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It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.

Introduction

Let X (m) = (X 1 , ..., X m ) (m ≥ 2) be a sample of random observations. According e.g. to [START_REF] Peccati | Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations[END_REF], we say that X (m) is Hoeffding-decomposable if every symmetric statistic of X (m) can be written as an orthogonal sum of symmetric U -statistics with degenerated kernels of increasing orders. In the case where X (m) is composed of i.i.d. random variables, Hoeffding decompositions are a classic and very powerful tool for obtaining limit theorems, as m → ∞, for sequences of general symmetric statistics of the vectors X (m) . See e.g. [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF], or the references indicated in the introduction to [START_REF] Peccati | Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations[END_REF], for further discussions in this direction.

In recent years, several efforts have been made in order to provide a characterization of Hoeffding decompositions associated with exchangeable (and not necessarily independent) vectors of observations. See El-Dakkak and Peccati [START_REF] El-Dakkak | Hoeffding decompositions and urn sequences[END_REF] and Peccati [START_REF] Peccati | Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations[END_REF] for some general statements; see Bloznelis [START_REF] Bloznelis | Orthogonal decomposition of symmetric functions defined on random permutations[END_REF], Bloznelis and Götze [START_REF] Bloznelis | Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics[END_REF][START_REF] Bloznelis | An Edgeworth expansion for finite population statistics[END_REF] and Zhao and Chen [START_REF] Zhao | Normal approximation for finite-population U -statistics[END_REF] for a comprehensive analysis of Hoeffding decompositions associated with extractions without replacement from a finite population.

In the present note, we are interested in building a new explicit connection between the results of [START_REF] Bloznelis | Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics[END_REF][START_REF] Bloznelis | An Edgeworth expansion for finite population statistics[END_REF][START_REF] Zhao | Normal approximation for finite-population U -statistics[END_REF] and the irreducible representations of the symmetric groups S n , n ≥ 2. In particular, our main result is the following.

Theorem 1 Let 1 ≤ m ≤ n/2, and let X (m) = (X (1) , ..., X (m)) be a random vector obtained as the first m extractions without replacement from a population of n individuals. For l = 1, ..., m, let SH l be the lth symmetric Hoeffding space associated with X (m) (that is, SH l is the vector space of all symmetric U -statistics with a completely degenerated kernel of order l). Then, for every l = 1, ..., m, there exists an action of S n on SH l , such that SH l is an irreducible representation of S n . This representation is equivalent to a Specht module of shape (nl, l) .

We refer the reader to the forthcoming Section 2 for some basic results on the representations of the symmetric group and two-block Specht modules. We will see that Theorem 1 provides de facto a new probabilistic characterization of two-block Specht modules, as well as some original insights into the combinatorial structure of Hoeffding spaces. Observe that the case where n/2 < m ≤ n can be reduced to the framework of present paper by standard arguments (see for instance [START_REF] Bloznelis | Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics[END_REF]Proposition 1]). One should note that a connection between decompositions of symmetric statistics and representations of S n is already sketched in Diaconis' celebrated monograph [START_REF] Diaconis | Group Representations in Probability and Statistics[END_REF]: in particular, the results of the present paper can be regarded as a probabilistic counterpart to the spectral analysis on homogeneous spaces developed in Chapters 7 and 8 of [START_REF] Diaconis | Group Representations in Probability and Statistics[END_REF].

The rest of this note is organized as follows. In Section 2 we provide some background on the representations of the symmetric group. Sections 3 and 4 focus, respectively, on uniform random permutations and Hoeffding spaces. Section 5 contains the statements and proofs of our main results.

Background

For future reference, we recall that a k-block partition of the integer n ≥ 2 is a k-dimensional vector of the type λ = (λ 1 , ..., λ k ), such that: (i) each λ i is a strictly positive integer, (ii) λ i ≥ λ i+1 , and (iii)

λ 1 + • • • + λ k = n. One sometimes writes λ ⊢ n to indicate that λ is a partition of n.
We also write [n] = {1, ..., n} to indicate the set of the first n positive integers. Finally, given a finite set A, we denote by S A the group of all permutations of A, and we use the shorthand notation S [n] = S n , n ≥ 1. In other words, when writing x ∈ S A , we mean that

x : A → A : a → x(a)
is a bijection from A to itself.

Some structures associated with two-block partitions

We now introduce some classic definitions and notation related to tableaux and tabloids; see Sagan [START_REF] Sagan | The Symmetric Group[END_REF]Chapter 2] (from which we borrow most of our terminology and notational conventions) for any unexplained concept or result. For the rest of the section, we fix two integers n and m, such that 1 ≤ m ≤ n/2. Observe that nm ≥ m, and therefore the vector (nm, m) is a two-block partition of the integer n.

Remark. It is sometimes useful to adopt a graphical representation of tableaux and tabloids by means of Ferrer diagrams. Since we uniquely deal with two-block tableaux and tabloids, and for the sake of brevity, in what follows we shall not make use of this representation. See e.g. [12, Section 2.1] for a complete discussion of this point.

The following objects will be needed in the sequel.

-A (Young) tableau t of shape (nm, m) is a pair t = i (n-m) ; j (m) of ordered vectors of the type i (n-m) = (i 1 , ..., i n-m ), j (m) = (j n-m+1 , ..., j n ) such that {i 1 , ..., i n-m , j n-m+1 , ..., j n } = [n], that is, the union of the entries of i (n-m) and j (m) coincides with the first n integers (with no repetitions).

-The set of the columns of the tableau t = i (n-m) ; j (m) , noted {C 1 , ..., C n-m }, is the collection of (i) the ordered pairs

C 1 = (i 1 , j n-m+1 ) , ..., C m = (i m , j n ) ( 1 
)
(that is, the pairs composed of the first m entries of i (n-m) and the entries of j (m) ), and (ii) the remaining singletons of i (n-m) , that is,

C m+1 = i m+1 , ..., C n-m = i n-m . (2) 
-For l = 1, ..., n, we write V (n-l,l) to indicate the class of the n l subsets of [n] of size equal to l. This slightly unusual notation has been chosen in order to stress the connection between the set V (n-l,l) and the S n -modules M (n-l,l) (l ≤ m) to be defined below. The elements of V (n-l,l) are denoted by a (l) , b (l) , i (l) , j (l) ,..., and so on.

-A tabloid of shape (nm, m) is a two-block partition of the set [n], of the type

γ = {a (n-m) ; b (m) } = {{a 1 , ..., a n-m } ; {b n-m+1 , ..., b n }}. (3) 
Of course, a tabloid γ of shape (nm, m) as in ( 3) is completely determined by the specification of set b (m) = {b n-m+1 , ..., b n } ∈ V (n-m,m) ; to emphasize this dependence, we shall sometimes write γ = γ(b (m) ). Note that the mapping b (m) → γ(b (m) ) is a bijection between V (n-m,m) and the class of all tabloids of shape (nm, m).

-Given a tableau t = i (n-m) ; j (m) of shape (nm, m), we write {t} = {i (n-m) ; j (m) } (observe the boldface!) to indicate the tabloid defined by i (n-m) = {i 1 , ..., i n-m } and j (m) = {j n-m+1 , ..., j n }. In other words, {t} is obtained as the two-block partition composed of the collection of the entries of i (n-m) and the collection of the entries of j (m) . With the notation introduced at the previous point, one has that {t} = γ(j (m) ).

Example. Let n = 5 and m = 2. Then, a tableau of shape (3, 2) is t = i (3) ; j [START_REF] Bloznelis | Orthogonal decomposition of symmetric functions defined on random permutations[END_REF] , where i (3) = (2, 1, 3) and j (2) = (5, 4). The columns of t are 3) and j (2) = {4, 5} ∈ V (3,2) .

C 1 = (2, 5), C 2 = (1, 4) and C 3 = 3. The associated tabloid is {t} = {i (3) ; j (2) }, where i (3) = {1, 2, 3} ∈ V (2,

Actions of S n

Fix as before n ≥ 2 and 1 ≤ m ≤ n/2.

Actions on tableaux . For every x ∈ S n and every tableaux t = i (n-m) ; j (m) , the action of x on t is defined as follows:

xt = xi (n-m) ; xj (m) , (4) 
where xi (n-m) = (x (i 1 ) , ..., x (i n-m )) and xj (m) = (x (j n-m+1 ) , ..., x (j n )).

Actions on tabloids. For every x ∈ S n and every tabloid γ(b

(m) ) = {a (n-m) ; b (m) }, we set xγ(b (m) ) = x{{a 1 , ..., a n-m } ; {b n-m+1 , ..., b n }} (5) = {{x (a 1 ) , ..., x (a n-m )} ; {x (b n-m+1 ) , ..., x (b n )}}
In particular, for every tableau t, one has x {t} = {xt}.

S n -modules . The symmetric group S n acts on V (n-m,m) in the standard way, namely: for every x ∈ S n and for every

j (m) = {j 1 , ..., j m } ∈ V (n-m,m) , xj (m) = {x (j 1 ) , ..., x (j m )} . (6) 
Remark. By combining the above introduced notational conventions, one sees that, for every x ∈ S n and for every

j (m) = V (n-m,m) , xγ(j (m) ) = γ(xj (m) ),
that is, x transforms the tabloid generated by j (m) into the tabloid generated by xj (m) . Also, if t = i (n-m) ; j (m) , then, for every x ∈ S n ,

x {t} = {xt} = xγ(j (m) ) = γ(xj (m) ).
The complex vector space of all complex-valued functions on

V (n-m,m) is written L V (n-m,m) . Plainly, the space L V (n-m,m) has dimension n m , and a basis of L V (n-m,m) is given by the collection {1 j (m) : j (m) ∈ V (n-m,m) }, where 1 j (m) k (m) = 1 if k (m) = j (m) and 1 j (m) k (m) = 0 otherwise. The group S n acts on L V (n-m,m) as follows: for x ∈ S n , k (m) ∈ V (n-m,m) and f ∈ L V (n-m,m) , xf k (m) = f x -1 k (m) , so that, in particular, ( 7 
)
x1 j (m) = 1 xj (m) , j (m) ∈ V (n-m,m) .
When endowed with the action [START_REF] Duistermaat | Lie groups[END_REF], the set L V (n-m,m) carries a representation of S n . In this case, we say that L V (n-m,m) is the permutation module associated with (nm, m), and we use the customary notation

L V (n-m,m) = M (n-m,m) (see [12, Section 2.1]).
Remark. Our definition of the permutation modules M (n-m,m) slightly differs from the one given e.g. in [12, Definition 2.1.5]. Indeed, we define M (n-m,m) as the vector space spanned by all indicators of the type 1 j (m) , j (m) ∈ V (n-m,m) , endowed with the action [START_REF] Duistermaat | Lie groups[END_REF], whereas in the above quoted reference M (n-m,m) is the space of all formal linear combinations of tabloids of shape (nm, m), endowed with the canonical extension of the action [START_REF] Diaconis | Group Representations in Probability and Statistics[END_REF]. The two definitions are equivalent, in the sense that they give rise to two isomorphic S n -modules. We will see that the definition of M (n-m,m) chosen in this paper allows a more transparent connection with the theory of U -statistics based on random permutations.

A decomposition of M

(n-m,m)
We recall that the dual of S n coincides with the set S λ : λ ⊢ n , where S λ is the equivalence class of all irreducible representations of S n that are equivalent to a Specht module of index λ (see again [12, Section 2.1]). For every λ ⊢ n, we will denote by χ λ the character associated with the class S λ , whereas D λ is the associate dimension. Observe that χ λ ∈ Z for every λ (see e.g. [14, Section 13.1]), and D λ equals the number of standard tableaux (that is, tableaux with increasing rows and columns) of shape λ. In particular

D (n-1,1) = n -1 (see [12, Section 2.5]).
The next result ensures that the module M (n-m,m) is reducible. This fact is well-known (see e.g. [9, Example 14.4, p. 52] or [5, pp. 134-139]), and a proof is added here for the sake of completeness.

Proposition 2 There exists a unique decomposition of M (n-m,m) of the type

M (n-m,m) = K (n-m,m) 0 ⊕ K (n-m,m) 1 ⊕ • • • ⊕ K (n-m,m) m . ( 8 
)
Where the vector spaces (endowed with the action of S n described in [START_REF] Duistermaat | Lie groups[END_REF])

K (n-m,m) l are such that K (n-m,m) 0 ∈ S (n) , and K (n-m,m) l ∈ S (n-l,l) , l = 1, ..., m.
Proof. It is sufficient to prove that

M (n-m,m) ∼ = S (n) ⊕ m l=1 S (n-l,l) ,
where " ∼ = " indicates equivalence between representations of S n . According Young's Rule (see e.g. [12, Th. 2.11.2]), we know that

M (n-m,m) ∼ = S (n) ⊕ m l=1 K n,l,m S (n-l,l) ,
where the integers K n,l,m (known as Kostka numbers) count the number of generalized semistandard tableaux of shape (nl, l) and type (nm, m). This is equivalent to saying K n,l,m counts the ways of arranging nm copies of 1 and m copies of 2 in a Ferrer diagram of shape (nl, l), in such a way that the rows of the diagram are weakly increasing and the columns are strictly increasing. Since there is just one way of doing this, one infers that K n,l,m = 1, and the proof is concluded.

Remarks. (i) (Definition of two-block Specht modules) For the sake of completeness, we recall here the definition of the modules S (n) and S (n-m,m) , 1 ≤ m ≤ n/2. First of all, one has that S (n) = C, and therefore S (n) is the class of representations of S n that are equivalent to the trivial representation. Now fix 1 ≤ m ≤ n/2. For every tableau t = (i (n-m) ; j (m) ), define the columns C 1 , ..., C n-m according to (1) and (2). Then, (a) for every l = 1, ..., m, write κ C l for the formal operator

κ C l = Id. -(i l → j l ),
where (i l → j l ) indicates the element of S n given by the translation sending i l to j l , and (b) define the composed operator

κ t = κ C 1 κ C 2 •••κ Cm .
Then, the Specht module of shape (nm, m) is the S n -invariant subspace of M (n-m,m) spanned by the elements of the type

κ t 1 j (m)
, where t = i (n-m) ; j (m) is a tableau; [START_REF] James | The representation theory of the symmetric groups[END_REF] note that, in the formula (9), t and j (m) are related by the fact that t = i (n-m) ; j (m) , and {t} = {i (n-m) ; j (m) }.

(ii) Consider for instance the case n = 6 and m = 2, and select the tableau t = {(1, 2, 3, 4) ; [START_REF] Diaconis | Group Representations in Probability and Statistics[END_REF][START_REF] Dudley | Real analysis and probability[END_REF]}. One has that j (2) = {5, 6},

κ t = (Id. -(1 → 5)) (Id. -(2 → 6)) ,
and one deduces that an element of S (4,2) is given by

κ t 1 j (2) = 1 {5,6} -1 {1,6} -1 {5,2} + 1 {1,2} .
(iii) By recurrence, one deduces from Proposition 2 that the dimension of K

(n-m,m) l

, and therefore of S (n-l,l) , is D (n-l,l) = n l -n l-1 , l ≤ n/2. (iv) From the previous discussion, we infer that K

(n-m,m) 0 = S (n) = C.

Uniform random permutations

Fix n ≥ 2. We consider a uniform random permutation X of [n]. This means that X = X (ω) is a random element with values in S n , defined on some finite probability space (Ω, F, P) and such that, ∀x ∈ S n , P (X = x) = (n!) -1 . For 1 ≤ m ≤ n/2 as before, we will write X (m) (ω) = (X (1) , ..., X (m)) (ω), and also, for every y ∈ S n , (Xy) (m) = {Xy(1), ..., Xy(m)}. Observe that Xy indicates the product of the deterministic permutation y with the random permutation X. It is clear that X (m) is an exchangeable vector, having the law of the first m extractions without replacement from the set [n] (see e.g. Aldous [START_REF] Aldous | Exchangeability and related topics[END_REF] for any unexplained notion about exchangeability). A random variable T is called a (complex-valued) symmetric statistic of X (m) if T has the form T = f ({X (1) , ..., X (m)}) , for some f ∈ L V (n-m,m) .

In other words, a symmetric statistic is a random variable deterministically depending on the realization of X (m) as a non-ordered set. Note that, by a slight abuse of notation, in what follows we will write f ({X (1) , ..., X (m)}) = f X (m) (other analogous conventions will be tacitly adopted).

We also write L 2 s X (m) to indicate the Hilbert space of symmetric statistics of X (m) , endowed with the inner product

f 1 X (m) , f 2 X (m) P = E f 1 X (m) f 2 X (m) (10) = 1 n! x∈Sn f 1 (x {1, ..., m}) f 2 (x {1, ..., m}) (11) 
= n m -1 k (m) ∈V (n-m,m) f 1 k (m) f 2 k (m) .
Since the sum in (11) runs over the whole set S n , it is clear that •, • P induces a S n -invariant inner product on M (n-m,m) given by

f 1 , f 2 (n-m,m) = f 1 X (m) , f 2 X (m) P , f 1 , f 2 ∈ M (n-m,m) ; ( 12 
)
in particular, the S n -invariance of •, • (n-m,m) yields that the spaces K

(n-m,m) i and K

(n-m,m) j are orthogonal with respect to •, • (n-m,m) for every 0

≤ i = j ≤ m.
With every f ∈ M (n-m,m) , we associate the S n -indexed stochastic process

Z f (x, ω) = Z f (x) := f xX (m) , x ∈ S n ,
and, for every λ ⊢ n, we define

Z λ f (x, ω) = Z λ f (x) := D λ n! g∈Sn χ λ (g) f (g -1 x)X (m) ( 13 
)
f λ l (m) = D λ n! x∈Sn χ λ (x) f x -1 l (m) , l (m) ∈ V (n-m,m) , so that f λ X (m) = Z λ f (e)
, where e is the identity element in S n . The following facts will be used in the subsequent analysis. The proofs are standard and omitted -see e.g. the results from [START_REF] Peccati | Decomposition of stochastic processes based on irreducible group representations[END_REF] and [START_REF] Serre | Linear representations of finite groups[END_REF] evoked below for further details.

(a) Since ( 8) holds, f λ = 0 for every f ∈ M (n-m,m) if and only if λ is different from (nl, l), l = 0, ..., m (see e.g. [14, Theorem 8, Section 2.6]) and moreover:

f (n) ∈ K (n-m,m) 0
and, for every l = 1, ..., m, f (n-l,l) ∈ K (n-m,m) l (as defined in ( 8)). (c) Due to the orthogonality of isotypical spaces (see e.g. (see [START_REF] Duistermaat | Lie groups[END_REF]Theorem 4.4.5], and also [START_REF] Peccati | Decomposition of stochastic processes based on irreducible group representations[END_REF]), for every x, y ∈ S n , f, h ∈ M (n-m,m) and 0

≤ i = j ≤ m, E Z (n-i,i) f (x) Z (n-j,j) h (y) = E f (n-i,i) xX (m) h (n-j,j) yX (m) (14) 
E f (n-i,i) (Xx) (m) h (n-j,j) (Xy) (m) = 0, ( 15 
)
where, here and in the sequel (by a slight abuse of notation) we use the convention (n -0, 0) = (n).

(d) Due to [START_REF] Peccati | Decomposition of stochastic processes based on irreducible group representations[END_REF] and point (a) above, for every x ∈ S n and every f ∈ M (n-m,m) ,

Z f (x) = Z (n) f (x) + m l=1 Z (n-l,l) f (x) , (16) 
where

Z (n) f (x) = E [Z f (x)] = E f X (m) . In particular, f X (m) = E f X (m) + m l=1 f (n-l,l) X (m) (17) 
and therefore, for every f, h ∈ M (n-m,m) ,

E f X (m) h X (m) = E f X (m) E h X (m) + m l=1 E f (n-l,l) X (m) h (n-l,l) X (m) (18) 
(e) Due to [11, Theorem 5-1], for every 0

≤ i = j ≤ m and f, h ∈ M (n-m,m) , x∈Sn Z (n-i,i) f (x, ω) Z (n-j,j) h (x, ω) = x∈Sn f (n-i,i) xX (m) h (n-j,j) xX (m) = 0. ( 19 
)
4 Hoeffding spaces

We now define a class of subspaces of L 2 s X (m) (the notation is the same as in [START_REF] El-Dakkak | Hoeffding decompositions and urn sequences[END_REF][START_REF] Peccati | Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations[END_REF]): SU 0 = C, and, for l = 1, ..., m, SU l is the vector subspace generated by the functionals of X (m) of the type

T φ X (m) = {k 1 ,...,k l }∈V (m-l,l) φ (X (k 1 ) , ..., X (k l )) , (20) 
for some φ ∈ L V (n-l,l) . A random variable such as (20) is called a U -statistic based on X (m) , with a symmetric kernel φ of order l. One has that SU l ⊂ SU l+1 (see e.g. [START_REF] Peccati | Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations[END_REF]) and

SU m = L 2 s X (m)
. The collection of the symmetric Hoeffding spaces associated to X (m) , noted {SH l : l = 0, ..., m} is defined as follows: SH 0 = SU 0 , and

SH l = SU l ∩ SU ⊥ l-1 ,
where the symbol ⊥ means orthogonality with respect to the inner product •, • P defined in [START_REF] Peccati | Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations[END_REF], so that

L 2 s X (m) = m l=0 SH l ,
where the direct sum is again in the sense of •, • P . Following [3, Section 2], we define the real coefficients

d l,j = l-1 r=j n -r n -r -j , l = 2, 3, ..., m, 1 ≤ j ≤ l -1, (21) 
d l,l = N l,l = 1, l = 1, ..., m, N l,j = - l-1 i=j l -j i -j d l,i N i,j , l = 2, 3, ..., m, 1 ≤ j ≤ l -1.
The following result can be proved by using the content of [3, Section 2], or as a special case of [START_REF] Peccati | Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations[END_REF]Theorem 11].

Proposition 3 Keep the assumptions and notation of this section. Then, for l = 1, ..., m, the following assertions are equivalent:

(i) f X (m) ∈ SH l ; (ii) there exists φ ∈ L V (n-l,l) such that f X (m) = {k 1 ,...,k l }∈V (m-l,l) φ (X (k 1 ) , ..., X (k l )) , ( 22 
)
and E [φ (X (1) , ..., X (l)) | X (1) , ..., X (l -1)] = 0.

Moreover, for every

h X (m) ∈ L 2 s X (m) , the orthogonal projection of h X (m) on SH l , l = 1, ..., m, is given by proj h X (m) | SH l = {k 1 ,...,k l }∈V (m-l,l) φ (l) h (X (k 1 ) , ..., X (k l )) ,
where, for every {j 1 , ..., j l } ∈ V (n-l,l) ,

φ (l) h (j 1 , .., j l ) (23) = d m,l l a=1 N l,a 1≤i 1 <...<ia≤l E h X (m) -E h X (m) | X (1) = j i 1 , ..., X (a) = j ia .
The kernel φ of the U -statistic f X (m) appearing in ( 22) is said to be completely degenerated. Completely degenerated kernels are related to the notion of weak independence in [10, Theorem 6]. Note that, in the above quoted references, the content of Proposition 3 is proved for real valued symmetric statistics (the extension of such results to complex random variables is immediate: just consider separately the real and the imaginary parts of each statistic). Formula (23) completely characterizes the symmetric Hoeffding spaces associated to X (m) : it can be obtained by recursively applying an appropriate version of the Möbius inversion formula (see e.g. [12, Exercise 18, Section 5.6]), on the lattice of the subsets of [n] (see also [START_REF] Peccati | Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations[END_REF]Theorem 11], for a generalization of (23) to the case of Generalized Urn Sequences). In the next section we state and prove the main result of this note, that is, that the spaces SH l , l = 1, ..., m, admit a further algebraic characterization in terms of Specht modules.

5 Hoeffding spaces and two-blocks Specht modules

Main results and some consequences

The main achievement of this note is the following statement, which is a more precise reformulation of Theorem 1, as stated in the Introduction. The proof is deferred to Section 5.2.

Theorem 4 Under the above notation and assumptions, for every f X (m) ∈ L 2 s X (m) and every l = 0, 1, ..., m, the following assertions are equivalent:

1. f X (m) ∈ SH l ; 2. f ∈ K (n-m,m) l
, where the S n -module K (n-m,m) l is defined through formula [START_REF] El-Dakkak | Hoeffding decompositions and urn sequences[END_REF] (in particular, K (n-m,m) l ∈ S (n-l,l) ).

We now list some consequences of Theorem 4. They can be obtained by properly combining Proposition 3 with the five facts (a)-(e), as listed at the end of Section 3.

Corollary 5 Under the above notation and assumptions, 1. for every l = 1, ..., m, f ∈ M (n-m,m) and i (m) = {i 1 , ..., i m } ∈ V (n-m,m) ,

f (n-l,l) i (m) (24) = D (n-l,l) n! x∈Sn χ (n-l,l) (x) f x -1 i (m) (25) = {i 1 ,...,i l }⊆i (m) d m,l l a=1 N l,a × 1≤s 1 <...<sa≤l E f X (m) -E f X (m) | X (1) = i s 1 , ..., X (a) = i sa , where D (n-l,l) = n l -n l-1 .
2. for every l = 1, ..., m, every symmetric U -statistic, based on X (m) and with a completely degenerated kernel of order l, has the form (24) for some f ∈ M (n-m,m) . It follows that SH l is an irreducible S n -module, carrying a representation in S (n-l,l) .

For instance, by using [12, Exercice 5.d, p. 87], we deduce from (24) that for every i

(m) = {i 1 , ..., i m } ∈ V (n-m,m) and f ∈ M (n-m,m) , n -1 n! x∈Sn {(number of fixed points of x) -1} × f xi (m) = m-1 r=1 n -r n -r -1 m s=1 E f X (m) -E f X (m) | X (1) = i s .
The next result gives an algebraic explanation of a property of degenerated U -statistics, already pointed out -in the more general framework of Generalized Urn Sequences -in [10, Corollary 9]. Basically, it states that the orthogonality, between two completely degenerated U -statistics of different orders, is preserved after shifting one of the two arguments. It can be useful when determining the covariance between two U -statistics based on two urn sequences of different lenghts.

Corollary 6 Let f, h ∈ M (n-m,m) be such that f X (m) ∈ SH j and h X (m) ∈ SH l for some 1 ≤ j = l ≤ m. Consider moreover an element k (m) = {k 1 , ..., k m } ∈ V (n-m,m
) such that, for some r = 0, ..., m, Card k (m) ∩ {1, ..., m} = r, and note X ′ (m) = (X (k 1 ) , ..., X (k m )). Then,

E f X (m) h X ′ (m) = 0.
Proof. Due to the exchangeability of the vector (X (1) , ..., X (n)), we can assume, without loss of generality, that k (m) = {1, ..., r, m + 1, ..., 2m -r} .

Now introduce the permutation (written as a product of translations)

y = (r + 1 → m + 1) (r + 2 → m + 2) • • • (m → 2m -r) , (26) 
and note that

E f X (m) h X ′ (m) = E f X (m) h (Xy) (m) ,
so that the conclusion derives immediately from formula [START_REF] Zhao | Normal approximation for finite-population U -statistics[END_REF], by setting x = e and y as in (26).

Remaining proofs

The key of the proof of Theorem 4 is nested in the following Lemma.

Lemma 7 Let the previous notation prevail. Then, 1. for each l = 1, ..., m, a basis of SU l is given by the set of random variables η i (l) X (m) : i (l) ∈ V (n-l,l) , where, for each k (m) ∈ V (n-m,m) ,

η i (l) k (m) = 1 if i (l) ⊆ k (m) 0 otherwise; ( 27 
)
2. for each l = 1, ..., m, the restriction of the action [START_REF] Duistermaat | Lie groups[END_REF] of S n to the vector subspace of M (n-m,m) generated by the set {η i (l) : i (l) ∈ V (n-l,l) }, defined in (27), is equivalent to the action carried by the S n -module M (n-l,l) .

Proof. Fix l = 1, ..., m, and observe that, for every i (l) ∈ V (n-l,l) , η i (l) X (m) = {k 1 ,...,k l }∈V (m-l,l)

1 i (l) ({X (k 1 ) , ..., X (k l )}) , so that the first part of the statement follows from the definition of SU l , and the fact that every φ ∈ V (m-l,l) is a linear combination of functions of the type 1 i (l) (•). To prove the second part, first recall that a basis of the S n -module M (n-l,l) is given by the set 1 i (l) (•) : i (l) ∈ V (n-l,l) , and that the action of S n on M (n-l,l) is completely described by the action

x1 i (l) = 1 xi (l) .
We can therefore construct a S n -isomorphism between η i (l) : i (l) ∈ V (n-l,l) and M (n-l,l) by linearly extending the mapping τ η i (l) = 1 i (l) , i (l) ∈ V (n-l,l) , and by observing that, for every k (m) ∈ V (n-m,m) , i (l) ∈ V (n-l,l) and x ∈ S n ,

xη i (l) k (m) = η i (l) x -1 k (m) = η xi (l) k (m) .
This concludes the proof.

End of the proof of Theorem 4. Since SU 0 = SH 0 = K (n-m,m) 0

= C, the relation between representations M (n-l,l) ∼ = S (n) ⊕ S (n-1,1) ⊕ • • • ⊕ S (n-l,l) , ∀l = 1, ..., m, along with Lemma 7, implies that the restriction of the action [START_REF] Duistermaat | Lie groups[END_REF] of S n to those f ∈ L V (n-m,m) such that f X (m) ∈ SH l is an element of S (n-l,l) . This yields that each one of the m + 1 summands in the decomposition

M (n-m,m) = C ⊕ m l=1 f : f X (m) ∈ SH l
is an irreducible S n -submodule of M (n-m,m) . Since the decomposition (8) of M (n-m,m) is unique, this gives f : f X (m) ∈ SH l = K

(n-m,m) l , as required.

( b )

 b Thanks to exchangeability, for every f ∈ M (n-m,m) the class Z f , Z (n-l,l) f : l = 0, ..., m , has a S n -invariant law, with respect to the canonical action of S n on itself (i.e., x • y = xy, x, y ∈ S n ).
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