z/p2Z

The end of the paper is devoted to the computation of schematic images for the group Z/p2Z.
The degeneration of torsors under Z/pZ is well understood ; one observes the exceptional feature
that the effective model tends to act freely on an R-universally dense open set. Recently,
Saidi studied degenerations of torsors under Z/p2Z in equal characteristics [Sa]. He computed
equations for such degenerations ; they inherit an action of Z/p2Z. We will compute the effective
model in two cases : one case where one gets a torsor structure, and one where this fails to
happen. In the case of mixed characteristics, similar examples have been given by Tossici in his
Ph.D. thesis using the Kummer-to-Artin-Schreier isogeny of Sekiguchi and Suwa in degree p2

(see [To1], [To2]).
We let (R,K, k, t) be a complete discrete valuation ring with equal characteristics p > 0, so

R ≃ k[[t]]. Under this assumption, torsors under Z/p2Z are described by Witt theory.

5.2.1 Classical Witt theory. First we briefly recall the notations of Witt theory in degree
p2 (see [DG], chap. V). The group scheme of Witt vectors of length 2 over R has underlying
scheme W2,R = Spec(R[u1, u2]) ≃ A2

R with multiplication law

(u1, u2) + (v1, v2) =
(
u1 + v1, u2 + v2 +

p−1∑

k=1

˘p
k

¯
uk

1v
p−k
1

)
.

Here we put once for all
˘p

k

¯
:= 1

p

(
p
k

)
where

(
p
k

)
is the binomial coefficient. The Frobenius

morphism of W2 is denoted by F (u1, u2) = (up
1, u

p
2). Put φ := F − id. From the exact sequence

0→ (Z/p2Z)R → W2,R
φ
−→W2,R → 0

it follows that any étale torsor f : Spec(B)→ Spec(A) under (Z/p2Z)R is given by an equation

F (X1,X2)− (X1,X2) = (a1, a2)

where (a1, a2) ∈ W2(A) is a Witt vector and the substraction is that of Witt vectors. Further-
more, (a1, a2) is well-defined up to addition of elements of the form F (c1, c2) − (c1, c2). Note
that

F (X1,X2)− (X1,X2) =
(
Xp

1 −X1,X
p
2 −X2 +

p−1∑

k=1

˘p
k

¯
(X1)

pk(−X1)
p−k

)
.

We emphasize that the Hopf algebra of (Z/p2Z)R is

R[Z/p2Z] =
R[u1, u2]

(up
1 − u1, u

p
2 − u2)

with comultiplication that of W2.

5.2.2 Twisted forms of W2. Let λ, µ, ν be elements of R. We define a ”twisted” group W λ
2

as the group with underlying scheme Spec(R[u1, u2]) and multiplication law given by

(u1, u2) + (v1, v2) =

(
u1 + v1 , u2 + v2 + λ

p−1∑

k=1

˘p
k

¯
uk

1v
p−k
1

)
.

We have the following analogues of the scalar multiplication and the Frobenius of W2 :

Iν
λ,µ : W λ

2 −→W λµ
2

(u1, u2) 7−→ (νu1, µν
pu2)
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and
Fλ : W λ

2 −→W λp

2

(u1, u2) 7−→ (up
1, u

p
2) .

In case µ = λp−1 we define an isogeny

φλ,ν := Fλ − I
ν
λ,λp−1 : W λ

2 →W λp

2 .

We have

φλ,ν(u1, u2) =

(
up

1 − νu1 , u
p
2 − ν

pλp−1u2 + λp

p−1∑

k=1

˘p
k

¯
upk

1 (−νu1)
p−k

)
.

The kernel Kλ,ν := ker(φλ,ν) is a finite flat group of rank p2. If p > 2 its Hopf algebra is

R[Kλ,ν ] =
R[u1, u2]

(up
1 − νu1, u

p
2 − ν

pλp−1u2)
.

We now come to the examples. They arise from the following situation. Denote by G =
Z/p2Z the constant group, and by Y = A1

R = Spec(R[w]) the affine line over R. Let m1,m2 ∈ Z

be integers. Let fK : XK → YK be the (Z/p2Z)K-torsor over YK = A1
K given by the equations :





T p
1 − T1 = tm1w

T p
2 − T2 = tm2w −

p−1∑

k=1

˘p
k

¯
(T1)

pk(−T1)
p−k

Depending on the values of the conductorsm1, m2 this gives rise to different group degenerations.

5.2.3 First example. Assume m1 = 0 and m2 = −p. Then after the change of variables
Z1 = T1, Z2 = tT2 the map fK extends to a cover X → Y with equations





Zp
1 − Z1 = w

Zp
2 − t

(p−1)Z2 = w − tp
p−1∑

k=1

˘p
k

¯
(Z1)

pk(−Z1)
p−k

The scheme X is a smooth affine R-curve. It is quickly seen that the action of Z/p2Z extends
to X. As is obvious from the expression of the isogeny φλ,ν (see 5.2.2), the map X → Y is a
torsor under Kλ,ν for λ = t and ν = 1. Thus, the effective model is G′ = Kt,1.

5.2.4 Second example. Assume m1 = −p2n1 < 0 and m2 = 0. Put m̃1 = n1(p(p − 1) + 1).
Then after the change of variables Z1 = tpn1T1 and Z2 = t em1T2 the map fK extends to a cover
X → Y with equations





Zp
1 − t

(p−1)pn1Z1 = w

Zp
2 − t

(p−1) em1Z2 = tp em1w −

p−1∑

k=1

˘p
k

¯
tpn1(p−1)(p−1−k)(Z1)

pk(−Z1)
p−k .

The scheme X is a flat R-curve with geometrically integral cuspidal special fibre. The action of
Z/p2Z extends to this model as follows : for (u1, u2) a point of GR = (Z/p2Z)R,

(u1, u2).(Z1, Z2) =

(
Z1 + tpn1u1 , Z2 + t em1u2 +

p−1∑

k=1

˘p
k

¯
tn1(p(p−1)+1−pk)(Z1)

k(u1)
p−k

)
.
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In order to find out the effective model G′ we look at the subalgebra of RG generated by
v1 = tn1u1 and v2 = t em1u2 :

RG′ := R[v1, v2] ⊂ RG .

One computes that RG′ inherits a comultiplication from RG :

(v1, v2) + (w1, w2) =

(
v1 + w1 , v2 + w2 +

p−1∑

k=1

˘p
k

¯
tn1(p−1)2vk

1w
p−k
1

)
.

Thus if p > 2 we recognize G′ ≃ Kλ,ν for λ = tn1(p−1)2 and ν = tn1(p−1). The action of G on X
extends to an action of G′ given by

(v1, v2).(Z1, Z2) =

(
Z1 + t(p−1)n1v1 , Z2 + v2 +

p−1∑

k=1

˘p
k

¯
tn1(p−1)(p−1−k)Zk

1 v
p−k
1

)
.

Here X → Y is not a torsor under G′. Indeed, on the special fibre we have G′
k = (αp)

2 and the
action on Xk is

(v1, v2).(Z1, Z2) =

(
Z1 , Z2 + v2 + v1Z

p−1
1

)
.

This action is faithful as required, but any point (z1, z2) ∈ Xk has a stabilizer of order p which
is the subgroup of G′

k defined by the equation v2 + v1z
p−1
1 = 0.

5.3 Effective model of a quotient

We finish with a counter-example to point (v) in proposition 4.3.9. For ν ∈ R we introduce the
group scheme Mν which is the kernel of the isogeny ψν : Ga,R → Ga,R defined by ψν(x) = xp−νx
(see [Ma], § 3.2). This is a finite flat group scheme of order p.

We continue with the example in 5.2.4. Thus G = (Z/p2Z)R and G′ ≃ Kλ,ν where λ =

tn1(p−1)2 and ν = tn1(p−1). Let H = (Z/pZ)R ⊂ G and let H ′ ⊂ G′ be its image. We have

H ′ = Spec

(
R[v2]

(vp
2 − ν

pλp−1v2)

)
≃Mνpλp−1

and

G′/H ′ = Spec

(
R[v1]

(vp
1 − νv1)

)
≃Mν .

The quotient scheme X/H ≃ X/H ′ is the cover of Y given by the equation Zp
1 − t

(p−1)pn1Z1 = w
i.e. Zp

1 − ν
pZ1 = w. It has and action of G′/H ′ given by

v1.Z1 = Z1 + νv1 .

This action is not faithful on the special fibre. It is visible that the effective model of G′/H ′, or
equivalently of G/H, acting on X/H ′ is the group whose Hopf algebra is equal to the subalgebra
of R[G′/H ′] generated by s1 = νv1. Therefore (G/H)′ ≃Mνp and the map G′/H ′ → (G/H)′ =
(G′/H ′)′ is not an isomorphism. We see that the effective model of the quotient is not the
quotient of the effective models.
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