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Abstract— A beamforming method adapted to Stoneley-Scholte

waves is presented, in the context of buried objects detection in
the seabed. All the waves particularities are exploited in a wide-
band multicomponent array processing: velocity, dispersion and
polarization. These propagation features must be estimated. The
incident wave is used for this purpose. Then a signal model
is defined according to Stoneley-Scholte wave’s propagation,
in order to derived optimal and suboptimal receptors. The
localization simulations show a good localization behavior for
high Signal to Noise Ratios: the performances are close to the
asymptotic estimation bounds. For high noise levels, the detection
performances depends on the noise spatial coherence. Detection
is possible for Signal to Noise Ratios as low as -20dB. Lastly,
simulations with Finite Difference signals validate the model and
demonstrate that four components are useful in the beamforming.

I. INTRODUCTION

Seabed surface scanning is an important research topic for

military and civil interests. SONAR systems, in particular

Synthetic Aperture Sonars, are now widely used for seabed

imaging, but are less efficient in case of buried objects. In

various papers, the feasibility of detection systems based on

seismo-acoustic surface waves has been investigated [1]–[3].

In [1], beamforming results on Stoneley-Scholte waves with

a single component array were presented and in [2] detection

of scattered Rayleigh waves was performed. We propose here

a general multicomponent method employing seismo-acoustic

surface waves and working in an unknown sea floor. First we

briefly describe the propagation of Stoneley-Scholte waves at

the water-sediment interface. Then we present an array pro-

cessing strategy estimating the dispersion and polarization of

these waves and using them in a beamforming method. Lastly

detection results for synthetic signals are given and important

physical aspects influencing the detection performances are

discussed.

II. DETECTION SYSTEM

A. Stoneley-Scholte waves

Stoneley-Scholte surface waves (ST waves) propagate at the

interface between a fluid and a solid. They combine three wave

fields: an acoustic wave in the fluid, a compression wave and

a shear wave in the solid. Theses waves decrease vertically at

each side of the interface and propagate along the interface

at a low velocity. Their polarization in the vertical plane of

propagation is elliptic with a vertical long axis. ST waves are

dispersive in the sea floor because of velocity heterogeneity

in the sediments.

When an explosive source is triggered near the sea floor

interface, different kinds of wavefronts occur: compression

(P) and shear (S) body waves and surface waves. They have

different velocities and polarizations, which make them more

or less easy to separate. As illustrated in [3], ST waves are

predominant over the others when observed on vertical geo-

phones. Hence these sensors are the best choice for a detection

application using ST waves. But in a noisy environment, other

components may be useful.

B. System definition

We propose a detection system exploiting ST waves char-

acteristics. It is composed of a broadband source placed close

to the interface and a four component (4C) array of sensors

(hydrophones and three axis geophones) on the sea floor.

The scanning range is limited by attenuation, increasing with

frequency.

III. ARRAY PROCESSING STRATEGY

This article presents a localization method based on a

classical beamforming (BF) on ST waves. It requires a precise

knowledge of the propagation properties in the sediments,

otherwise it might be biased. We propose a two steps array

processing using a single source emission. The first step is a

propagation ”learning” from the incident wave. The second is

the actual BF method using dispersion and polarization.

A. Learning

The direct ST wave received on the array is used to estimate

the propagation properties. As the wave is predominant on ver-

tical geophones, this single component is used for dispersion

estimation. With a linear uniform array, dispersion estimation

is performed easily in a wavenumber-frequency representation

of the signals. Because of the small number of sensors, it

should be interpolated in wavenumber to estimate accurately



the phase velocity. In case of different geometries, another

method must be applied such as multiple filtering [4].

The 4C polarization vector is the second feature we want to

estimate. Precise estimation is difficult because of the guided

S waves: they have a velocity close to ST ones and have much

more energy in the horizontal components sensors. Moreover,

the polarization vector depends on frequency in dispersive

media. This leads to choose a unique polarization for all

the signal frequencies, but even so, the simulations show a

performance increase.

As explained in section IV, the emitted waveform can

also be used in the BF, to take into account the source

characteristics. It corresponds to any ST signal, of which the

propagation delay would been removed. All the sensors signals

may be summed to estimate this waveform. Unavoidably, the

measure is affected by attenuation.

B. Beamforming

We scan the sea bottom area, following a grid; for each

BF point, we use the method described in [3], which can be

summed up into four steps:

1) the signals are applied a phase velocity correction over

the whole propagation distances (source - BF point -

sensor).

2) corrected signals are summed. When an object exists at

the current BF point, the sum is coherent for the echo.

3) a polarization filter gives advantage to ST waves.

4) as the corrected echoes should fit the emitted source

waveform, a time matched filtering is applied. It limits

the noise contribution to the waveform’s time support.

IV. PERFORMANCE ANALYSIS

In order to study the detection and localization perfor-

mances, a signal model for ST waves has to be defined.

It should include the source spectrum, an attenuation factor

rather affecting high frequencies, a propagation delay with

phase velocity cST (ν) for frequency ν and a polarization

vector pST . We consider an impulsive pressure source near

the interface, with a constant spectrum. The ST response to

such a pressure source on a pressure sensor or a velocity

sensor is proportional to ν2.5 (see [5] p223 for Rayleigh wave

displacements). The frequency dependence of absorption given

in [6] is used to define the attenuation factor: at a given

distance, it is a−ν1.5

where a depends on the distance and

the propagation media. For a reflected wave, an additional

attenuation filter is used. It should be high-pass because, buried

close to the interface, an object better reflects high frequency

ST waves.

In the following, we assume that reflected ST waves have

undergone the same attenuation over the whole propagation

distance d when received on the sensors. Finally, in the Fourier

domain, reflected wave signals (pressure and three velocities)

can be written in the compact form:

[

P vz vx vy

]T
= s(ν, α, d) = pST s(ν, α, d). (1)

s(t, α, d) ↔ s(ν, α, d) = α(ν)s(ν) exp

(−2πjνd

cST (ν)

)

(2)

is the reflected wave signal at a propagation distance d from

the source and s(t) ↔ s(ν) denotes the ST source signal.

The filter α(ν) represents the reflection coefficient and the

exponential factor is the propagation delay.

A. Localization receptor structure

In [3] we presented a BF method adapted to ST waves.

Here we present an analysis from the estimation theory point

of view. Let us consider 4C signals received on an array of

ns sensors:

ri(t) = s(t, α, di) + bi(t) (3)

The subscript i is the sensor index, di is the total propaga-

tion distance from source (xs, ys) to sensor (xi, yi). s(t, α, di)
is the 4C ST signal received on sensor i and bi(t) the 4C

additive noise, independent with the others. In the following, k

denotes the component index of a quantity or vector. The noise

components are stationary, gaussian, white and independent,

with a power spectral density Nk. For such signals, the

maximum likelihood receptor (RML) is [7]:
∫

∑

i,k

rik(t)

Nk

sk(t, α, di)dt. (4)

This log-likelihood is either compared to a threshold to detect

objects or maximized for precise localization. For high Signal

to Noise Ratios (SNR), the localization is asymptotically

unbiased and efficient.

When α is unknown, the RML cannot be implemented. It

can be simply replaced by the receptor R1, for which the

incident wave signals are used in the correlation:
∫

∑

i,k

rik(t)

Nk

sk(t, di)dt. (5)

If the reflection does not introduce any phase difference (α(ν)
real positive), the localization is still asymptotically unbiased.

Using Parseval’s theorem, we write it in the Fourier domain:
∫

∑

i,k

rik(ν)pST k(ν)

Nk

exp

(

2πjνdi

cST (ν)

)

s∗(ν)dν. (6)

Superscript * denotes complex conjugation. In this expression

appear the BF steps listed in subsection III-B:

1) the exponential factor is the time correction.

2) sum over the sensor index i.

3) the sum over k is the projection on pST .

4) the correlation with s(ν) is the matched filtering.

The correlation induces secondary maxima in the “likeli-

hood.” Let us introduce then the receptor R2, which is the

envelope of R1:
∣

∣

∣

∣

∣

∣

∫

∑

i,k

rik(t)

Nk

s̃k(t, di)dt

∣

∣

∣

∣

∣

∣

. (7)

Superscript ˜ denotes signal analytical completion. The con-

dition on α(ν) for unbiased localization becomes a constant



phase. We show in section V that both receptors R1 and R2

have advantages.

B. Cramer Rao Bounds

Sea floor positions are located by x and y coordinates. In

the Fourier domain, the log-likelihood can be differentiated

with respect to them. Two differentiations and the expectation

calculation lead to the elements of the Fisher information

matrix. For instance, the non-diagonal term is:

J12 =

∫

∑

i,k

1

Nk

∂sk(ν, α, di)

∂x

∂s∗k(ν, α, di)

∂y
dν. (8)

From (1) and (2) the reflected wave components are:

sk(ν, α, di) = pST k(ν)α(ν)s(ν) exp

(−2πjνd

cST (ν)

)

(9)

We assume that the polarization vectors are constant in the

vicinity of the maximum, so that the derivatives only depend

on the exponential factor variations. Finally,

J12 =

∫
∣

∣

∣

∣

α(ν)s(ν)2πν

cST (ν)

∣

∣

∣

∣

2
∑

k

|pST k(ν)|2
Nk

dν
∑

i

∂di

∂x

∂di

∂y

(10)

where di derivatives are (for instance with respect to x):

∂di

∂x
=

(x − xi)
√

(x − xi)2 + (y − yi)2
+

(x − xs)
√

(x − xs)2 + (y − ys)2
.

(11)

Finally the matrix inversion directly provides bounds for the

variances along both coordinates σ2
x and σ2

y and the asymptotic

values for the covariance covxy .

V. BEAMFORMING SIMULTATIONS

We present here simulation results for a linear array. The

performances are studied at a broad side position, and a range

equal to the array length. The scenario geometry is illustrated

in Fig.1.

Object
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i
,y

i
)

Source (x
s
,y

s
)

d
i
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|s(ν)|

|α(ν)s(ν)|

Fig. 1. Scenario geometry with a 20 sensors linear array (50m long, 2.3m
between sensors), aligned with the source and a buried object 50m from the
array. Incident (solid line) and reflected (dotted line) spectra; the ordinate unit
depends on the signal nature (here the reflected wave has an energy equal to
unity).

A. Localization performances

Simulation results were created using the model in section

IV. The source signal was defined as:

s(ν) = a0ν
2.5a−ν1.5

ejφ(ν) (12)

and the high-pass amplitude factor α(ν) was given the

empirical form α0ν
2 which roughly fits the amplitude ratio

between reflected and emitted waves in our Finite Difference

simulations. The constants a0, a and α0 were adjusted to

normalize the reflected wave in energy, set its spectrum

maximum to 20Hz and have an amplitude ratio at 20Hz equal

to 10 (see Fig.1). The source phase φ(ν) has no influence on

the results.

Fig.2 shows BF images calculated without noise (ambiguity

functions), for the three receptors defined in subsection IV-

A. The principal lobe in the functions is elongated for the

three receptors, leading to a better resolution and precision

in range than in bearing. R1 has a function very similar to

RML, apart from slightly larger lobes. R2 has no secondary

lobes, its ambiguity function is R1’s function envelope. These

observations allow to predict the best theoretical performances

for the optimal receptor, followed by R1. Even if the reflection

is well known, R2 can be useful for a first rough localization in

real applications: when looking for maxima, it does not require
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Fig. 2. Normalized ambiguity functions for RML(a), R1(b) and R2(c), on a
15 by 20 meter area centered around the object.



an area sampling as dense as R1. R2 Rayleigh resolution

was measured without noise 50m from the array center,

for different object bearings. The -3dB contour line of the

ambiguity function has a nearly elliptic shape. The short axis

is about 2m (i.e. about half the 20Hz wavelength) whatever the

bearing angle is. It is oriented toward a point between source

and array. The long axis is shortest for broadside objects (4m,

against 10m for 70◦ off axis objects).

The localization performances were calculated for several

SNR. It was defined as the power ratio between P or vz

component signal and noise in the signal band. The noise on

horizontal velocity components (vx and vy) was calculated

to get the same SNR in average for echoes coming from all

directions. One can observe from (6) that when considering a

SNR equal for all components, the components signals have

the same weights in the beam energy. The estimation variances

are shown in Fig.3. The estimated bias were at least ten times

smaller than the standard deviations. The Cramer-Rao bounds

(CRB) are reached only by the RML, for high SNR. For R1,

the asymptotic variation of the three values is only 1.5dB

higher than the bounds. Using R2 increases the variance along

x (σ2
x), so that it becomes comparable to σ2

y , as expected from

the noiseless observations.

Under a particular SNR threshold, the localization perfor-
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Fig. 3. Localization variances for RML(a), R1(b) and R2(c). σx(solid), σy

(dotted) and cov0.5
xy (dash-dotted) are represented. On each graph, multicom-

ponent estimation variances (o) are compared to CRB (straight lines). Single
component estimations are also represented (*, for σy only).

mances decrease rapidly, in fact the variance estimations lose

sense: for high noise levels, they increase because more and

more “likelihood” maxima are found out of the principal

lobe. This amount of false alarms depends on the area where

maxima are searched (here a ten by ten meter square centered

around the reflector). As the false alarms distribution is uni-

form, σ2
x estimation tends to σ2

y’s and covxy tends to decrease.

In particular, the low value estimated for a -20dB SNR, and

receptor R1, is explained by 21 false alarms only out of 3000

observations.

The 4C Receptors’ performances are equivalent to that

of corresponding one component receptors for a SNR 6dB

higher. This measure is consistent with the usual dependence

of performances on the sensors number: BF with N times

more sensors normally multiplies the output SNR by
√

N .

The small difference in variances between RML and R1

is here an interesting point. But if the spectra of incident

and reflected wave happened to be very different, a reflection

function could be introduced to get closer to optimal detection.

Since the reflection depends on the object size and burying

depth, this function would have to be defined a priori.

On Fig.4 are shown detection performances. Receptor Op-

erational Characteristics (ROC) have been calculated for the

three receptors and for several SNR. For this SONAR-like

application, we found it appropriate to calculate other perfor-

mance curves. So the false alarm probability was redefined:

On graph (d) we consider the probability of at least one

0 1
0

1

P
fa

P
d

0 1
0

1

P
fa

P
d

(a) (b)

0 1
0

1

P
fa

P
d

0 1
0

1

P
fa

P
d

(c) (d)

Fig. 4. Estimated ROC are given for the three receptors RML(a), R1(b)
and R2(c), and for different SNR from -25dB (upper curves) down to -33dB
(lower curves). On graph (d), the abscissa value is the probability of at least
one false alarm in a ten by ten meter square; SNR vary from -20dB (upper
curve) to -30dB (lower curve).



false alarm in a given area. This probability can be higher

than the detection probability for high noise levels, as for the

dashed curves. Considering a ten by ten meter area, detection

is possible for SNR as low as -25dB.

B. Model inaccuracy

Several factors can deteriorate the performances, such as bad

propagation estimation and noise coherence (spatial and inter-

component). The influence of velocity estimation errors on

the localization performances was studied. Velocity errors lead

to variances increases and localization biases. Localization

biases are proportional to the velocity error. As we are dealing

with dispersive waves and near-field BF, the maximum beam

energy decreases with the velocity error; this trend is illustrated

by Fig.5. Decreases are also observed for a bad dispersion

estimation, that is when the estimated slope does not fit the

real dispersion curve. As a consequence of these phenomena,

estimation errors not only deteriorate the localization perfor-

mances but also the detection ones.

We analyzed the estimation robustness to the noise inde-

pendence hypothesis. To model inter-component coherence,

inter-component correlation coefficients were randomly set

(but identically set for all sensors), with a uniform distribution

in [−1, 1]. For spatial coherence, a low-pass spatial filter

was applied on the array noise, it was adjusted to get the

correlation values measured in [1]: 0.9 at 5m and 0.2 at 40m.

Fig.6 illustrates the detection performances. The comparison

of these performance curves with the incoherent noise case

(Fig.4(d)) indicates that spatial coherence is responsible for

most of the performance loss. Considering a ten by ten meter
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0

1

Velocity error (%)

Fig. 5. Variation of the maximum beam energy, calculated without noise.
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Fig. 6. Detection performance curves for R2, false alarm probability in a ten
by ten meter square, SNR vary from -20dB (upper curves) to -30dB (lower
curves). For graph (a) the noise has a spatial coherence only, whereas for
graph (b), inter-component coherence has been added.

TABLE I

MEDIA CHARACTERISTICS FOR FD SIMULATION

media ρ(kg.m−3) cP (m.s−1) cS(m.s−1)

water 1000 1500

sediments (surface) 1500 1500 100

sediments (50m depth) 1500 1800 500

area, detection is possible for SNR as low as -20dB.

C. Finite Difference signals

In order to test the BF method on more realistic cases,

synthetic signals were created with a 2D Finite Difference

time domain computation of P and SV waves [8]. The prop-

agation media are defined on Table I. A buried object is

simulated by higher velocities and density in the discrete grid.

The pressure and displacements recorded at the interface are

interpolated to create a 2D scenario, with body waves and

surface waves propagating toward all horizontal directions. We

used an impulsive explosive point source near the interface,

with a constant spectrum up to 20Hz and decaying rapidly

beyond. The resulting signal spectra recorded are similar to

the synthetic spectra in subsection V-A.

The major difference between these signals and those of

the previous subsections is the presence of all kinds of waves,

emerging from the object. The noise and SNR definition are

the same as in subsection V-A but the body waves’ energy is

ignored: they do not contribute to the SNR, neither as signals,

nor as noise.

For Fig.7, the receptor R2 was applied on noiseless compo-

nents separately, providing as many 2D BF images. A small

bias in localization distance is observed (0.85m, for x); it

may be due to the reflection mechanism: the object is not

punctual but one meter size in the Finite Difference grid, and

the reflection coefficient’s phase is not constant in frequency.

Since P body waves have a very high velocity compared

to ST ones, their contribution to the beam energy is poor:

images for P and vz are nearly identical. Moreover, they

are very similar to R2 ambiguity function represented in

Fig.2; this observation gives confidence in the propagation

model use in the beamforming. On the contrary, S waves

velocities are barely higher than ST ones. As S waves are

predominant on horizontal velocity signals they have a great

influence on corresponding BF images; in spite of a different

dispersion, they produce strong ghosts. For these simulations,

ghosts are still lower than ST detection lobes: hence horizontal

components can improve the detection performances at every

BF point. In general cases, BF can be applied with and without

horizontal components, when a detection peak is suspected to

be a S detection.

Since these signals have spectra similar to those of the

previous subsections, calculating detection curves the same

way is not pertinent. It is rather worth defining the correct

detection probability versus S wave false alarm probability.

The results are the same as in Fig.4 (a), (b) or (c), with a 3dB

shift: the difference between ST and S noiseless maxima is

0.69 times smaller than the ST maximum value.
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Fig. 7. Normalized BF images using R2, for single components P (a),
vz(b) and vx(c) and for 4C(d). The ghosts maxima positions and values are
represented. The space coordinates are meters.

VI. CONCLUSION

A beamforming method adapted to Stoneley-Scholte waves

has been presented. All the waves characteristics were con-

sidered for the processing. If the dispersion curve in the

propagation media is known, a wide band beamforming can

be applied, to take advantage of all the signal energy. The

polarization of Stoneley-Scholte waves is an important feature:

when several sensor components are available (hydrophones

and three axis geophones), the different kinds of waves can

be identified.

We have shown that beamforming required an accurate es-

timation of the propagation to avoid performance degradation,

such as bias. Hence we proposed to use the incident wave

signals for this estimation, afterward precise localization is

possible. We defined a signal model according to Stoneley-

Scholte wave’s nature and derived optimal and suboptimal

receptors. The localization simulations have shown a good lo-

calization behavior for high signal to noise ratios: localization

variances are close to the asymptotic Cramer Rao Bounds. For

high noise levels, the estimated Receptor Operational Charac-

teristics show that detection performance highly depends on

the noise spatial coherence, but detection is however possible

for Signal to Noise Ratios as low as -20dB. Lastly, simulations

were done with Finite Difference computation signals, for

a better wave field modeling. The localization method has

proved its robustness against other body waves emitted by the

object itself and the interest of using four component signals.

These signals have also permitted to validate the propagation

model of the method.

This method needs to be confronted with realistic noise and

signals. In situ experimentation would best provide data for

this purpose. Furthermore, detection range should be evaluated

for different types of sediments. The localization method could

be as well especially adapted to coherent noise and multiple

object detection.
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