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We prove resolvent estimates for semiclassical operators such as -h 2 ∆ + V (x) in scattering situations. Provided the set of trapped classical trajectories supports a chaotic flow and is sufficiently filamentary, the analytic continuation of the resolvent is bounded by h -M in a strip whose width is determined by a certain topological pressure associated with the classical flow. This polynomial estimate has applications to local smoothing in Schrödinger propagation and to energy decay of solutions to wave equations.

P u(x) = P (h)u(x) = -h 2 1 √ ḡ n i,j=1 ∂ xj √ ḡg ij ∂ xi u(x) + V (x) , x ∈ R n , (1.1) 

G(x)

def = (g ij (x)) i,j is a symmetric positive definite matrix representing a (possibly nontrivial) metric on R n , ḡ def = 1/ det G(x), and V (x) is a potential function. We assume that the geometry and the potential are "trivial" outside a bounded region:

g ij (x) = δ ij , V (x) = -1 , when |x| > R .
This operator is hence associated with a short-range scattering situation. We refer to (21, §3.2) for the complete set of assumptions which allow long range perturbations, at the expense of some analyticity assumptionsWe note that for V ≡ -1, P (h)u -0 is the Helmholtz equation for a Laplace-Beltrami operator, with h = 1/λ, playing the rôle of wavelength. Such operators have a purely continuous spectrum near the origin, and their truncated resolvent χ(P (h) -z) -1 χ (χ ∈ C ∞ c (R n )) can be meromorphically continued from Im z > 0 to Im z < 0, with poles of finite multiplicity called resonances. In the semiclassical limit h ≪ 1, the distribution of resonances depends on the properties of the classical flow generated by the Hamiltonian p(x, ξ) = n i,j=1

g ij (x)ξ i ξ j + V (x), that is the flow (x, ξ) → exp tH p (x, ξ) associated with the Hamiltonian vector field

H p (x, ξ) def = n k=1 ∂ ξ k p ∂ x k -∂ x k p ∂ ξ k .
(when V ≡ -1 the Hamiltonian flow corresponds to the geodesic flow on S * R n .) More precisely, the properties of the resolvent χ(P (h) -z) -1 χ near z = 0 are influenced by the nature of flow on the energy shell {p(x, ξ) = 0}. A lot of attention has been given to nontrapping flows, that is flows for which the trapped set

K def = {(x, ξ) : p(x, ξ) = 0 , exp tH p (x, ξ) → ∞ , t → ±∞} (1.2)
is empty. In that case, for δ > 0 small enough and any C > 0, the resolvent is pole free in a strip [-δ, δ] -i[0, Ch], and satisfies the bound (17; 18)

χ(P (h) -z) -1 χ L 2 →L 2 = O(h -1 ), z ∈ [-δ, δ] -i[0, Ch] .
On the opposite, there exist cases of "strong trapping" for which the trapped set has a positive volume; resonances can then be exponentially close to the real axis, and the norm of the resolvent be of order e C/h for z ∈ [-δ, δ] (28; 3; 6).

In this note we are considering an intermediate situation, namely the case where the trapped set (1.2) is a (locally maximal) hyperbolic set. This means that K is a compact, flow-invariant set with no fixed point, such that at any point ρ ∈ K the tangent space splits into the neutral (RH p (ρ)), stable (E - ρ ), and unstable (E + ρ ) directions:

T ρ p -1 (0) = RH p (ρ) ⊕ E - ρ ⊕ E + ρ .
This decomposition is preserved through the flow. The (un)stable directions are characterized by the following properties:

∃ λ > 0, d exp tH p (ρ)v ≤ C e -λ|t| v , ∀ v ∈ E ∓ ρ , ±t > 0.
Such trapped sets are easy to construct. The simplest case consists in a single unstable periodic orbit, but we will rather consider the more general case where K is a fractal set supporting a chaotic flow; such a set contains countably many periodic orbits, which are dense on the set of nonwandering points N W (K) ⊂ K [START_REF] Katok | Introduction to the Modern Theory of Dynamical Systems[END_REF].

Our results will depend on the "thickness" of the trapped set, defined formulated in terms of a certain dynamical object, the topological pressure. We refer to (21, §3.3) and texts on dynamical systems (15; 29) for the general definition of the pressure, recalling only a definition valid in the present case. Let f ∈ C 0 (K). Then the pressure of f with respect to the Hamiltonian flow on K is given by

P(f ) def = lim T →∞ 1 T log Tγ <T exp Tγ 0 (exp tH p ) * f (ρ γ ) dt , (1.3) 
where the sum runs over all periodic orbits γ of periods T γ ≤ T , and ρ γ is a point on the orbit γ. The function f we will be using is a multiple of the (infinitesimal) unstable Jacobian of the flow on K:

ϕ + (ρ) def = d dt det(d exp tH p ↾ E + ρ )| t=0 , ρ ∈ K .
We can now formulate our main result:

Theorem. Suppose that P (h) satisfies (1.1) or the more general assumptions of (21, §3.2). Suppose also that the Hamiltonian flow is hyperbolic on the trapped set K, and that the topological pressure P(-ϕ + /2) < 0 , ϕ + the unstable Jacobian.

(1.4)

Then for any χ ∈ C ∞ c (R n ) and ǫ > 0, there exist δ(ǫ) > 0 and h(ǫ) > 0 such that the cut-off resolvent χ(P (h) -z) -1 χ, Im z > 0, continues analytically to the strip

Ω ǫ (h) def = {z : Im z > h(P(-ϕ + /2) + ǫ) , | Re z| < δ(ǫ)} , 0 < h < h(ǫ) .
For z ∈ Ω ǫ (h) ∩ {Im z ≤ 0}, this resolvent is polynomially bounded in h:

χ(P (h) -z) -1 χ L 2 →L 2 ≤ C(ǫ, χ) h -1+cE Im z/h log(1/h) , c E def = n 2|P (-ϕ + /2) + ǫ/2| . (1.5)
For any s ∈ [0, 1], the pressure P(-sϕ + ) measures relative strengths of the complexity of the flow on K (i.e. the number of periodic orbits), and the instability of the trajectories (through the Jacobian). For s = 0, P(0) only measures the complexity, it is the topological entropy of the flow, which is generally positive. On the opposite, P(-ϕ + ) is negative, it represents the "classical decay rate" of the flow. The intermediate value P(-ϕ + /2) can take either sign, depending on the "thickness" of K. In dimension n = 2 the condition (1.4) is equivalent to the statement that the Hausdorff dimension of K ⊂ p -1 (0) is less than 2. Since the energy surface p -1 (0) has dimension 3 and the minimal dimension of a non-empty K is 1, the condition means that we are less than "half-way" and K is filamentary. Trapped sets with dimensions greater than 2 are referred to as bulky.

The first part of the theorem is the main result of ( 21), see Theorem 3 there. Here we use the techniques developed in that paper to prove (1.5). For the Laplacian outside several convex obstacles on R n (satisfying a condition guaranteeing strict hyperbolicity of the flow) with Dirichlet or Neumann boundary condition, the theorem was proved by Ikawa [START_REF] Ikawa | Decay of solutions of the wave equation in the exterior of several convex bodies[END_REF], with the pressure being only implicit in the statement.For more recent developments in that setting see ( 2), [START_REF] Petkov | Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function[END_REF], and [START_REF] Nonnenmacher | Hyperbolic quantum monodromy operators[END_REF].

In particular, for z on the real axis the bound (1.5) gives

χ(P (h) -z) -1 χ L 2 →L 2 ≤ C log (1/h) h , z ∈ [-δ(ǫ), δ(ǫ)], 0 < h < h(ǫ) . (1.6) 
This result was already given in (21, Theorem 5) with a less direct proof. It has been generalized to a larger class of manifolds in ( 9) and (1.5) provides no new insight in that setting.

One of the applications of (1.6) in the case of the Laplacian is a local smoothing with a minimal loss [START_REF] Christianson | Cutoff resolvent estimates and the semilinear Schrodinger equation[END_REF] in the Schrödinger evolution (see [START_REF] Burq | Smoothing effect for Schrödinger boundary value problems[END_REF] for the original application in the setting of obstacle scattering):

∀ T > 0, ∀ ǫ > 0, ∃ C = C(T, ǫ), T 0 χe(-it∆ g )u 2 H 1/2-ǫ dt ≤ C u 2 L 2 .
One can also deduce from (1.6) a Strichartz estimate (7; 5) useful to prove existence of solutions for some related semilinear Schrödinger equations.

In the case of the Laplacian (V ≡ -1), the estimate in a strip (1.5) has important consequences regarding the energy decay for the wave equation -see (4; 8; 12) and references given there. In odd dimension n ≥ 3, it implies that the local energy of the waves decays exponentially in time. The same type of energy decay (also involving a pressure condition) has been recently obtained by Schenck in the setting of the damped wave equation on a compact manifold of negative curvature [START_REF] Schenck | Energy decay for the damped wave equation under a pressure condition[END_REF].

To prove (1.5) we use several methods and intermediate results from [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF]. Using estimates from (21, §7), we show in §3 how to obtain a good parametrix for the complex-scaled operator, which leads to an estimate for the resolvent. As was pointed out to us by Burq the construction of the parametrix for the outgoing resolvent was the, somewhat implicit, key step in the work of Ikawa (14) on the resonance gap for several convex obstacle. That insight lead us to re-examine the consequences of [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF].

We follow the notation of ( 21) with precise references given as we go along. For the needed aspects of semiclassical microlocal analysis (21, §3) and the references to [START_REF] Dimassi | Spectral Asymptotics in the semi-classical limit[END_REF] and ( 11) should be consulted.

Review of the hyperbolic dispersion estimate

The central "dynamical ingredient" of the proof is a certain dispersion estimate relative to a modification of P (h), which we will now describe.

The first modification of P (h) comes from the method of complex scaling reviewed in (21, §3.4). For any fixed sufficiently large R 0 > 0, it results in the operator P θ (h), with the following properties. To formulate them put

Ω θ def = [-δ, δ] + i[-θ/C, C] , θ = M 1 h log(1/h) . (2.1) 
Then

P θ (h) -z : H 2 h (R n ) -→ L 2 (R n ) is a Fredholm operator for z ∈ Ω θ , (2.2) ∀ χ ∈ C ∞ c (B(0, R 0 )) , χR(z, h)χ = χR θ (z, h)χ . (2.3) 
Here and below we set the following notation for the resolvents:

R • (z, h) def = (P • (h) -z) -1 , Im z > 0 ,
and (2.3) shows the meromorphic continuation of χR(z, h)χ to Ω θ , guaranteed by the Fredholm property of P θ (h) -z.

The operator P θ (h) is further modified by an exponential weight,

G w = G w (x, hD), G ∈ C ∞ c (T * R n ) , supp G ⊂ p -1 ((-2δ, 2δ)) , ∂ α G = O(h log(1/h)) ,
where δ > 0 is a fixed small number. The modified operator is obtained by conjugation:

P θ,ǫ (h) def = e -ǫG w /h P θ (h)e ǫG w /h , ǫ = M 2 θ , θ = M 1 h log(1/h) . (2.4) 
This operator has the same spectrum as P θ (h) and the following properties:

if ψ 0 ∈ S(T * R n ), supp ψ 0 ⊂ p -1 ((-3δ/2, 3δ/2)) , , if Im ψ w 0 (x, hD) P θ,ǫ (h) ψ w 0 (x, hD) ≤ C h (2.5) (2.6)
The main reason for introducing the weight G is to ensure the bound (2.5). The specific choice of G is explained in (21, §6.1). In particular G vanishes in some neibhbourhood of the trapped set K, and the operator exp(ǫG w (x, hD)) is an h-pseudodifferential operator B w (x, hD), with symbol satisfying

B ∈ h -N S δ (T * R n ) , B ↾ ∁ supp G = 1 + O S δ (h ∞ ) .
As a result, if the spatial cutoff χ is supported away from π supp G, calculus of semiclassical pseudodifferential operators ensures that χR(z, h

)χ = χR θ,ǫ (z, h)χ + O L 2 →L 2 (h ∞ ) R θ,ǫ (z, h) . (2.7) 
From now on our objective will then be to estimate the norm R θ,ǫ (z, h) L 2 →L 2 . We consider a final modification of P θ,ǫ (h) near the zero energy surface. Let ψ 0 ∈ S(T * R n ) be supported in p -1 ((-3δ/2, 3δ/2) and equal to 1 in p -1 (-δ, δ). Define

P θ,ǫ (h) def = ψ w 0 (x, hD) P θ,ǫ ψ w 0 (x, hD) , (2.8) 
and the associated propagator

U (t) def = exp{-it P θ,ǫ (h)/h} . (2.9)
The crucial ingredients in proving (1.5) are good upper bounds for the norms

U (t)ψ w (x, hD) L 2 →L 2 , on time scales 0 ≤ t ≤ M log(1/h) ,
where M > 0 is fixed but large, and ψ ∈ S(T * R n ), supp ψ ⊂ p -1 ((-δ/2, δ/2)), ψ = 1 on p -1 ((-δ/4, δ/4)) .

(2.10)

From the bound (2.5) on the imaginary part of P θ,ǫ (h), we obviously get an exponential control on the propagator:

U (t) L 2 →L 2 ≤ exp(C t), t ≥ 0 . (2.11)
The reason to conjugate P θ with the weight G w was indeed to ensure this exponential bound. Together with the hyperbolic dispersion bound (2.13), this exponential bound would suffice to get a polynomial bound O(h -L ) in (1.5), for some (unknown) L > 0. To obtain the explicit value,

-1 + c E Im z h ,
for the exponent, we need to improve (2.11) into the following uniform bound:

Lemma 2.1. Let ψ satisfy the conditions (2.10). Then, there exist h 0 , C 0 > 0 such that,

U (t)ψ w (x, hD) L 2 →L 2 ≤ C 0 , 0 ≤ t ≤ M log(1/h), h < h 0 .
(2.12)

Before proving this Lemma, we state the major consequence of our dynamical assumptions for the classical flow on K, namely its hyperbolicity and the "filamentary" nature of K (expressed through (1.4)). It is a hyperbolic dispersion estimate which was explicitly written only in a model case (21, Proposition 9.1) ( 21), but can be easily drawn from [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF]Proposition 6.3), in the spirit of (21, §6.4) As above, we take ψ as in (2.10). For any ǫ > 0 we set λ def = -P(ϕ + /2) + ǫ/2. For any 0 < h < h(ǫ), we then have

U (t)ψ w (x, hD) L 2 →L 2 ≤ C h -n/2 exp(-λt) + O(h M3 ) ,
uniformly in the time range 0 < t < M log(1/h) .

(2.13)

The constant M is arbitrarily large, and M 3 can be taken as large as we wish, provided we choose M 1 in (2.1) large enough depending on M . If the pressure P(ϕ + /2) is negative, one can take ǫ small enough to ensure λ > ǫ/2 > 0. The above estimate is then sharper than (2.12) for times beyond the Ehrenfest time

t E def = c E log(1/h), c E def = n 2λ . ( 2 

.14)

The large constant M will always be chosen (much) larger than c E .

Proof of Lemma 2.12. To motivate the proof we start with a heuristic argument for the bound (2.12). As mentioned above, the exponential bound (2.11) is due to the fact that the imaginary part of P θ,ǫ (h) can take positive values of order O(h) (see (2.5)). However, the construction of the weight G shows that outside a bounded region of phase space of the form

V pos = p -1 ((-2δ, 2δ)) ∩ T * {R1<|x|<R2} R n , the imaginary part of P θ,ǫ (h) is negative up to O(h ∞ ) errors.
The radius R 1 above is large enough, so that V pos lies at finite distance from the trapped set. As a result, any trajectory crossing the region V pos will only spend a bounded time in that region. For this reason, the propagator U (t) on a large time t ≫ 1 will "accumulate" exponential growth during a uniformly bounded time only.

We now provide a rigorous proof, using ideas and results from (21, §6.3). The phase space T * R n is split using a smooth partition of unity:

1 = b=0,1,2,∞ π b , π b ∈ C ∞ (T * R n , [0, 1]) .
These four functions have specific localization properties:

• supp π b ⊂ p -1 ((-δ, δ)) for b = 0, 1, 2 • π ∞ is localized outside p -1 ((-3δ/4, 3δ/4)) • π 1 is supported near K, in particular, its support does not intersect V pos • π 2 is supported away from K but inside {|x| < R 2 + 1}
• π 0 is supported near spatial infinity, that is on {|x| > R 2 -1} where the operator P θ,ǫ (h) is absorbing (the imaginary part of its symbol is negative).

Employing a positive (Wick) quantization scheme (see for instance [START_REF] Lerner | The Wick calculus of pseudodifferential operators and some of its applications[END_REF], and for the semiclassical setting (23, §3.3)), Π b = Op + h (π b ), we produce a quantum partition of unity

Id = b=0,1,2,∞ Π b , Π b ≤ 1 .
The evolution U (t) is then split between time intervals of length t 0 , where t 0 > 0 is large but independent of h.

Using the partition of unity, we decompose the propagator at time t = N t 0 into

U (N t 0 ) ψ w (x, hD) = b=0,1,2,∞ U b N ψ w (x, hD), where U b def = U (t 0 ) Π b .
Expanding the power, we obtain a sum of terms U bN • • • U b1 ψ w ; to understand each such term semiclassically, we investigate whether there exist true classical trajectories following that "symbolic history", namely sitting in supp π b1 at time 0, in supp π b2 at time t 0 , etc. up to time N t 0 . Since the energy cutoffs ψ and π ∞ have disjoint support, no classical trajectory can spend time in both supports. As a result, any sequence containing at least one index b i = ∞ is irrelevant (meaning that the corresponding term is O L 2 →L 2 (h ∞ )) [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF]Lemma 6.5).

Since any classical trajectory can travel in supp π 2 at most for a finite time ≤ N 0 t 0 before escaping, (21, Lemma 6.6) shows that the relevant sequences b

1 • • • b N are of the form b i = 1 for N 0 < i < N -N 0 .
They correspond to trajectories spending most of the time near K. One then has

U (N t 0 ) ψ w (x, hD) = U (N 0 t 0 ) (U 1 ) N -2N0 U (N 0 t 0 ) ψ w (x, hD) + O L 2 →L 2 (h M5 ) ,
uniformly for any 2N 0 ≤ N < M log(1/h), where M 5 > 0 is large if the previous M, M i are.

Finally, using the fact that the weight G vanishes on supp π 1 , (21, Lemma 6.3) shows that

U 1 = U (t 0 )Π 1 = U 0 (t 0 )Π 1 + O L 2 →L 2 (h ∞ ) ,
where U 0 (t 0 ) = exp(-it 0 P (h)/h) is unitary. Hence, U 1 ≤ 1 + O(h ∞ ), while U (N 0 t 0 ) is estimated using (2.11).

Resolvent estimates

We can now prove the resolvent estimate (1.5) by constructing a parametrix for P θ,ǫ (h) -z, z ∈ Ω ǫ (h) defined in the statement of the theorem. We will use the notation

ζ def = z/h
to shorten some of the formulae. We want to find an approximate solution to

(P θ,ǫ (h) -z)u = f , f ∈ L 2 (R n ) , z ∈ Ω ǫ (h) .
First, the ellipticity away from the energy surface p -1 (0) shows that, for ψ as in (2.10), there exists an operator,

T 0 = O(1) : L 2 (R n ) → H 2 h (R n ), such that (P θ,ǫ (h) -z)T 0 f = (1 -ψ w (x, hD))f + R 0 f , R 0 = O L 2 →L 2 (h ∞ ) .
To treat the vicinity of p -1 (0) we put

T 1 f = (i/h) tM 0 dt e iζt U (t) ψ w (x, hD)f , t M = M log(1/h) , which satisfies ( P θ,ǫ (h) -z) T 1 f = ψ w (x, hD)f + R 1 f , R 1 def = -e iζtM U (t M ) ψ w (x, hD) . (3.1) 
The estimate (2.13) shows that, if λ + Im ζ > ǫ/2, and for arbitrary M 4 > 0, one can choose M and M 3 large enough such that R 1 = O L 2 →L 2 (h M4 ). We can estimate the norm of T 1 by the triangle inequality,

T 1 L 2 →L 2 ≤ h -1 tM 0 e -Im ζt U (t) ψ w (x, hD) L 2 →L 2 dt , (3.2) 
and then use the bounds (2.12) for times 0 ≤ t ≤ t E and (2.13) for times t E < t ≤ t M . When Im ζ = 0, the above integral can be estimated by the integral over the interval t ∈ [0, t E ]:

Im ζ = 0 =⇒ T 1 L 2 →L 2 ≤ h -1 C 0 t E + 1 λ ≤ C h -1 log h -1 .
In the case 0 > Im ζ > -λ + ǫ/2, the dominant part of the integral comes from t = t E :

0 > Im ζ > -λ + ǫ/2 =⇒ T 1 L 2 →L 2 ≤ C ǫ h -1 e -Im ζtE = C ǫ h -1+cE Im ζ .
We rewrite (3.1) as

ψ w 0 (x, hD)(P θ,ǫ (h) -z)ψ w 0 (x, hD)T 1 f = ψ w (x, hD)f + R 1 f . From the inclusion ψ 0 | supp ψ ≡ 1, one can show (as in (21, Lemma 6.5)) that ψ w 0 (x, hD)(P θ,ǫ (h) -z)ψ w 0 (x, hD)T 1 = (P θ,ǫ (h) -z) T 1 + R 2 , R 2 = O L 2 →L 2 (h ∞ ) ,
and also that

T 1 H 2 h ≤ C T 1 L 2 . Putting T = T 0 + T 1 and R = R 0 + R 1 + R 2 , we obtain (P θ,ǫ (h) -z)T = Id +R , R = O L 2 →L 2 (h M4 ) .
This means that (P θ,ǫ (h) -z) can be inverted, with

(P θ,ǫ (h) -z) -1 L 2 →H 2 h = (1 + O(h M4 )) T L 2 →H 2 h .
The above estimates on the norms of T 0 and T 1 can be summarized by

0 ≥ Im ζ ≥ ǫ + P(-ϕ + /2) =⇒ T L 2 →H 2 h ≤ C ǫ h -1+cE Im ζ log h -1 . (3.3) 
Using (2.7), this proves the bound (1.5).

Remark. By using a sharper energy cutoff ψ h belonging to an exotic symbol class (see (27, §4)) and supported in the energy layer p -1 ((-h 1-δ , h 1-δ )) (as in (1)), the bound (2.13) is likely to be improved to U (t)ψ w h (x, hD) L 2 →L 2 ≤ Ch -(n-1+δ)/2 exp(-λt) + O(h M3 ) . (3.4) This bound becomes sharper than (2.12) around the time t ′ E = c ′ E log(1/h), where

c ′ E def = n -1 + δ 2λ < c E .
As a result, the bounds on the norm of the corresponding operator T ′ 1 are modified accordingly. At the same time, as shown in (1, Prop. 5.4), the ellipticity away from the energy surface provides an operator T ′ 0 satisfying (P θ,ǫ (h) -z)T ′ 0 = (1 -ψ w h (x, hD))

+ O L 2 →L 2 (h ∞ ) ,
and of norm T ′ 0 L 2 →L 2 = O(h -1+δ ). The norm of T ′ = T ′ 0 + T ′ 1 is still dominated by that of T ′ 1 , so that we eventually get

χ(P (h) -z) -1 χ L 2 →H 2 h ≤ C ǫ h -1+c ′ E Im z/h log(1/h) , z ∈ Ω ǫ (h) ∩ {Im z ≤ 0}.
Since it is not clear that even this bound is optimal, and that proving (3.4) would require some effort, we have limited ourselves to using the established bound (2.13).

One advantage of the approach presented in this note (compared with the method of (21, §9)) is that, to obtain the bound (1.6) we did not have to use the complex interpolation arguments of ( 4) and [START_REF] Tang | From quasimodes to resonances[END_REF]. 
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