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Abstract

It is proved that each Hoeffding space associated with a random permutation (or, equiv-
alently, with extractions without replacement from a finite population) carries an irreducible
representation of the symmetric group, equivalent to a two-block Specht module.
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1 Introduction

Let X(m) = (X1, ...,Xm) (m ≥ 2) be a sample of random observations. According e.g. to
[10], we say that X(m) is Hoeffding-decomposable if every symmetric statistic of X(m) can be
written as an orthogonal sum of symmetric U -statistics with degenerated kernels of increasing
orders. In the case where X(m) is composed of i.i.d. random variables, Hoeffding decompositions
are a classic and very powerful tool for obtaining limit theorems, as m → ∞, for sequences of
general symmetric statistics of the vectors X(m). See e.g. [13], or the references indicated in the
introduction to [10], for further discussions in this direction.

In recent years, several efforts have been made in order to provide a characterization of Ho-
effding decompositions associated with exchangeable (and not necessarily independent) vectors
of observations. See El-Dakkak and Peccati [8] and Peccati [10] for some general statements;
see Bloznelis [2], Bloznelis and Götze [3, 4] and Zhao and Chen [15] for a comprehensive anal-
ysis of Hoeffding decompositions associated with extractions without replacement from a finite
population.

In the present note, we are interested in building a new explicit connection between the
results of [3, 4, 15] and the irreducible representations of the symmetric groups Sn, n ≥ 2. In
particular, our main result is the following.

Theorem 1 Let 1 ≤ m ≤ n/2, and let X(m) = (X (1) , ...,X (m)) be a random vector obtained as
the first m extractions without replacement from a population of n individuals. For l = 1, ...,m,
let SHl be the lth symmetric Hoeffding space associated with X(m) (that is, SHl is the vector
space of all symmetric U -statistics with a completely degenerated kernel of order l). Then,
for every l = 1, ...,m, there exists an action of Sn on SHl, such that SHl is an irreducible
representation of Sn. This representation is equivalent to a Specht module of shape (n − l, l) .
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We refer the reader to the forthcoming Section 2 for some basic results on the representations
of the symmetric group and two-block Specht modules. We will see that Theorem 1 provides de
facto a new probabilistic characterization of two-block Specht modules, as well as some original
insights into the combinatorial structure of Hoeffding spaces. Observe that the case where
n/2 < m ≤ n can be reduced to the framework of present paper by standard arguments (see
for instance [3, Proposition 1]). One should note that a connection between decompositions
of symmetric statistics and representations of Sn is already sketched in Diaconis’ celebrated
monograph [5]: in particular, the results of the present paper can be regarded as a probabilistic
counterpart to the spectral analysis on homogeneous spaces developed in Chapters 7 and 8 of
[5].

The rest of this note is organized as follows. In Section 2 we provide some background on
the representations of the symmetric group. Sections 3 and 4 focus, respectively, on uniform
random permutations and Hoeffding spaces. Section 5 contains the statements and proofs of
our main results.

2 Background

For future reference, we recall that a k-block partition of the integer n ≥ 2 is a k-dimensional
vector of the type λ = (λ1, ..., λk), such that: (i) each λi is a strictly positive integer, (ii)
λi ≥ λi+1, and (iii) λ1 + · · · + λk = n. One sometimes writes λ ⊢ n to indicate that λ is a
partition of n.

We also write [n] = {1, ..., n} to indicate the set of the first n positive integers. Finally, given
a finite set A, we denote by SA the group of all permutations of A, and we use the shorthand
notation S[n] = Sn, n ≥ 1. In other words, when writing x ∈ SA, we mean that

x : A → A : a 7→ x(a)

is a bijection from A to itself.

2.1 Some structures associated with two-block partitions

We now introduce some classic definitions and notation related to tableaux and tabloids; see
Sagan [12, Chapter 2] (from which we borrow most of our terminology and notational conven-
tions) for any unexplained concept or result. For the rest of the section, we fix two integers n
and m, such that 1 ≤ m ≤ n/2. Observe that n − m ≥ m, and therefore the vector (n − m,m)
is a two-block partition of the integer n.

Remark. It is sometimes useful to adopt a graphical representation of tableaux and tabloids
by means of Ferrer diagrams. Since we uniquely deal with two-block tableaux and tabloids, and
for the sake of brevity, in what follows we shall not make use of this representation. See e.g.
[12, Section 2.1] for a complete discussion of this point.

The following objects will be needed in the sequel.

– A (Young) tableau t of shape (n − m,m) is a pair t =
(

i(n−m); j(m)

)

of ordered vectors of the
type i(n−m) = (i1, ..., in−m), j(m) = (jn−m+1, ..., jn) such that {i1, ..., in−m, jn−m+1, ..., jn} =
[n], that is, the union of the entries of i(n−m) and j(m) coincides with the first n integers
(with no repetitions).
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– The set of the columns of the tableau t =
(

i(n−m); j(m)

)

, noted {C1, ..., Cn−m}, is the collection
of (i) the ordered pairs

C1 = (i1, jn−m+1) , ..., Cm = (im, jn) (1)

(that is, the pairs composed of the first m entries of i(n−m) and the entries of j(m)), and
(ii) the remaining singletons of i(n−m), that is,

Cm+1 = im+1, ..., Cn−m = in−m. (2)

– For l = 1, ..., n, we write V (n−l,l) to indicate the class of the
(

n
l

)

subsets of [n] of size equal to
l. This slightly unusual notation has been chosen in order to stress the connection between
the set V (n−l,l) and the Sn-modules M (n−l,l) (l ≤ m) to be defined below. The elements
of V (n−l,l) are denoted by a(l), b(l), i(l), j(l),..., and so on.

– A tabloid of shape (n − m,m) is a two-block partition of the set [n], of the type

γ = {a(n−m);b(m)} = {{a1, ..., an−m} ; {bn−m+1, ..., bn}}. (3)

Of course, a tabloid γ of shape (n − m,m) as in (3) is completely determined by the
specification of set b(m) = {bn−m+1, ..., bn} ∈ V (n−m,m); to emphasize this dependence, we
shall sometimes write γ = γ(b(m)). Note that the mapping b(m) 7→ γ(b(m)) is a bijection

between V (n−m,m) and the class of all tabloids of shape (n − m,m).

– Given a tableau t =
(

i(n−m); j(m)

)

of shape (n − m,m), we write {t} = {i(n−m); j(m)} (ob-
serve the boldface!) to indicate the tabloid defined by i(n−m) = {i1, ..., in−m} and j(m) =
{jn−m+1, ..., jn}. In other words, {t} is obtained as the two-block partition composed of
the collection of the entries of i(n−m) and the collection of the entries of j(m). With the
notation introduced at the previous point, one has that {t} = γ(j(m)).

Example. Let n = 5 and m = 2. Then, a tableau of shape (3, 2) is t =
(

i(3); j(2)

)

, where
i(3) = (2, 1, 3) and j(2) = (5, 4). The columns of t are C1 = (2, 5), C2 = (1, 4) and C3 = 3. The

associated tabloid is {t} = {i(3); j(2)}, where i(3) = {1, 2, 3} ∈ V (2,3) and j(2) = {4, 5} ∈ V (3,2).

2.2 Actions of Sn

Fix as before n ≥ 2 and 1 ≤ m ≤ n/2.

Actions on tableaux . For every x ∈ Sn and every tableaux t =
(

i(n−m); j(m)

)

, the action of x on
t is defined as follows:

xt =
(

xi(n−m);xj(m)

)

, (4)

where xi(n−m) = (x (i1) , ..., x (in−m)) and xj(m) = (x (jn−m+1) , ..., x (jn)).

Actions on tabloids . For every x ∈ Sn and every tabloid γ(b(m)) = {a(n−m); b(m)}, we set

xγ(b(m)) = x{{a1, ..., an−m} ; {bn−m+1, ..., bn}} (5)

= {{x (a1) , ..., x (an−m)} ; {x (bn−m+1) , ..., x (bn)}}
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In particular, for every tableau t, one has x {t} = {xt}.

Sn-modules . The symmetric group Sn acts on V (n−m,m) in the standard way, namely: for every

x ∈ Sn and for every j(m) = {j1, ..., jm} ∈ V (n−m,m),

xj(m) = {x (j1) , ..., x (jm)} . (6)

Remark. By combining the above introduced notational conventions, one sees that, for every
x ∈ Sn and for every j(m) = V (n−m,m),

xγ(j(m)) = γ(xj(m)),

that is, x transforms the tabloid generated by j(m) into the tabloid generated by xj(m). Also, if
t =

(

i(n−m); j(m)

)

, then, for every x ∈ Sn,

x {t} = {xt} = xγ(j(m)) = γ(xj(m)).

The complex vector space of all complex-valued functions on V (n−m,m) is written L
(

V (n−m,m)
)

.

Plainly, the space L
(

V (n−m,m)
)

has dimension
(

n
m

)

, and a basis of L
(

V (n−m,m)
)

is given by the

collection {1j(m)
: j(m) ∈ V (n−m,m)}, where 1j(m)

(

k(m)

)

= 1 if k(m) = j(m) and 1j(m)

(

k(m)

)

= 0

otherwise. The group Sn acts on L
(

V (n−m,m)
)

as follows: for x ∈ Sn, k(m) ∈ V (n−m,m) and

f ∈ L
(

V (n−m,m)
)

,

xf
(

k(m)

)

= f
(

x−1k(m)

)

, so that, in particular, (7)

x1j(m)
= 1xj(m)

, j(m) ∈ V (n−m,m).

When endowed with the action (7), the set L
(

V (n−m,m)
)

carries a representation of Sn. In this

case, we say that L
(

V (n−m,m)
)

is the permutation module associated with (n − m,m), and we

use the customary notation L
(

V (n−m,m)
)

= M (n−m,m) (see [12, Section 2.1]).

Remark. Our definition of the permutation modules M (n−m,m) slightly differs from the one
given e.g. in [12, Definition 2.1.5]. Indeed, we define M (n−m,m) as the vector space spanned by
all indicators of the type 1j(m)

, j(m) ∈ V (n−m,m), endowed with the action (7), whereas in the

above quoted reference M (n−m,m) is the space of all formal linear combinations of tabloids of
shape (n − m,m), endowed with the canonical extension of the action (5). The two definitions
are equivalent, in the sense that they give rise to two isomorphic Sn-modules. We will see that
the definition of M (n−m,m) chosen in this paper allows a more transparent connection with the
theory of U -statistics based on random permutations.

2.3 A decomposition of M
(n−m,m)

We recall that the dual of Sn coincides with the set
{[

Sλ
]

: λ ⊢ n
}

, where
[

Sλ
]

is the equivalence
class of all irreducible representations of Sn that are equivalent to a Specht module of index λ
(see again [12, Section 2.1]). For every λ ⊢ n, we will denote by χλ the character associated
with the class

[

Sλ
]

, whereas Dλ is the associate dimension. Observe that χλ ∈ Z for every λ
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(see e.g. [14, Section 13.1]), and Dλ equals the number of standard tableaux (that is, tableaux
with increasing rows and columns) of shape λ. In particular D(n−1,1) = n − 1 (see [12, Section
2.5]).

The next result ensures that the module M (n−m,m) is reducible. This fact is well-known (see
e.g. [9, Example 14.4, p. 52] or [5, pp. 134-139]), and a proof is added here for the sake of
completeness.

Proposition 2 There exists a unique decomposition of M (n−m,m) of the type

M (n−m,m) = K
(n−m,m)
0 ⊕ K

(n−m,m)
1 ⊕ · · · ⊕ K(n−m,m)

m . (8)

Where the vector spaces (endowed with the action of Sn described in (7)) K
(n−m,m)
l are such

that K
(n−m,m)
0 ∈

[

S(n)
]

, and K
(n−m,m)
l ∈

[

S(n−l,l)
]

, l = 1, ...,m.

Proof. It is sufficient to prove that

M (n−m,m) ∼= S(n) ⊕

m
⊕

l=1

S(n−l,l),

where “ ∼= ” indicates equivalence between representations of Sn. According Young’s Rule (see
e.g. [12, Th. 2.11.2]), we know that

M (n−m,m) ∼= S(n) ⊕

m
⊕

l=1

Kn,l,mS(n−l,l),

where the integers Kn,l,m (known as Kostka numbers) count the number of generalized semis-
tandard tableaux of shape (n − l, l) and type (n − m,m). This is equivalent to saying Kn,l,m

counts the ways of arranging n − m copies of 1 and m copies of 2 in a Ferrer diagram of shape
(n − l, l), in such a way that the rows of the diagram are weakly increasing and the columns are
strictly increasing. Since there is just one way of doing this, one infers that Kn,l,m = 1, and the
proof is concluded.

Remarks. (i) (Definition of two-block Specht modules) For the sake of completeness, we recall
here the definition of the modules S(n) and S(n−m,m), 1 ≤ m ≤ n/2. First of all, one has that
S(n) = C, and therefore

[

S(n)
]

is the class of representations of Sn that are equivalent to the
trivial representation. Now fix 1 ≤ m ≤ n/2. For every tableau t = (i(n−m); j(m)), define the
columns C1, ..., Cn−m according to (1) and (2). Then, (a) for every l = 1, ...,m, write κCl

for
the formal operator

κCl
= Id. − (il → jl),

where (il → jl) indicates the element of Sn given by the translation sending il to jl, and (b)
define the composed operator κt = κC1κC2 ···κCm . Then, the Specht module of shape (n − m,m)
is the Sn-invariant subspace of M (n−m,m) spanned by the elements of the type

κt1j(m)
, where t =

(

i(n−m); j(m)

)

is a tableau; (9)

note that, in the formula (9), t and j(m) are related by the fact that t =
(

i(n−m); j(m)

)

, and
{t} = {i(n−m); j(m)}.
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(ii) Consider for instance the case n = 6 and m = 2, and select the tableau t = {(1, 2, 3, 4) ; (5, 6)}.
One has that j(2) = {5, 6},

κt = (Id.− (1 → 5)) (Id. − (2 → 6)) ,

and one deduces that an element of S(4,2) is given by

κt1j(2) = 1{5,6} − 1{1,6} − 1{5,2} + 1{1,2}.

(iii) By recurrence, one deduces from Proposition 2 that the dimension of K
(n−m,m)
l , and there-

fore of S(n−l,l), is D(n−l,l) =
(

n
l

)

−
(

n
l−1

)

, l ≤ n/2.

(iv) From the previous discussion, we infer that K
(n−m,m)
0 = S(n) = C.

3 Uniform random permutations

Fix n ≥ 2. We consider a uniform random permutation X of [n]. This means that X = X (ω)
is a random element with values in Sn, defined on some finite probability space (Ω,F ,P)
and such that, ∀x ∈ Sn, P (X = x) = (n!)−1. For 1 ≤ m ≤ n/2 as before, we will write
X(m) (ω) = (X (1) , ...,X (m)) (ω), and also, for every y ∈ Sn, (Xy)(m) = {Xy(1), ...,Xy(m)}.
Observe that Xy indicates the product of the deterministic permutation y with the random
permutation X. It is clear that X(m) is an exchangeable vector, having the law of the first m
extractions without replacement from the set [n] (see e.g. Aldous [1] for any unexplained notion
about exchangeability). A random variable T is called a (complex-valued) symmetric statistic

of X(m) if T has the form

T = f ({X (1) , ...,X (m)}) , for some f ∈ L
(

V (n−m,m)
)

.

In other words, a symmetric statistic is a random variable deterministically depending on the
realization of X(m) as a non-ordered set. Note that, by a slight abuse of notation, in what
follows we will write f ({X (1) , ...,X (m)}) = f

(

X(m)

)

(other analogous conventions will be
tacitly adopted).

We also write L2
s

(

X(m)

)

to indicate the Hilbert space of symmetric statistics of X(m), en-
dowed with the inner product

〈

f1

(

X(m)

)

, f2

(

X(m)

)〉

P
= E

[

f1

(

X(m)

)

f2

(

X(m)

)

]

(10)

=
1

n!

∑

x∈Sn

f1 (x {1, ...,m}) f2 (x {1, ...,m}) (11)

=

(

n

m

)−1
∑

k(m)∈V (n−m,m)

f1

(

k(m)

)

f2

(

k(m)

)

.

Since the sum in (11) runs over the whole set Sn, it is clear that 〈·, ·〉P induces a Sn-invariant
inner product on M (n−m,m) given by

〈f1, f2〉(n−m,m) =
〈

f1

(

X(m)

)

, f2

(

X(m)

)〉

P
, f1, f2 ∈ M (n−m,m); (12)
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in particular, the Sn-invariance of 〈·, ·〉(n−m,m) yields that the spaces K
(n−m,m)
i and K

(n−m,m)
j

are orthogonal with respect to 〈·, ·〉(n−m,m) for every 0 ≤ i 6= j ≤ m.

With every f ∈ M (n−m,m), we associate the Sn-indexed stochastic process

Zf (x, ω) = Zf (x) := f
(

xX(m)

)

, x ∈ Sn,

and, for every λ ⊢ n, we define

Zλ
f (x, ω) = Zλ

f (x) :=
Dλ

n!

∑

g∈Sn

χλ (g) f
(

(g−1x)X(m)

)

(13)

fλ
(

l(m)

)

=
Dλ

n!

∑

x∈Sn

χλ (x) f
(

x−1l(m)

)

, l(m) ∈ V (n−m,m),

so that fλ
(

X(m)

)

= Zλ
f (e), where e is the identity element in Sn.

The following facts will be used in the subsequent analysis. The proofs are standard and
omitted – see e.g. the results from [11] and [14] evoked below for further details.

(a) Since (8) holds, fλ = 0 for every f ∈ M (n−m,m) if and only if λ is different from (n − l, l),

l = 0, ...,m (see e.g. [14, Theorem 8, Section 2.6]) and moreover: f (n) ∈ K
(n−m,m)
0 and,

for every l = 1, ...,m, f (n−l,l) ∈ K
(n−m,m)
l (as defined in (8)).

(b) Thanks to exchangeability, for every f ∈ M (n−m,m) the class

{

Zf , Z
(n−l,l)
f : l = 0, ...,m

}

,

has a Sn-invariant law, with respect to the canonical action of Sn on itself (i.e., x ·y = xy,
x, y ∈ Sn).

(c) Due to the orthogonality of isotypical spaces (see e.g. (see [7, Theorem 4.4.5], and also [11,
Theorem 4-3]), for every x, y ∈ Sn, f, h ∈ M (n−m,m) and 0 ≤ i 6= j ≤ m,

E

[

Z
(n−i,i)
f (x) Z

(n−j,j)
h (y)

]

= E
[

f (n−i,i)
(

xX(m)

)

h(n−j,j)
(

yX(m)

)

]

(14)

E
[

f (n−i,i)
(

(Xx)(m)

)

h(n−j,j)
(

(Xy)(m)

)

]

= 0, (15)

where, here and in the sequel (by a slight abuse of notation) we use the convention (n −
0, 0) = (n).

(d) Due to [11, Theorem 4-4] and point (a) above, for every x ∈ Sn and every f ∈ M (n−m,m),

Zf (x) = Z
(n)
f (x) +

m
∑

l=1

Z
(n−l,l)
f (x) , (16)

where Z
(n)
f (x) = E [Zf (x)] = E

[

f
(

X(m)

)]

. In particular,

f
(

X(m)

)

= E
[

f
(

X(m)

)]

+

m
∑

l=1

f (n−l,l)
(

X(m)

)

(17)
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and therefore, for every f, h ∈ M (n−m,m),

E
[

f
(

X(m)

)

h
(

X(m)

)

]

= E
[

f
(

X(m)

)]

E
[

h
(

X(m)

)]

+

m
∑

l=1

E
[

f (n−l,l)
(

X(m)

)

h(n−l,l)
(

X(m)

)

]

(18)

(e) Due to [11, Theorem 5-1], for every 0 ≤ i 6= j ≤ m and f, h ∈ M (n−m,m),

∑

x∈Sn

Z
(n−i,i)
f (x, ω) Z

(n−j,j)
h (x, ω) =

∑

x∈Sn

f (n−i,i)
(

xX(m)

)

h(n−j,j)
(

xX(m)

)

= 0. (19)

4 Hoeffding spaces

We now define a class of subspaces of L2
s

(

X(m)

)

(the notation is the same as in [8, 10]): SU0 = C,
and, for l = 1, ...,m, SUl is the vector subspace generated by the functionals of X(m) of the type

Tφ

(

X(m)

)

=
∑

{k1,...,kl}∈V (m−l,l)

φ (X (k1) , ...,X (kl)) , (20)

for some φ ∈ L
(

V (n−l,l)
)

. A random variable such as (20) is called a U -statistic based on
X(m), with a symmetric kernel φ of order l. One has that SUl ⊂ SUl+1 (see e.g. [10]) and
SUm = L2

s

(

X(m)

)

. The collection of the symmetric Hoeffding spaces associated to X(m), noted
{SHl : l = 0, ...,m} is defined as follows: SH0 = SU0, and

SHl = SUl ∩ SU⊥
l−1,

where the symbol ⊥ means orthogonality with respect to the inner product 〈·, ·〉P defined in
(10), so that

L2
s

(

X(m)

)

=

m
⊕

l=0

SHl,

where the direct sum
⊕

is again in the sense of 〈·, ·〉P.
Following [3, Section 2], we define the real coefficients

dl,j =

l−1
∏

r=j

n − r

n − r − j
, l = 2, 3, ...,m, 1 ≤ j ≤ l − 1, (21)

dl,l = Nl,l = 1, l = 1, ...,m,

Nl,j = −

l−1
∑

i=j

(

l − j

i − j

)

dl,iNi,j , l = 2, 3, ...,m, 1 ≤ j ≤ l − 1.

The following result can be proved by using the content of [3, Section 2], or as a special case
of [10, Theorem 11].

Proposition 3 Keep the assumptions and notation of this section. Then, for l = 1, ...,m, the
following assertions are equivalent:

(i) f
(

X(m)

)

∈ SHl;

8



(ii) there exists φ ∈ L
(

V (n−l,l)
)

such that

f
(

X(m)

)

=
∑

{k1,...,kl}∈V (m−l,l)

φ (X (k1) , ...,X (kl)) , (22)

and
E [φ (X (1) , ...,X (l)) | X (1) , ...,X (l − 1)] = 0.

Moreover, for every h
(

X(m)

)

∈ L2
s

(

X(m)

)

, the orthogonal projection of h
(

X(m)

)

on SHl,
l = 1, ...,m, is given by

proj
(

h
(

X(m)

)

| SHl

)

=
∑

{k1,...,kl}∈V (m−l,l)

φ
(l)
h (X (k1) , ...,X (kl)) ,

where, for every {j1, ..., jl} ∈ V (n−l,l),

φ
(l)
h (j1, .., jl) (23)

= dm,l

l
∑

a=1

Nl,a

∑

1≤i1<...<ia≤l

E
[

h
(

X(m)

)

− E
(

h
(

X(m)

))

| X (1) = ji1 , ...,X (a) = jia

]

.

The kernel φ of the U -statistic f
(

X(m)

)

appearing in (22) is said to be completely degen-

erated. Completely degenerated kernels are related to the notion of weak independence in [10,
Theorem 6]. Note that, in the above quoted references, the content of Proposition 3 is proved
for real valued symmetric statistics (the extension of such results to complex random variables
is immediate: just consider separately the real and the imaginary parts of each statistic). For-
mula (23) completely characterizes the symmetric Hoeffding spaces associated to X(m): it can
be obtained by recursively applying an appropriate version of the Möbius inversion formula (see
e.g. [12, Exercise 18, Section 5.6]), on the lattice of the subsets of [n] (see also [10, Theorem 11],
for a generalization of (23) to the case of Generalized Urn Sequences). In the next section we
state and prove the main result of this note, that is, that the spaces SHl, l = 1, ...,m, admit a
further algebraic characterization in terms of Specht modules.

5 Hoeffding spaces and two-blocks Specht modules

5.1 Main results and some consequences

The main achievement of this note is the following statement, which is a more precise reformu-
lation of Theorem 1, as stated in the Introduction. The proof is deferred to Section 5.2.

Theorem 4 Under the above notation and assumptions, for every f
(

X(m)

)

∈ L2
s

(

X(m)

)

and
every l = 0, 1, ...,m, the following assertions are equivalent:

1. f
(

X(m)

)

∈ SHl;

2. f ∈ K
(n−m,m)
l , where the Sn-module K

(n−m,m)
l is defined through formula (8) (in partic-

ular, K
(n−m,m)
l ∈

[

S(n−l,l)
]

).

9



We now list some consequences of Theorem 4. They can be obtained by properly combining
Proposition 3 with the five facts (a)–(e), as listed at the end of Section 3.

Corollary 5 Under the above notation and assumptions,

1. for every l = 1, ...,m, f ∈ M (n−m,m) and i(m) = {i1, ..., im} ∈ V (n−m,m),

f (n−l,l)
(

i(m)

)

(24)

=
D(n−l,l)

n!

∑

x∈Sn

χ(n−l,l) (x) f
(

x−1i(m)

)

(25)

=
∑

{i1,...,il}⊆i(m)

dm,l

l
∑

a=1

Nl,a×

∑

1≤s1<...<sa≤l

E
[

f
(

X(m)

)

− E
(

f
(

X(m)

))

| X (1) = is1 , ...,X (a) = isa

]

,

where D(n−l,l) =
(

n
l

)

−
(

n
l−1

)

.

2. for every l = 1, ...,m, every symmetric U -statistic, based on X(m) and with a completely

degenerated kernel of order l, has the form (24) for some f ∈ M (n−m,m). It follows that
SHl is an irreducible Sn-module, carrying a representation in

[

S(n−l,l)
]

.

For instance, by using [12, Exercice 5.d, p. 87], we deduce from (24) that for every i(m) =

{i1, ..., im} ∈ V (n−m,m) and f ∈ M (n−m,m),

n − 1

n!

∑

x∈Sn

{(number of fixed points of x) − 1} × f
(

xi(m)

)

=

m−1
∏

r=1

n − r

n − r − 1

m
∑

s=1

E
[

f
(

X(m)

)

− E
(

f
(

X(m)

))

| X (1) = is
]

.

The next result gives an algebraic explanation of a property of degenerated U -statistics,
already pointed out – in the more general framework of Generalized Urn Sequences – in [10,
Corollary 9]. Basically, it states that the orthogonality, between two completely degenerated
U -statistics of different orders, is preserved after shifting one of the two arguments. It can be
useful when determining the covariance between two U -statistics based on two urn sequences of
different lenghts.

Corollary 6 Let f, h ∈ M (n−m,m) be such that f
(

X(m)

)

∈ SHj and h
(

X(m)

)

∈ SHl for some

1 ≤ j 6= l ≤ m. Consider moreover an element k(m) = {k1, ..., km} ∈ V (n−m,m) such that, for
some r = 0, ...,m, Card

(

k(m) ∩ {1, ...,m}
)

= r, and note X ′
(m) = (X (k1) , ...,X (km)). Then,

E

(

f
(

X(m)

)

h
(

X ′
(m)

)

)

= 0.

10



Proof. Due to the exchangeability of the vector (X (1) , ...,X (n)), we can assume, without
loss of generality, that

k(m) = {1, ..., r,m + 1, ..., 2m − r} .

Now introduce the permutation (written as a product of translations)

y = (r + 1 → m + 1) (r + 2 → m + 2) · · · (m → 2m − r) , (26)

and note that

E

(

f
(

X(m)

)

h
(

X ′
(m)

)

)

= E
(

f
(

X(m)

)

h
(

(Xy)(m)

)

)

,

so that the conclusion derives immediately from formula (15), by setting x = e and y as in (26).

5.2 Remaining proofs

The key of the proof of Theorem 4 is nested in the following Lemma.

Lemma 7 Let the previous notation prevail. Then,

1. for each l = 1, ...,m, a basis of SUl is given by the set of random variables
{

ηi(l)

(

X(m)

)

: i(l) ∈ V (n−l,l)
}

,

where, for each k(m) ∈ V (n−m,m),

ηi(l)

(

k(m)

)

=

{

1 if i(l) ⊆ k(m)

0 otherwise;
(27)

2. for each l = 1, ...,m, the restriction of the action (7) of Sn to the vector subspace of
M (n−m,m) generated by the set {ηi(l) : i(l) ∈ V (n−l,l)}, defined in (27), is equivalent to the

action carried by the Sn-module M (n−l,l).

Proof. Fix l = 1, ...,m, and observe that, for every i(l) ∈ V (n−l,l),

ηi(l)

(

X(m)

)

=
∑

{k1,...,kl}∈V (m−l,l)

1i(l) ({X (k1) , ...,X (kl)}) ,

so that the first part of the statement follows from the definition of SUl, and the fact that every
φ ∈ V (m−l,l) is a linear combination of functions of the type 1i(l) (·). To prove the second part,

first recall that a basis of the Sn-module M (n−l,l) is given by the set
{

1i(l) (·) : i(l) ∈ V (n−l,l)
}

,

and that the action of Sn on M (n−l,l) is completely described by the action

x1i(l) = 1xi(l) .

We can therefore construct a Sn-isomorphism between
{

ηi(l) : i(l) ∈ V (n−l,l)
}

and M (n−l,l) by

linearly extending the mapping

τ
(

ηi(l)

)

= 1i(l) , i(l) ∈ V (n−l,l),

11



and by observing that, for every k(m) ∈ V (n−m,m), i(l) ∈ V (n−l,l) and x ∈ Sn,

xηi(l)

(

k(m)

)

= ηi(l)

(

x−1k(m)

)

= ηxi(l)

(

k(m)

)

.

This concludes the proof.

End of the proof of Theorem 4. Since SU0 = SH0 = K
(n−m,m)
0 = C, the relation between

representations

M (n−l,l) ∼= S(n) ⊕ S(n−1,1) ⊕ · · · ⊕ S(n−l,l), ∀l = 1, ...,m,

along with Lemma 7, implies that the restriction of the action (7) of Sn to those f ∈ L
(

V (n−m,m)
)

such that f
(

X(m)

)

∈ SHl is an element of
[

S(n−l,l)
]

. This yields that each one of the m + 1
summands in the decomposition

M (n−m,m) = C ⊕
m

⊕

l=1

{

f : f
(

X(m)

)

∈ SHl

}

is an irreducible Sn-submodule of M (n−m,m). Since the decomposition (8) of M (n−m,m) is
unique, this gives

{

f : f
(

X(m)

)

∈ SHl

}

= K
(n−m,m)
l ,

as required. �
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