
HAL Id: hal-00376789
https://hal.science/hal-00376789v1

Submitted on 20 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards sensor integration into multimedia applications
Christine Louberry, Philippe Roose, Marc Dalmau

To cite this version:
Christine Louberry, Philippe Roose, Marc Dalmau. Towards sensor integration into multimedia ap-
plications. 4th European Conference on Universal Multiservice Networks, Feb 2007, Toulouse, France.
�hal-00376789�

https://hal.science/hal-00376789v1
https://hal.archives-ouvertes.fr

Towards Sensor Integration into Multimedia

Applications
1

1 Works supported by the ANR/CNRS, 2006-2009

Christine Louberry

Dépt Informatique

Château Neuf

Place Paul Bert

64100 Bayonne, France

louberry@iutbayonne.univ-pau.fr

Philippe Roose

 Dépt Informatique

Château Neuf

Place Paul Bert

64100 Bayonne, France

roose@iutbayonne.univ-pau.fr

Marc Dalmau

Dépt Informatique

Château Neuf

Place Paul Bert

64100 Bayonne, France

dalmau@iutbayonne.univ-pau.fr

Abstract

Since few years, several applications are proposed on mobile

devices. However, these applications are not aware of their

physical environment. The emergence of wireless sensors, able to

monitor their close environment, can provide this service to such

applications. This implies an exchange of information between

sensors and software components, but they do not use the same

communication mode (different protocols, different data

structures). In this paper, we are interested in the design of

multimedia flow in this type of sensors. We propose a unique

component model that enables collaboration between different

components without knowing if there are hardware or software

and we also propose different mechanisms to transform data

between such heterogeneous components.

KEYWORDS: Multimedia applications, software components,

sensor networks, component model, data management

1. Introduction

For few years, one notices that more and more

multimedia applications are proposed on eventually

nomadic peripherals (PC, laptop, phones, PDA).

Nevertheless these applications are not aware of their close

environment (localization, geographical proximity,

movement). Democratization and growth of the

development of eventually mobile sensors thanks to

wireless communication can allow such applications taking

into account their environment.

Let us have an example. In a smoke detection

application, when a fire breaks out in a building, the smoke

detectors set off the alarm and close the fire-resistant doors.

Let us place temperature sensors in the different rooms of

the building which location is known by the application.

Sensors can inform the application of the position of the

hearth of the fire. Then the application can order sensors

(actuators) to close certain fire-resistant doors to confine the

fire and to help the intervention of the firemen.

 Collaboration between sensors and applications can

thus create new services in order to better serve the user.

For example, in a videoconference, sensors can detect a

weak luminosity and improve lighting of the screen. Also,

in agriculture, sensors can monitor the pesticides level in

water and avoid pollution [1]. The designing of these

applications can be difficult if it had to take into account the

hardware or software nature of each component. This paper

deals with problems related to model applications mixing

these various types of components. First, we propose a

unified model of components which makes possible the

abstraction of the own nature of the components of the

designed application.

Secondly, the collaboration between such heterogeneous

components will create some communication problems:

sensors and software components use different ways to

communicate and different data structures. We also propose

a mechanism to transform data between sensors and

software components and between sensors and the runtime

platform in order to make data exploitable and

comprehensible for all the components and to ensure the

communication in the whole network.

Part 2 presents related work on modelling sensors and

interfaces between applications and sensors. Part 3 presents

a state of the art on wireless sensors. Part 4 presents a

general view of our software component model called

OSAGAIA and its various elements. Part 5 details the

contributions for the integration of sensors in the

OSAGAIA model. Part 6 presents various approaches

concerning data transformation facilitating communication

between components. Finally part 7 presents our

conclusions on this work and the perspectives of this

research.

2. Related work

Until now, no sensor model was proposed. Although

there are standard communication protocols (WiFi, ZigBee,

Bluetooth) and standard routing protocols for mobile

networks (OLSR [11]), there is not any standard to model a

sensor. In order to integrate sensors in multimedia

applications and propose a component model, we need a

sensor model. We describe it in part 3.

On another side, due to their low power and small

memory, operating systems for sensors are low-level

architectures and make application development non-trivial.

To bridge the gap between applications and low-level

constructs, a new approach has emerged: middleware. In

this paragraph, we present a survey of existing middleware,

especially developed for sensor networks.

[9] classify middleware according to their objectives. The

three main categories are: virtual machine based, database

based and message-oriented middleware.

Virtual machine based middlewares allow developers to

write applications in separate modules which then are

injected through the network. Then, the virtual machine

interprets the modules. They run on the operating system of

the sensor, that is to say they are embedded on sensors.

Mate (TinyOS) [13] and Magnet (MagnetOS) [2] belong to

this category.

In database based middlewares, the network is viewed as

one virtual database system. It offers a user-friendly

interface to query the network and extract data. Cougar [5]

uses a database approach to manage sensor network

operation although TinyDB [14] uses queries to extract

sensor data from a network using TinyOS.

Most of the time, sensor networks produce events. So, the

most suitable communication model to this type of network

is the asynchronous communication model. That’s why

message-oriented middlewares like Mires [15] propose a

publish-subscribe mechanism. With this method, sensors

only receive data which they are interested in.

A common point to these middleware is that they are

used to make the development of sensor-specific

applications easier. Most of them propose data aggregation

service and query-processing service.

The research mentioned above deal with applications

embedded on sensors, developed for sensor networks but do

not tackle the problem of collaboration between sensors and

software components.

Our work focuses on applications which can already exist

and want to use the functionalities of sensors in order to

improve their services.

3. State of the art about wireless sensors

The recent headways in microelectronics and wireless

technologies allow developing small sized sensors endowed

with processing capacities and wireless communication

modes. Some of them allow even multimedia treatment as

sound and image thanks to small cameras and microphones

embedded on the sensors. This paragraph presents a state of

the art and proposes a model for actual wireless sensors.

3.1 Wireless sensor model

Sensors of the market are generally composed of a core

(mote) on which various components are attached (Fig. 1).

A sensor is composed of a processor, a memory, a radio, a

battery and detectors. [4][17]

Figure 1: General architecture of a wireless sensor

A sensor consists in three elements: an ID card, one or

several functions and a communication module (Fig.2). Its

ID card consists itself of four elements: a processor, a

memory, a battery and an operating system. Communication

module consists of a communication mode (for example

event communication) client/server communication, and of

a communication protocol or a transmission type like WIFI

or Bluetooth. Communication module is endowed with a

port allowing input/output of messages and events.

Sensor

IDCard Function

- type

Communicati on

Processor

- manufacturer

- type
- frequency

Battery

- power level

Memory

- free space

OS

- name

Mode

- mode

+ send()

+ receive()

Protoco l

- protocolName

- range

1 * 1

1 1 1 1 1 1

Figure 2: Sensor class diagram

For example, the ID card of a Crossbow MICA2 sensor

consists of a processor Atmega128 at 4MHz, a 512 KB

memory to store the measures, a system memory of 128 KB,

a two AA battery and the TinyOS [10] operating system. It

communicates in an event oriented way and send messages

and events by radio.

A sensor can have several functions by integration of

various detectors. It can measure outside temperature,

atmospheric pressure, humidity, magnetic field, luminosity,

etc. Of course, when it will be integrated into an

application, this sensor will play a precise role (see section

5.1.3). This role will use one, some or all the functions of

the sensor.

3.2 Messages format

There are several operating systems created for sensors as

TinyOS, MantisOS [3], T2, Contiki [7]. Each of them

proposes his own messages format. Figure 3 shows the

recurrent fields of a sensor message.

This data structure is like a network packet. It defines the

address of the destination, the length of the message and the

data field. The data field can contain many sorts of data

(measurements, video, sound) and also others data

structures like commands.

addr length ... data ...

Figure 3: Data structure of a TinyOS message: TOSMsg

4. Presentation of the OSAGAIA model

The OSAGAIA model is mainly dedicated to

multimedia applications distributed on the Internet [6]. In

this model, components constituting the application are

interconnected by data streams. An execution platform

supervises their functioning. This platform receives state

information from every application component and can send

commands to each of them. Besides, it takes care of the

application dynamic reorganization by creating/suppressing

components and redefining of interconnections between

them. To insure the quality of service in such applications

which manipulate information with strong temporal

dependences supposes to adapt them to user requirements

and to environment constraints in real time. OSAGAIA is a

model for software components which implements inter-

stream synchronization, i.e. synchronization between

samples of different streams as for example, sound and

image in a video. [6]

4.1 The model

The OSAGAIA model consists in two elements: the

Conduit and the Elementary Processor. The Conduit

transports streams synchronously. The Elementary

Processor is a container for Business Components. It takes

care to preserve the synchronization between streams and to

dialogue with the platform. The Business Component

includes the processing of streams. The model accepts two

sorts of streams:

- Streams with strong constraints (video, sound, sampled

data)

- Streams with weak constraints (measures on demand,

detectors events).

The used synchronization mechanism consists in

attaching a unique time stamp label at every sample at its

creation time. The couples sample-label so formed

constitute temporal units (TU). To constitute a synchronous

sequence of various streams, it is then enough to group

together all the Tus corresponding to the same time interval.

4.2 The different components

4.2.1 The Business Component (BC). The BC implements

a particular multimedia operation and only one. If, for

example, a stream requires an audio acquisition treatment

and an audio mixing treatment, it will have to go through an

audio acquisition BC and then to an audio mixing BC.

The BC is data driven. It can only run if there are data in

the input port of the Elementary Processor (EP) which

encapsulates it.

4.2.2 The Conduit. The Conduit transports streams in a

synchronous way (Fig. 4). Whatever is the number of

streams which it transports, they remain synchronous.

Figure 4 describes the path of data within the Conduit.

Streams are transferred using a client/server approach. The

Conduit has input-output ports to connect to EPs. These

ports are connected with buffers which receive the

Temporal Units (TUs). Each writing in an output port

generates an event used by the EP.

The Conduit has a Control Unit (CU) which allows the

platform to know its state at any time and to supervise it.

Figure 4: Internal structure of the conduit

The CU also ensures that streams are transported locally

and by the network in a synchronous way.

4.2.3 The Elementary Processor (EP). The EP is a

container for the BC (Fig.5). Like the Conduit, the EP can

be supervised thanks to a Control Unit. The EP also had an

Input Unit (IU) and an Output Unit (OU), connected

respectively to the input and output ports. The IU and the

OU allow the BC to read and write data in the EP input and

output ports. They also insure synchronous transfer of

streams not handled by the BC.

When the Conduit writes data in its output port, it

generates an event which warns the EP that data are present

in its input port. The BC can then read the data via the IU,

performs its treatment on streams and writes the result in the

OU. Writing in the EP output port generates an event which

warns the Conduit that it has stream data to transport.

One can find the whole description of the OSAGAIA

model in AINA paper [6].

Next paragraph presents what has to be added to sensors

to integrate them in this model.

Figure 5: Internal architecture of the Elementary Processor

5. Integration of sensors into the OSAGAIA

model

Whatever the role of sensors is, they produce

information flows with hard or soft time constraints. The

transport of these flows and their processing using software

components services brings us to develop a unique

component model able to design such applications based on

software and hardware components. Moreover, this model

proposes an abstraction of the own nature of each

component.

5.1 New functionalities for a sensor

5.1.1 The Control/Input/Output Units. Using the

OSAGAIA model, the interconnection of components using

their data flows is done thanks to an Input/Output Unit (IU,

OU). In addition, the execution platform supervises the

Business Component (BC) thanks to a Control Unit (CU)

located into the container (the Elementary Processor – EP).

In order to inter-connect and to manage the sensor and

according to the OSAGAIA model, we add to the sensor a

CU, an IU and an OU. The CU allows to send commands to

the sensor and to the IU and OU and to get back their state.

This CU is able to communicate with the memory and

the battery of the sensor to inform in real-time of the

available space for new measures or about the battery level.

It can also communicate with the Operating System (OS) in

order to supervise the sensor.

5.1.2 The relay function. When an application is modelled

with the OSAGAIA model, space is not represented, only

the functionalities are. With the aim of integrating sensors

in the same way that we integrate software components into

an application, it is necessary to ensure that the running

platform can supervise each component at any moment and

that communication between components is always

available. Because a sensor can be mobile, it can be out of

reach and induce a faulty running of the application.

Nevertheless, if the grid of the network is sufficient, the

sensor can be reached provided that there are relays. These

relays can be installed by adding a function of relay on the

sensors.

The radio of sensors transmits to short way, between 10

and 30 meters (more or less 30/100 feet). On figure 6, a

sensor A needs to send a message to a sensor B but the

distance is too important between the two sensors. A cannot

reach B. The Sensor C located between A and B needs to be

a relay. Nevertheless, with a normal execution, when a

sensor receives a message which is not designated to itself,

it destroys it, that is why we need to add a relay

functionality to the sensor in order to allow it to relay a

message to another sensor onto the platform. Indeed, in

such an application, whatever their location in the network,

all the components have to be reachable. This function is

essential for the achievement and the supervision of

applications in order to make possible to bind all the

components.

Adding this functionality allows us to provide a protocol

to run the network step by step (hop by hop). It also induces

to take into account the sensor limits. The less the sensor

has energy, the less it will be able to provide the relay

function. It also may introduce delay and jitter that must be

minimized not to disturb the behaviour of the application.

Figure 6: The Relay Function

5.1.3. Grouping sensors (notion of role). Let us have an

example of presence detection (see Fig.7). An application

uses a physical component to detect presence. If this

component breaks down, a video sensor located near the

detector, associated to a software component of movement

detection, can replace it and takes the role of presence

detector.

As we can see in this example, a specific role can be

achieved by a component alone of by a group of

components. We define the role of one or several

components as the function into the application insured by

the group they constitute [16]. This approach using roles

allows ensuring QoS into the application because it offers

different ways to obtain a specific role.

video

Movement

 detection

Functionnality : Presence detector

Role : presence detection

Functionnalities :video sensor (camera) +

software component detecting movement :

Role : presence detection

Figure 7: Notion of role

5.1.4. Model of a EP including a sensor. The addition of

these functions induces a new sensor model (see Fig 8.).

As previously defined by the class diagram (Fig. 2), a

sensor gets its identity card, its functions and its

communication module. Now, we add to it Input and Output

Units and a Control Unit in order to communicate with the

supervision platform. Input/Output Units provide data flow

relay.

Into the OSAGAIA model, the supervision platform is

distributed on all sites. Because of memory size and

compute power limits it is not possible to locate a part of

this platform on each sensor as we do on each computer.

That is why we choose to externalize the CU associated to

the sensor to the nearest site able to support the platform.

The externalisation is not reflected in the UML diagram

because, at a structural level, the Control Unit is part of the

Elementary Processor. Actually, the role of the CU is to

ensure the link between the component and the platform.

Using this process, the module obtained (Fig. 8) matches

the model of the Elementary Processor in the OSAGAIA

model.

Sensor

CommunicationID Card Control

Unit
Function

1

Input

Unit

Output

Unit

1 * 1 1

1

1

Figure 8: Class Diagram of an Elementary Processor

5.2. Software Unified Model

Sensors are able to produce several kinds of data flows.

To process the produced information, they communicate

with software components able to achieve the specific

processing of all information. To integrate sensors among

software components, we have to propose a unified

component model. This model proposes to integrate a

sensor into an Elementary Processor (EP) of the OSAGAIA

model. The EP encapsulates the sensor as it would do for a

software component. According to OSAGAIA, the

Business Component (BC) is used in order to process

multimedia flows. A flow enters into the Communication

Unit via the Input Unit of the Elementary Processor (EP)

and get out through the Output Unit. These units are

supervised by the Control Unit of the EP. However, because

of the communication mode of sensors, when the EP will

integrate a sensor instead of a BC, all information exchange

will be done using Input/Output of the Communication Unit

(Fig. 9). So, we need to distinguish these flows in order to

re-orientate them according to their nature towards the

corresponding entity.

Sensor

 Multimedia Container

I O

E : Input port

O : Output port

State Flow
Commands Flow

Flow to relay

Data flow

IU OU

CU

Platform

Relayed Flow

Data Flux

States Commands

Figure 9: Integrating a sensor into an EPs

That is why we use a data flow model including the

information of course (data, command) but also an identifier

allowing to know if this flow is:

- a data flow;

- a state flow;

- a command flow.

The figure 10 shows an application composed of mobile

video sensor (V), a mobile sound sensor (S) and a mixing

software component (M) located on a non-mobile terminal.

On the below part of the schema, a zoom on this non-mobile

terminal shows the local part of the platform, the Control

Units of the two sensors (V, S) and the Elementary

Processor containing the Business Component M. The

sensor V sends a video flows to M, but because it is too far,

S has to play the role of the relay. S receives this flow,

identifies it as a flow to relay and communicates it to its

Output Unit in order to transmit it to M. S also sends its

own produced flow to M. M reads the two flows received

into in Input Unit, identify them as data flows and

communicates them to its Business Component. When the

platform needs to send a command flow toward V, it sends

it to S which relay it to V. This is the same when S and V

send state flows to the platform. The relay function allows

solving the problem of the mobility of sensors. However, in

order to not overload sensors, the platform is distributed on

all non-mobile stations; the Control Units of sensors can be

moved on another fixed station to be directly reachable to

the sensor if possible.

This process allows managing both sensors and software

components with a unique way thanks to the generic model.

Now there is a generic model to manage sensors and

software components, we have to propose a mechanism

facilitating communication between these components. Next

paragraph presents such a mechanism.

6. Transformation

Software components usually send and receive data flows

whereas sensors send and receive packets whose format is

determined by their operating system. In the same way,

software components communicate with their UC and the

runtime platform with method-calls whereas sensors accept

commands using another format (Fig. 3). A network is

composed of heterogeneous software components and

heterogeneous sensors (different communication protocol

and different operating system). We have to set up a

mechanism to allow all the elements, whatever their nature,

exchanging messages together.

 OUIU

V

S

M

V : video sensor

S : sound sensor

M : mixing software component on a non-mobile terminal

IU OU

IU OU

IU OU

V

V
S

command S

command V

c
o
m
m
a
n
d
 V

state S

st
a
te
 V

état V

CU

CU

of SCU

of

V

Platform

BC
V
S

state S

stateV

S+V

command V

command S

EP containing M

Figure 10: Example of flows exchanges into an application

composed of mobile and non-mobile components

6.1. Data transformation between sensors and

software components

Software components and sensors do not use the same

messages format. First use objects, others use packets or

events. We have to found a mechanism that acts as a link

between such elements.

A first approach consists in introducing a data

transformer into the input and output units (IU and OU).

First, we can add a data transformer to the OU. When a

component wants to send data to another one it has to

transform data in the appropriate format. This method

implies that the source component must know the type of

the destination, which it does not since the application is

designed without focusing on the nature of components. If a

component has to send information to a sensor and a

software component, it should make two sendings, for each

destination according to their format. Secondly, we can add

a data transformer to the IU. When a component receives a

data, it has to identify it in order to transform it in the

suitable format. This method implies that the destination

component can accept in its entry port any data structure,

but also to know all the data structures of all the

components present in the network for carrying out the

transformation. In the case of sensors, this method is not

applicable due to their small memory. Moreover, each

component must know all the possible transformations.

When a new transformation is introduce in the application,

all components have to be updated what can be difficult to

deploy on a real scale.

A second approach consists in using a middleware. [4]

describes the characteristics required by a middleware for

sensor networks:

- scalable: the application is reduced to essential

components and data types.

- generic: interfaces must be generic to minimize

customization for other applications.

- adaptive: able to change components during runtime.

- reflective: able to change the behaviour of components

instead of changing themselves.

The authors propose a concept of a software-

architecture for wireless sensor networks which separates

software from hardware and divides the software into three

functional blocks (Fig. 11).

Figure 11: Structure of a sensor software [4]

 With this architecture, sensors integrate a distributed

middleware which is the only way to contact them in order

to simplify the development of services for sensor networks.

The authors of [8] propose a middleware pattern for

sensor networks in order to handle the heterogeneity in

sensor applications. It combines services proposed by

existing middlewares for sensor networks (see part 2).

Services are divided in three categories: Application layer,

Data management layer and Network service management

layer. They are implemented in separate components in

order to make it possible to replace them. Applications

indicate their needs to the data management layer which

gathers the needed data by sampling the sensors. The same

readings are offered to several applications to save sensors

energy. The authors mention the usage of standardized

interfaces is required in such a middleware.

In our model, we already integrate input and output units

in a sensor. Adding a middleware could harm the operation

of the sensor due to its low power and its small memory.

Instead of a distributed middleware, we can use a

centralized middleware with a repository which contains all

the data type transformations. Figure 12 shows an

application composed of two software components A and B

and one sensor C. Instead of sending two messages in two

different formats to B and C, A sends its message to the

middleware which transforms and sends it to B and C with

the appropriate format. However, the use of such a

middleware increases networks transfers and add delays

because of transaction time with the repository. Our model

allows transporting streams synchronously. Is the stream

synchronization compatible with the use of a middleware?

This question needs to be studied in details.

A

B

C

Middleware
Repository

Figure 12: Example of a centralized middleware and its

repository

A third approach consists in using software components

like in our model. We can define some Elementary

Processor of which Business Component would have the

conversion processing specific to each type of components

(Fig. 13). One component is associated to the conversion

component specific to its type. This method limits delay

because it only induces some processing time whereas

middleware method induces network transfer time. Another

advantage is that the synchronization can be preserved.

Indeed, the conversion component is a component of our

model and consequently contains the properties to keep the

synchronization.

TC C

Platform

Useful flow

for C

Transformed

flow
Processed

flow

Figure 13: Example of conversion component

The disadvantage is that when we reconfigure the

application, we have to change the components per pair: the

component and its conversion component.

A fourth approach consists in using the Control Unit

(CU) of the Conduit in our model. In the OSAGAIA model,

all data streams are transported by Conduits. The Conduit

contains synchronization properties that enable to keep the

synchronization during the data transport. The purpose is to

implement the CU so that it knows all possible data

transformations in the network. The Conduit knows the

destination and the origin type and recognizes the kind of

the flow which it transports. Consequently it can transform

data format while transferring them. As the third approach,

there is no more network delay, only processing time due to

the data transformation.

Obviously, all the methods described in this paragraph

require to know all the data types which will be used in the

network. They also imply that the application must know

the composition of the network constantly in order to

recognize the destination type of a message and give it to

the appropriate transformation component.

6.2. Data transformation between sensors and
runtime platform

The platform supervises the components using

commands. However, sensor commands are special

structure included in a message packet. The action field

value is the action the sensor has to do.

Because the platform knows what kind of sensor it

supervises, it can send data in the appropriate format. Then

the Control Unit (CU) of the sensor executes commands and

transforms the states in the appropriate format.

The name of the method reflects the action field of a

command structure. Then the command is integrated in a

message packet and sent to the CU of the sensor. The CU

uses the inverse mechanism to write the data field value of

the response as a state and transmit it to the platform.

7. Conclusion and perspectives

Sensors become more and more present around us. They

have now processing capacities, an important memory and

can do measures and capture sound or picture. Our

objective is to use them to improve multimedia applications

by adding services linked to real world environment.

In order to design such applications easily, we propose a

unified component model allowing the developer not to take

care of the type (hard/soft) of entities. In this paper, we

focused on the OSAGAIA model and show how to extend it

to sensors. However, we had to take into account the low

capacity and the mobility of sensors. Moreover, we

proposed to use Input/Output Units to simply ensure a relay

function in order to avoid the problem of short range of

sensors. A prototype implemented with JavaBeans is

available and allows simulating the deployment of

sensors/software components and their mobility.

This original model allows designing applications using

inter-connections of hardware and software components

without any particular adaptation of the components

involved. The platform is able to supervise these

components and can re-organize the circulation of data

flows to improve the QoS of the application. It receives

states from each of them in order to know how the

application runs and sends command to components to

drive the execution.

Within sight of the various solutions of data

management described in part 2, we can realize that there is

a real need with regard to the data transformation and the

data management. The majority of the solutions deal with

applications specific to sensor networks. Little ones are

interested in the problems of integration of the sensors in

existing applications. The approach we propose is interested

in the problem of components heterogeneity in applications

which mix software and hardware components.

Future works will be in the use of the notion of role

associated to each component or group of components in

order to constitute services and to manage QoS. The re-

configuration of the application will be done using the

constitution of new services according to the needs of the

users, to the available resources to the environment and to

the localization of sensors.

As concerns the relay function, we will study how to

minimize delay and jitter.

We will also work on data transformation to find an

optimal mechanism in term of transfer time, computing time

and energy consumption which ensure a sufficient level of

quality of service.

References

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Caryirci,

“Wireless Sensor Networks: a survey”, Computer Networks,

vol. 38, no. 4, pp. 393–422, April 2002

[2] R. Barr, et al., “On the Need for System-Level Support for Ad

hoc and Sensor Networks”, Operating Systems Review, ACM,

vol. 36, no. 2, pp. 1-5, April 2002.

[3] Shad Bhatti, James Carlsion, Hui Dai, Jing Deng, Jeff Rose,

Anmol Sheth, Brian Shucker, Charles Gruenwald, Adam

Torgersonn Richard Han, « MANTIS OS : An Embedded

Multithreaded Operating System for Wireless Micro Sensor

Platforms », ACMKluwer Mobile Networks & Applications

(MONET) Journal, Special Issue on Wireless Sensor

Networks, Août 2005.

 http://mantis.cs.colorado.edu/index.php/tiki-index.php

[4] J. Blumenthal, M. Handy, F. Golatowski, M. Haase, D.

Timmermann, “Wireless Sensor Networks - New Challenges

in Software Engineering”, Proc. IEEE Conf. ETFA 03,

September 2003, vol. 1, p.p. 551- 556.

[5] P.Bonnet, J. Gehrke, P. Seshadri, “Towards Sensor Database

Systems”, Proc. 2nd Int’l Conf. MDM 01, 2001, pp. 314-810.

[6] M. Dalmau, P. Roose, E. Bouix, F. Luthon, “A Multimedia

Oriented Component Model”, AINA 2005, The IEEE 19th

International Conference on Advanced Information

Networkgin et Applications, 28-30 Mars 2005.

[7] Adam Dunkels, Björn Grönvall, Thiermo Voigt, Contiki – a

Lightweight and Flexible Operating System for Tiny

Networked Sensors. http://www.sics.se/~adam/contiki/

 [8] B. Elen, S. Michiels, W. Joosen, P. Verbaeten, “A

Middleware Pattern to Support Complex Sensor Network

Applications”, ACM SIGPLAN, OOPSLA '06 Workshop on

Building Software for Sensor Networks, 22-26 October 2006.

[9] S. Hadim, N. Mohamed, “Middleware: Middleware

Challenges and Approaches for Wireless Sensor Networks”,

IEEE Distributed Systems Online, vol 7, March 2006.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister,

“System Architecture Directions for Network Sensors”,

ASPLOS 2000, Cambridge, November 2000.

[11] P. Jacquet, et al., Project Hipercom, INRIA, “Optimized

Link State Routing Protocol”, RFC 3626, April 2004.

[12] N. Lee, P. Levis, J. Hill, “Mica High Speed Radio Stack”, 11

Septembre 2002.

[13] P. Levis, D. Culler, “Mate: Tiny Virtual Machine for Sensor

Networks”, Proc. 10th Int’l Conf. ASPLOS-X, ACM Press,

2002, pp. 85-95.

[14] S. R. Madden, M. M. Franklin, J. M. Hellerstein, “TinyDB:

An Acquisitional Query Processing System for Sensor

Networks”, ACM Trans. Database Systems, vol. 30, no. 1,

2005, pp. 122-173.

[15] E. Souto, et al., “A Message-Oriented Middleware for Sensor

Networks”, Proc. 2nd Int’l Workshop MPAC 04, ACM Press,

2004, pp. 127-134.

[16] M. S. Voisin Laplace, Conception d'Architectures Logicielles

pour intéger la Qualité de Service dans les Applications

Multimédias Réparties, PhD Thesis, University of Pau,

France, 2006.

[17] Wikipedia, TinyOS, http://fr.wikipedia.org/wiki/TinyOS.

