
HAL Id: hal-00376771
https://hal.science/hal-00376771v2

Preprint submitted on 22 Apr 2009 (v2), last revised 11 Sep 2009 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semiclassical resolvent estimates in chaotic scattering
Stéphane Nonnenmacher, Maciej Zworski

To cite this version:
Stéphane Nonnenmacher, Maciej Zworski. Semiclassical resolvent estimates in chaotic scattering.
2009. �hal-00376771v2�

https://hal.science/hal-00376771v2
https://hal.archives-ouvertes.fr


SEMICLASSICAL RESOLVENT ESTIMATES IN CHAOTIC

SCATTERING

STÉPHANE NONNENMACHER AND MACIEJ ZWORSKI

1. Statement of Results

In this short note we prove a resolvent estimate in the pole free strip for certain Schrödinger-
type operators whose classical Hamiltonian flows are assumed to be hyperbolic on the
trapped set which is assumed to be sufficiently filamentary – see (1.4) for the precise con-
dition. The proof is based on the arguments of [17] and we refer to §3 of that paper for
the preliminary material and assumptions on the operator. The example to keep in mind
is the operator

(1.1) Pu = P (h)u = −h2 1√
ḡ

n∑

i,j=1

∂xj

(√
ḡgij∂xi

u
)

+ V (x) , x ∈ R
n ,

G(x)
def
= (gij(x))i,j is a symmetric positive definite matrix, ḡ

def
= 1/ detG(x), and

gij(x) = δij , V (x) = −1 , |x| > R .

We refer to [17, §3.2] for the complete set of assumptions which allow long range per-
turbations, at the expense of some analyticity assumptions standard for the definition of
resonances – see [21] and references given there. We note that for gij ≡ 1 we obtain
a class of semiclassical Schrödinger operators and for V ≡ −1, the Helmholtz equation
for a Laplace-Beltrami operator, with h = 1/λ, playing the rôle of wavelength. The eu-
clidean space can be without any changes replaced by a smooth manifold coinciding with
(Rn \B(0, R)) ⊔ · · · ⊔ (Rn \B(0, R)) outside of a compact set.

The key assumption is that the flow is hyperbolic on the trapped set at energy 0, K:

K
def
= {(x, ξ) : p(x, ξ) = 0 , exp tHp(x, ξ) 6→ ∞ , t→ ±∞} ,

p(x, ξ)
def
=

n∑

i,j=1

gij(x)ξiξj + V (x) , Hp(x, ξ)
def
=

n∑

k=1

∂ξkp ∂xk
− ∂xk

p ∂ξk ,

exp(tHp)|K is hyperbolic in the sense of [17, §3.3], dp|p−1(0) 6= 0 .

(1.2)

The Hamiltonian flow defined by Hp corresponds to the geodesic flow on S∗
R
n when V =

−1, and the hyperbolicity assumption means that for ρ ∈ K, we have a flow invariant
decomposition,

Tρp
−1(0) = RHp(ρ) ⊕ E−

ρ ⊕ E+
ρ ,

1
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into neutral (RHp(ρ)), stable (E−
ρ ), and unstable (E+

ρ ) directions – see [17, (3.11)] for the
full description.

The condition that the trapped set is “filamenentary” is formulated in terms of a topo-
logical pressure. We refer to [17, §3.3] and texts on dynamical systems [13],[25] for precise
definitions, recalling only the definition in the special, but often satisfied, case in which the
periodic orbits are dense in K. Let f ∈ C0(K). Then the pressure of f with respect to the
Hamiltonian flow on K is given by

(1.3) P(f)
def
= lim

T→∞

1

T
log

∑

γ :Tγ<T

exp

∫ Tγ

0

(exp tHp)
∗fdt ,

where the sum runs over all periodic orbits γ of periods Tγ ≤ T .

We can now formulate our result:

Theorem. Suppose that P (h) satisfies (1.1) or the more general assumptions of [17, §3.2].
Suppose also that the Hamiltonian flow (1.2) is hyperbolic on the trapped set K, and that

(1.4) P(−ϕ+/2) < 0 , ϕ+(ρ)
def
=

d

dt
(d exp tHp|E+ρ(ρ)) |t=0 , ρ ∈ K .

Then for any χ ∈ C∞
c (Rn) and ǫ > 0, there exist δ(ǫ) > 0 and h(ǫ) > 0 such that the cut-off

resolvent χ(P (h) − z)−1χ, Im z > 0, continues analytically to

Ωǫ(h)
def
= {z : Im z > h(P(−ϕ+/2) + ǫ) , |Re z| < δ(ǫ)} , 0 < h < h(ǫ) .

For z ∈ Ωǫ(h) ∩ {Im z ≤ 0}, this resolvent is polynomially bounded in h:

‖χ(P (h) − z)−1χ‖L2→L2 ≤ C(ǫ, χ) h−1+cE Im z/h log(1/h) ,

cE
def
=

n

2|P (−ϕ+/2) + ǫ/2| .
(1.5)

We used the continuity of the pressure with respect to the energy in order to simplify
the statement – see [17, Theorem 3] for a slightly more precise formulation. In dimension
n = 2 the condition (1.4) is equivalent to the statement that the Hausdorff dimension of
K ⊂ p−1(0) is less than 2. Since the energy surface p−1(0) has dimension 3 and the minimal
dimension of a non-empty K is 1, the condition means that we are less than “half-way”
and K is filamentary. Trapped sets with dimensions greater than 2 are referred to as bulky.

The first part of the theorem is the main result of [17], see Theorem 3 there. Here we
use the techniques developed in that paper to prove (1.5). For −∆ outside several convex
obstacles (satisfying a condition guaranteeing strict hyperbolicity of the flow) with Dirichlet
or Neumann boundary condition, the theorem was proved by Ikawa [12], with the pressure
being only implicit in the statement which gave an explicit condition on distances and sizes
of the obstacles. For more recent developments in that setting see [2],[18], and [15].
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In particular, for z on the real axis the bound (1.5) gives

(1.6) ‖χ(P (h) − z)−1χ‖L2→L2 ≤ C
log (1/h)

h
, z ∈ [−δ(ǫ), δ(ǫ)], 0 < h < h(ǫ) .

This result was already given in [17, Theorem 5] with a less direct proof. It has been
generalized to a larger class of manifolds in [7] and (1.5) provides no new insight in that
setting. One of the applications is local smoothing with a minimal loss [5] (see [3] for the
original application in the setting of obstacle scattering) and a recent no loss Strichartz
estimate [4] under the assumption (1.4). The advantage of having (1.5) lies in applications
to the energy decay for the wave equation – see [3, 6, 10] and references given there. That
is particularly important in view of the recent results of Schenck on the use of pressure
estimates in the setting of the damped wave equation [20].

To prove (1.5) we show in §3 that the estimates obtained in [17, §7] can be used to
obtain a good parametrix for the complex-scaled operator, which leads to an estimate for
the inverse. As was pointed out to us by Burq the construction of the parametrix for
the outgoing resolvent was the, somewhat implicit, key step in the work of Ikawa [12] on
the resonance gap for several convex obstacle. That insight lead us to re-examine the
consequences of [17].

We follow the notation of [17] with precise references given as we go along. For the
needed aspects of semiclassical microlocal analysis [17, §3] and the references to [8] and [9]
should be consulted.

Acknowledgements. The first author was partially supported by the Agence Nationale
de la Recherche under the grant ANR-05-JCJC-0107-01, and the second author by the
National Science Foundation under the grant DMS 0654436. In addition to Nicolas Burq,
we would like to thank Nalini Anantharaman and Jared Wunsch for helpful discussions
related to [17].

2. Review of the hyperbolic dispersion estimates

The dispersion estimate we need is proved in [17] for a modified operator which we will
now describe.

The first modification of P (h) comes from the method of complex scaling reviewed in
[17, §3.4]. For any fixed sufficiently large R0 > 0, it results in the operator Pθ(h), with the
following properties. To formulate them put

(2.1) Ωθ
def
= [−δ, δ] + i[−θ/C, C] , θ = M1h log(1/h) .

Then

Pθ(h) − z : H2
h(R

n) −→ L2(Rn) is a Fredholm operator for z ∈ Ωθ,(2.2)

∀χ ∈ C∞
c (B(0, R0)) , χR(z, h)χ = χRθ(z, h)χ .(2.3)
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Here and below we set

R•(z, h)
def
= (P•(h) − z)−1 , Im z > 0 ,

and (2.3) shows the meromorphic continuation of χR(z, h)χ to Ωθ, the meromorphy being
guaranteed by the Fredholm property of Pθ(h) − z.

The operator Pθ(h) is further modified by an exponential weight, Gw = Gw(x, hD),

G ∈ C∞
c (T ∗

R
n) , suppG ⊂ p−1((−2δ, 2δ)) , ∂αG = O(h log(1/h)) ,

where δ > 0 is a fixed number:

(2.4) Pθ,ǫ(h)
def
= e−ǫG

w/hPθ(h)e
ǫGw/h , ǫ = M2θ , θ = M1h log(1/h) .

The new operator has the same spectrum as Pθ(h) and the following properties:

Imψw0 (x, hD)Pθ,ǫ(h)ψ
w
0 (x, hD) ≤ C h(2.5)

if suppψ0 ⊂ p−1((−3δ/2, 3δ/2)) , ψ0 ∈ S(1) ,

‖ exp(±ǫGw/h)‖L2→L2 = O(h−CM2) .(2.6)

The main reason for introducing the weight G is to ensure the bound (2.5). The specific
choice of G is explained in [17, §6.1]. In particular G vanishes in some neibhbourhood of
the trapped set K, and

exp(tGw(x, hD)) = Bw
t (x, hD) , Bt ∈ h−NSδ(T

∗
R
n) , Bt|∁suppG = 1 + OSδ

(h∞) .

Hence, if the spatial cutoff χ is supported away from π suppG, calculus of semiclassical
pseudodifferential operators ensures that

(2.7) χR(z, h)χ = χRθ,ǫ(z, h)χ + OL2→L2(h∞)‖Rθ,ǫ(z, h)‖ ,
so our objective is to estimate ‖Rθ,ǫ(z, h)‖L2→L2.

We consider a final modification of P (h) near the energy surface. Let ψ0 ∈ S(1) be
supported in p−1((−3δ/2, 3δ/2) and equal to 1 in p−1(−δ, δ). Define

(2.8) P̃θ,ǫ(h)
def
= ψw0 (x, hD)Pθ,ǫ ψ

w
0 (x, hD) ,

and the modified propagator [17, (6.9)]:

(2.9) U(t)
def
= exp{−itP̃θ,ǫ(h)/h} .

The crucial ingredients in proving (2.13) are the good upper bounds for the norms

‖U(t)ψw(x, hD)‖L2→L2 , 0 ≤ t ≤M log(1/h) ,

where M > 0 is fixed but large, and

(2.10) ψ ∈ S(1), suppψ ⊂ p−1((−δ/2, δ/2)), ψ = 1 on p−1((−δ/4, δ/4)) .

From the bound (2.5) on the imaginary part of the modified Hamiltonian, we get an expo-
nential control on the propagator:

(2.11) ‖U(t)‖L2→L2 ≤ exp(C t), t ≥ 0 .
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The reason to conjugate Pθ with the weight Gw was indeed to ensure this exponential
bound. Together with the hyperbolic bound (2.13), this exponential bound would suffice
to get a polynomial bound O(h−L) in (1.5), for some (unknown) L > 0. To obtain the
explicit value,

−1 +
cE Im z

h
,

for the exponent, we need to improve (2.11) into the following uniform bound:

Lemma 2.1. Let ψ satisfy the conditions (2.10). Then, there exists a constant C0 > 0
such that, for any small enough h and any time 0 ≤ t ≤M log(1/h),

(2.12) ‖U(t)ψw(x, hD)‖L2→L2 ≤ C0 .

Before proving this Lemma, we state the major consequence of the hyperbolic dispersion

estimate [17, Proposition 6.3], in the spirit of [17, §6.4] (see also [17, Proposition 9.1] for a
simpler case). As above, we take ψ as in (2.10). For any ǫ > 0 and 0 < h < h(ǫ), we then
have

‖U(t)ψw(x, hD)‖L2→L2 ≤ C h−n/2 exp(−λt) + O(hM3) ,

λ
def
= −P(ϕ+/2) + ǫ/2 ,

(2.13)

uniformly in the time range
0 < t < M log(1/h) .

We have used the notation of (1.4), M is arbitrarily large, and M3 can be taken as large
as we wish, provided we choose M1 in (2.1) large enough depending on M .

If the pressure P(ϕ+/2) is negative, one can take ǫ small enough to ensure λ > ǫ/2 > 0.
The above estimate is then sharper than (2.12) for times beyond the Ehrenfest time

(2.14) tE
def
= cE log(1/h), cE

def
=

n

2λ
.

The large constant M will always be chosen (much) larger than cE .

Proof of Lemma 2.12. To motivate the proof we start with a heuristic argument for the
bound (2.12). As mentioned above, the exponential bound (2.11) is due to the fact that the

imaginary part of the operator P̃θ,ǫ(h) can take positive values of order O(h) (see (2.5)).
However, the construction of the weight G shows that outside a bounded region of phase
space of the form

Vpos = p−1((−2δ, 2δ)) ∩ T ∗
{R1<|x|<R2}R

n ,

the imaginary part of P̃θ,ǫ(h) is negative up to O(h∞) errors.

The radius R1 above is large enough, so that Vpos lies finite distance from the trapped
set. As a result, any trajectory crossing the region Vpos will only spend a bounded time in
that region. For this reason, the propagator U(t) on a large time t≫ 1 will “accumulate”
exponential growth during a uniformly bounded time only.
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We now provide a rigorous proof, using ideas and results from [17, §6.3]. The phase
space T ∗

R
n is split using a smooth partition of unity:

1 =
∑

b=0,1,2,∞

πb , πb ∈ C∞(T ∗
R
n, [0, 1]) .

These four functions have specific localization properties:

• supp πb ⊂ p−1((−δ, δ)) for b = 0, 1, 2
• π∞ is localized outside p−1((−3δ/4, 3δ/4))
• π1 is supported near K, in particular, its support does not intersect Vpos

• π2 is supported away from K but inside {|x| < R2 + 1}
• π0 is supported near spatial infinity, that is on {|x| > R2 − 1} where the operator

P̃θ,ǫ(h) is absorbing (the imaginary part of its symbol is negative).

Employing a positive (Wick) quantization scheme (see for instance [14], and for the
semiclassical setting [19, §3.3]), Πb = Op+

h (πb), we produce a quantum partition of unity

Id =
∑

b=0,1,2,∞

Πb , ‖Πb‖ ≤ 1 .

It was the positive quantization that ensured ‖Πb‖ ≤ 1 above.

The evolution U(t) is then split between time intervals of length t0, where t0 > 0 is large
but independent of h. Using the partition of unity, we decompose the propagator at time
t = Nt0 into

U(Nt0)ψ
w(x, hD) =

( ∑

b=0,1,2,∞

Ub
)N

ψw(x, hD), where Ub
def
= U(t0) Πb .

Expanding the power, we obtain a sum of terms UbN · · ·Ub1ψw and we will see that many
of these terms are negligible.

Taking into account the energy cutoff ψ ∈ C∞(p−1((−δ/2, δ/2))) and assuming N ≤
C log(1/h), it is shown in [17, Lemma 6.5] that any term containing at least one factor U∞

(localized outside the energy shell) is OL2→L2(h∞).

Using the fact that any classical trajectory can travel in supp π2 at most for a finite time
≤ N0t0, [17, Lemma 6.6] shows that the relevant sequences b1 · · · bN are of the form

bi = 1 for N0 < i < N −N0 .

They correspond to trajectories spending most of the time near K. Then [17, Lemma 6.5]
shows that

U(Nt0)ψ
w(x, hD) = U(N0t0) (U1)

N−2N0 U(N0t0)ψ
w(x, hD) + OL2→L2(hM5) ,

uniformly for any 2N0 ≤ N < M log(1/h), where M5 > 0.

Finally, [17, Lemma 6.3] shows that

U1 = U(t0)Π1 = U0(t0)Π1 + OL2→L2(h∞) ,
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where U0(t0) = exp(−it0P (h)/h) is unitary. Hence, ‖U1‖ ≤ 1 + O(h∞), while ‖U(N0t0)‖
is estimated using (2.11).

3. Resolvent estimates

We can now prove the resolvent estimate (1.5) by constructing a parametrix for Pθ,ǫ(h)−z,
z ∈ Ωǫ(h) defined in the statement of the theorem. We will use the notation

ζ
def
= z/h

to shorten some of the formulæ. We want to find an approximate solution to

(Pθ,ǫ(h) − z)u = f , f ∈ L2(Rn) , z ∈ Ωǫ(h) .

First, the ellipticity away from the energy surface p−1(0) shows that, for ψ as in (2.10),
there exists an operator, T0 = O(1) : L2(Rn) → H2

h(R
n), such that

(Pθ,ǫ(h) − z)T0f = (1 − ψw(x, hD))f +R0f , R0 = OL2→L2(h∞) .

To treat the vicinity of p−1(0) we put

T1f = (i/h)

∫ tM

0

dt eiζtU(t)ψw(x, hD)f , tM = M log(1/h) ,

which satisfies

(3.1) (P̃θ,ǫ(h) − z)T1f = ψw(x, hD)f +R1f , R1
def
= −eiζtM U(tM)ψw(x, hD) .

The estimate (2.13) shows that, if λ+Im ζ > ǫ/2, and for arbitrary M4 > 0, one can choose
M and M3 large enough such that R1 = OL2→L2(hM4). We can estimate the norm of T1 by
the triangle inequality,

(3.2) ‖T1‖L2→L2 ≤ h−1

∫ tM

0

e− Im ζt ‖U(t)ψw(x, hD)‖L2→L2 dt ,

and then use the bounds (2.12) for times 0 ≤ t ≤ tE and (2.13) for times tE < t ≤ tM .

When Im ζ = 0, the above integral can be estimated by the integral over the interval
t ∈ [0, tE]:

Im ζ = 0 =⇒ ‖T1‖L2→L2 ≤ h−1
(
C0 tE +

1

λ

)
≤ C h−1 log h−1 .

In the case 0 > Im ζ > −λ+ ǫ/2, the dominant part of the integral comes from t = tE :

0 > Im ζ > −λ + ǫ/2 =⇒ ‖T1‖L2→L2 ≤ Cǫh
−1 e− Im ζtE = Cǫ h

−1+cE Im ζ .

Now, (3.1) reads

ψw0 (x, hD)(Pθ,ǫ(h) − z)ψw0 (x, hD)T1f = ψw(x, hD)f +R1f .

From the inclusion ψ0|suppψ ≡ 1, one can show (as in [17, Lemma 6.5]) that

ψw0 (x, hD)(Pθ,ǫ(h) − z)ψw0 (x, hD)T1 = (Pθ,ǫ(h) − z)T1 +R2 , R2 = OL2→L2(h∞),
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and also that

‖T1‖H2
h
≤ C ‖T1‖L2 .

Putting T = T0 + T1 and R = R0 +R1 +R2, we obtain

(Pθ,ǫ(h) − z)T = Id +R , R = OL2→L2(hM4) .

This means that (Pθ,ǫ(h) − z) can be inverted, with

‖(Pθ,ǫ(h) − z)−1‖L2→H2
h

= (1 + O(hM4))‖T‖L2→H2
h
.

The above estimates on the norms of T0 and T1 can be summarized by

(3.3) 0 ≥ Im ζ ≥ ǫ+ P(−ϕ+/2) =⇒ ‖T‖L2→H2
h
≤ Cǫ h

−1+cE Im ζ log h−1 .

Using (2.7), this proves the bound (1.5). �

Remark. By using a sharper energy cutoff ψh belonging to an exotic symbol class (see
[23, §4]) and supported in the energy layer p−1((−h1−δ, h1−δ)) (as in [1]), the bound (2.13)
is likely to be improved to

(3.4) ‖U(t)ψwh (x, hD)‖ ≤ Ch−(n−1+δ)/2 exp(−λt) + O(hM3) .

This bound becomes sharper than (2.12) around the time t′E = c′E log(1/h), where

c′E
def
=
n− 1 + δ

2λ
< cE .

As a result, the bounds on the norm of the corresponding operator T ′
1 are modified accord-

ingly. At the same time, as shown in [1, Prop. 5.4], the ellipticity away from the energy
surface provides an operator T ′

0 satisfying

(Pθ,ǫ(h) − z)T ′
0 = (1 − ψwh (x, hD)) + OL2→L2(h∞) ,

and of norm ‖T ′
0‖L2→H2

h
= O(h−1+δ). The norm of T ′ = T ′

0 + T ′
1 is still dominated by that

of T ′
1, so that we eventually get

‖χ(P (h) − z)−1χ‖L2→H2
h
≤ Cǫ h

−1+c′E Im z/h log(1/h) , z ∈ Ωǫ(h) ∩ {Im z ≤ 0}.

Since it is not clear that even this bound is optimal, and that proving (3.4) would require
some effort, we have limited ourselves to using the established bound (2.13).

One advantage of the approach presented in this note (compared with the method of [17,
§9]) is that, to obtain the bound (1.6) we did not have to use the complex interpolation
arguments of [3] and [24].
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