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The fatigue crack initiation phenomenon in metals is essentially associated to the gliding of

dislocations and the creation of slip bands which characterize irreversible damaging mech-

anisms at the grains scale. A multiscale approach is then interesting to establish a link

between the scale of the structure submitted to cyclic loading and the scale of damage.

Some stress based criteria were previously proposed in this framework based on the shake-

down theories, as Dang Van or Papadopoulos ones. The same approach is developed in this

paper in the usual Thermodynamics of Irreversible Processes (TIP) framework in order to

study the link between dissipation, shakedown and fatigue damage. Some recent results

in metals fatigue coming from infrared thermography experiments are then interpreted

through the TIP; the proposed framework seems to be particularly relevant to define a

more general feature for the study of the fatigue phenomenon.

1. Introduction

It is now well known that the fatigue phenomenon in

metals is essentially associated to the gliding of dislocations

and the creation of slip bands which characterize irrevers-

ible damaging mechanisms at the grains scale. A review of

thesemechanismscanbe founded forexample, in themono-

graphof Suresh (1998), in the pioneeringworks ofMughrabi

(1983), in the papers of Magnin et al. (1984a,b) or in the re-

cent synthesis of Lukas and Kunz (2001, 2002, 2004).

The behavior of mono- and polycrystals is dependent of

the loading level and other factors such as environment,

temperature, . . .. For a Representative Elementary Volume

of material (REV), they can be summarized using the fol-

lowing scheme:

� If the loading level is very low, only a single slip system

can be considered in each grain with a shear stress

below the resolved yield stress on this slip plane. An

elastic response is therefore obtained in all the grains
and no slip bands can be observed. The macroscopic

response, on the REV boundaries, is then also elastic.

� If the loading level is increased but is still low, a single slip

system can be considered in each grain. The shear stress

might exceeds resolved yield stress in some grains pos-

sessing a properly oriented crystallographic system with

respect to the active slip system and the loading direc-

tion. In such grains, the mechanisms of dislocations glid-

ing and slip bands creation can be activated. At the grain

surface, such bands can be observed. This heterogeneous

plastic behavior, depending on the grains orientations,

has recently been quantified by Korsunsky et al. (2004)

by diffraction measurements. Some observed grains

display a quasi elastic response while others cyclically

plastify. However, if this plastic behavior is confined in

a few grains, the macroscopic response, on the REV

boundaries, remains quasi-elastic.

� If the loading level becomes more important, it can induce

two effects. On the one hand, the quantity of plastic

grains becomes more important Sauzay, 2006 and, on

the other hand, multiple slip systems can be activated

in the same grain. Plastic behavior is then no more con-

fined, is generalized in all the REV, and the macroscopic

behavior becomes elastoplastic.

The three schemes correspond to three different fatigue

domains, which can easily be described by a Wöhler’s
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curve, schematically represented on the Fig. 1. The first

case, presenting an elastic shakedown at all physical scales,

can be easily associated to infinite lifetimes and unlimited

endurance. The second case, corresponding to a localized

cyclic plastic behavior in some well oriented grains, con-

ducts to High Cycle Fatigue (HCF) and a limited endurance.

Finally, the last case, associated to a generalized plastic

behavior in the REV, conducts to Low Cycle Fatigue (LCF)

phenomenon. Historically, in the case of HCF, as the macro-

scopic behavior of the REV and, as a consequence, that of

the complete structure, remains elastic, fatigue criteria

were based on the stress tensor. This implies the expres-

sions of Gough and Pollard (1935), Crossland (1956) or

Sines and Waisman (1959). In the case of LCF, as the mac-

roscopic behavior of the REV and that of the complete

structure can be considered as completely plastic, fatigue

criteria were based on the plastic or total strain tensors.

This conducts, for example, to the pioneering approach of

Manson (1953) and Coffin (1953) or the proposition of

Smith et al. (1970). However, as reminded, the fatigue

mechanisms are the same in all the cases, the fatigue do-

mains depending essentially on the spatial expansion of

the plasticity. Therefore, these domains can rather be re-

lated to different scales: the grain in a REV in HCF and

the complete material volume in LCF.

In order to establish a common approach in HCF and

LCF, it is proposed to analyze the link between the dissipa-

tion generated by the cyclic plastic activity and the crack

initiation; this conducts to consider this dissipation as a

damage indicator, as proposed a long time ago by Halford

(1966). It is therefore proposed here to revisit the historical

way, started by Farren and Taylor (1925) by emphasizing

the importance of the plastic work during the metal defor-

mation under monotonic loading. These authors measured

the mechanical energy dissipated during a quasi-static ten-

sile test, as well as the ratio between the energy stored in

the material and the one dissipated by heat production and

leading to a temperature variation of the specimen. More

recently,Chrysochoos (1985) proposed a complete thermo-

dynamical framework in order to describe this thermome-

chanical coupling and quantified the evolution of the

temperature by infrared thermography. In the case of cyc-

lic loadings, a first major contribution is actually due to

Dillon (1962a,b, 1963, 1966) in a series of experiments

on the cyclic torsion of copper and aluminum tubes. In

Dillon (1963), one of his major observations is that the

thermoplastic coupling during a cyclic torsion test induces

a positive dissipation which conducts to a constant in-

crease of the temperature, as displayed in Figs. 2 and 3.

At this point, no particular link is drawn between the

observations and the fatigue phenomenon. In the fatigue

framework, a particularly exhaustive study of Stärk

(1980) may be stated, that established correlations be-

tween dissipative domains and loading levels for a stain-

less steel and a gray cast iron in HCF. His observations on

cyclic loading can be summarized as follows:

Nomenclature

C;P respectively, elastic moduli and Hill’s forth rank
tensors

I;J;K forth rank identity tensors
R;r macroscopic, respectively, mesoscopic stress

tensors
E; e macroscopic, respectively, mesoscopic total

strain tensors
Ep

; ep macroscopic, respectively, mesoscopic plastic
strain tensors

Ee
; ee macroscopic, respectively, mesoscopic elastic

strain tensors
x mesoscopic hardening stress tensor
I second rank identity tensor
q mesoscopic residual stress tensor
U intrinsic dissipation
dp plastic dissipation
Dwp;Wpð1Þ plastic dissipated energy, respectively, per

cycle and cumulated
s;rh mesoscopic respectively, resolved shear stress

and hydrostatic pressure

k radius of the hypersphere enclosing the devia-
toric stress path

ai; bi material dependent HCF and LCF criteria
parameters

rD;rDt ;rDb endurance limits, specifically in torsion and
bending

ry mesoscopic yield stress
k;l Lamé’s parameters
E;K; m Young’s and bulk moduli and Poisson’s ratio
h mesoscopic hardening modulus
a; b parameters related to the homogenization

scheme
fv volumic fraction of plastic inclusions
j;a;Cv;q thermal conductivity and expansion, specific

heat and density
seq constant representativeof the thermal exchanges
T absolute temperature
r external heat source
cp plastic multiplier
N;Nf number of cycles, in particular to failure

σD

Δσ

N r

LCF HCF

unlimited endurancelimited endurance

fatigue limit

10  to 10  cycles 10  to 10  cycles4 765
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Fig. 1. Schematic representation of the Wöhler’s curve defining the

different fatigue domains (HCF and LCF).
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� An asymptotic temperature state is reached up to a cer-

tain loading level, as illustrated on Fig. 4. This is in accor-

dance with the remark made previously by Dillon

(1962a,b, 1963, 1966). The fatigue limit of this particular

steel is about 310 MPa (Stärk, 1980) and the asymptotic

state is observed when the loading is below this limit.

� The asymptotic thermal field in the specimen is loading

dependent (see Fig. 5). For low levels of applied loading,

the temperature remains close to the initial temperature

and almost uniform. This can be explained by localized

plasticity in a few spatially spreaded grains, as previ-

ously described. The temperature field becomes uniform

by heat conduction and the main heat exchanges with

the environment are realized by convection. For high

level of applied loadings, a parabolic temperature distri-

bution is observed in the specimen. In this case, the plas-

ticity is more extended spatially and creates an almost

uniform heat source. The main exchanges with the envi-

ronment are then realized through convection and the

grip systems of specimen. This difference also explains

the evolutions observed on Fig. 4: below the fatigue

limit, in a few cycle, a thermal equilibrium is obtained

between the heat sources and the thermal environment,

which is not the case as soon as the loading exceeds the

fatigue limit.

Stärk’s analysis presents a first direct link between

fatigue limit and thermal dissipation. However, the first

extended discussion of the phenomena within a thermody-

namical framework was certainly proposed by Luong

(1995, 1998) and enables the determination of the fatigue

limit by using infrared thermography technique, as illus-

trated in Fig. 6 coming from Luong (1998). This result is

obtained for an XC55 steel specimen in HCF and shows that
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Fig. 2. Evolution of the temperature in the first cycles for an aluminum

tube under cyclic torsion (Dillon, 1963).
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Fig. 3. Evolution of the temperature for an aluminum tube under cyclic

torsion (Dillon, 1963).
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Fig. 4. Evolution of the temperature for a stainless steel (X10CrNiMoTi 18

10) specimen under reversed tension. The fatigue limit of the steel

considered here is about 310 MPa (Stärk, 1980).
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Fig. 5. Thermal gradients along the specimen length for a reversed

tension test under different stress amplitude (Stärk, 1980). The material is

a stainless steel (X10CrNiMoTi 18 10).
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the change in the dissipative behavior corresponds to the

transition between unlimited and limited endurance in

the fatigue life. The fatigue limit is equal to 399 MPa and

is estimated by using a Staircase method. For Luong, in a

(logðDTÞ;ra) diagram, it corresponds approximately to

the intersection between both dotted lines on Fig. 6.

Following this paper, numerous studies were realized to

verify this relation on different materials: Fargione et al.

(2002) tested different steels and Krapez and Pacou

(2002), several aluminum alloys and steels. Recently,

Liaw’s team withdraw the Luong’s framework to the study

of many aeronautical alloys (Jiang et al., 2001a,b, 2004) in

HCF and LCF. Their observations are totally in accordance

with Stärk’s one (Stärk, 1980) (thermal gradients, cyclic

thermal behavior,. . .). A comparison of such analysis can

be realized, based for example on Luong (1998) and Cugy

and Galtier (2002) results on three different steels. This

comparison is presented on Fig. 7, in a (DT;ra) diagram.

The stress range has been divided here by the correspond-

ing fatigue limit (399 MPa for the XC55 steel, 235 MPa for

the HR55 and S355 steels). It exhibits different thermal

behaviors: S355 dissipated heat below the fatigue limit

which is quite not the case for XC55 and HR55. Cugy and

Galtier (2002) underline that the microstructures of S355

and HR55 are totally different: S355 is made of ferrite for

94% and pearlite for 6% as HR55 is made of ferrite for

40% and bainite for 60%. Therefore, microstructure seems

to have an important effect on the dissipative behavior

below and above the fatigue limit, even if no further dis-

cussion on this particular point was pointed out in the

literature. A more formal discussion associating fatigue

and temperature variations can be founded in the recent

works of Boulanger (2004) and Doudard (2004). The dis-

cussed papers show the link between the fatigue phenome-
non, whether in HCF or LCF and the mechanical dissipation.
Moreover, this link seems to be cast within an elastoplastic
thermodynamical framework.

The objective of this work is to make another step to-

ward the construction of a unified framework in fatigue

based on energy dissipation and the present work will

focus on HCF. In this article, the link between elastic shake-

down, fatigue limit and dissipated energy is established,

based on a brief description of the Dang Van’s multiscale

approach in HCF. Next, the coupled heat equation is pre-

sented, as derived in the framework of the continuum ther-

modynamics at the mesoscopic scale and established for

different self-consistent homogenization schemes. Then, a

numerical simulation of the temperature evolution, under

cyclic loading, at the macroscopic scale is compared to re-

cent experimental results of Doudard et al. (2005) and

Boulanger etal. (2004) and the validity of the homogeniza-

tion schemes is discussed. The HCF mesoscopic approach

enables an extension of the concepts to LCF fatigue which

will further be addressed.

2. A dissipative framework in fatigue

2.1. Assumptions of the Dang Van and Papadopoulos HCF
model

A straightforward link between mechanical dissipation

and fatigue damage stems from the high cycle metal fati-

gue theory of Orowan (1939), and the followers model of

Dang Van (1973) and Papadopoulos (1987). Starting from

the observation that the cyclic evolution of isolated grains

in polycrystals submitted to complex loadings can thereby

be resumed by the creation of localized slip bands, a cyclic

plastic activity in slip bands and the nucleation of micro-

cracks until the creation of a macrocrack, Dang Van

(1973) and Papadopoulos (1987) based their models on

the next framework of assumptions: (i) the fatigue damage

is controlled by mechanisms at the grain scale and there-

fore a description at this mesoscopic scale is necessary;

(ii) at this scale, most of the metallic materials are aggre-

gates of cubic crystals with a random distributed crystallo-

graphic orientations, which can be considered isotropic

and homogeneous at the macroscopic scale; (iii) among

all grains and possible slip planes, only some well oriented

slip planes, maximizing the shear stress for a given loading

path, will develop plasticity and create localized slip bands

inducing crack initiation; (iv) below the fatigue limit,
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Fig. 6. Results obtained by Luong (1995, 1998), showing the change in

dissipative regimes before and after the fatigue limit for a XC55 steel

specimen under rotative bending. The fatigue limit is equal to 399 MPa

and is estimated by using a Staircase method.
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microscopic plastic strains homogenize to negligible mac-

roscopic plastic strains, which matches the fact that mac-

roscopic stresses are small with respect to the yield limit;

(v) mesoscopic plasticity is determined by isotropic and

kinematic hardening rules and the evolution of the meso-

scopic yield limit ss will initially evolves and then saturates

under an imposed cyclic strain loading, as illustrated on

Fig. 8. This evolution is inspired by the results of Winter

(1974) who associates the saturation with the creation of

Persistent Slip Bands (PSB). This idea is then implicitly gen-

eralized by Dang Van (1973) and Papadopoulos (1987) to

many other materials which do not exhibits such particu-

lar three-dimensional dislocation structures, but in which

development of slip bands of any kind is observed under

cyclic loading. As a consequence, the natural framework

of the multiscale approach proposed by Dang Van et al.

(Dang Van, 1973; Papadopoulos, 1987), is a representative

elementary volume (REV) with an elastic macroscopic

behavior and some plasticity localized only in some grains.

The simplest mesoscopic model is a plastic Eshelby inclu-

sion in an elastic matrix. As described before, the behavior

of the plastic inclusion can be resumed to a two stage evo-

lution of its yield limit (see Fig. 8). Then, the macro- and

mesoscopic stress tensors denoted by R and r, as well as

the macro- and mesoscopic strain tensors denoted by E

and e are linked using a homogenization scheme (Bornert

et al., 2001a). One possible and well adapted is the Self-

Consistent (SC) scheme of Kröner, detailed in Appendix A.

The unlimited endurance condition, i.e. conducting to infi-

nite lifetimes, corresponds then, in this framework (Dang

Van, 1973; Papadopoulos, 1987), to an elastic shakedown

state in the plastic inclusion. However, since the works of

Dang Van (1973) and Papadopoulos (1987), many investi-

gations were realized on the link between crack initiation

and the concept of fatigue limit: the endurance limit is

rather close to the stress amplitude below which a short

crack initiated in an individual grain is unable to propagate

toward the neighboring grains. Then, the definition of the

endurance limit proposed by Dang Van (1973) and Papad-

opoulos (1987), corresponding to the non initiation of

cracks in individual grains, is much more a lower bound

of the real endurance limit of the material.

The Dang Van and the Papadopoulos criteria are both

based on a Lin–Taylor homogenization assumption (Lin,

1957; Taylor, 1938). The Dang Van criterion is defined in

terms of the hydrostatic pressure, rh, and of the mesoscop-

ic resolved shear stress s. The Papadopoulos criterion

depends also on p and on the radius k of the smallest

hypersphere enclosing the deviatoric stress path. In this

last case, the crack nucleation condition is deduced from

the shakedown theorem of Mandel et al. (1977). These

criteria can be written as:

max
n;t

½ksðn; tÞ � smðnÞk þ advrhðtÞ� 6 bdv Dang Van ð1Þ

max
t

ðkðtÞ þ aparhðtÞÞ 6 bpa Papadopoulos ð2Þ

The material parameters adv;apa; bdv and bpa are defined in

terms of the endurance limits in reversal torsion tests rDt

and bending experiments rDb. n is the normal to the shear

plane. smðnÞ is the vector which points to the center of the

smallest circle circumscribing the path described by the tip

of the shear stress vector sðn; tÞ on the plane defined by the

unit normal vector n. In the Eq. (2), kðtÞ is defined as:

kðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
ðsðtÞ � smÞ : ðsðtÞ � smÞ

r

where sm is the mean stress deviator, which corresponds to

the co-ordinates of the center of the smallest hyper-sphere

enclosing the path described by the stress deviator sðtÞ.
Let us only remark that a shear term in both expressions

assures that no microcracks are formed in the slip bands.

Generalizing the observations of Winter (1974) that PSB’s

begin to appear when the stress amplitude reaches a limit

value denoted by ks, a crack initiation criterion is defined

by Papadopoulos (1987) as:

k� ¼ max
t

kðtÞ 6 ks

The ks limit value is larger than the yield limit ry of the

crystal (ks > ry), but smaller than the macroscopic yield

limit and the endurance limit. One can note that the pres-

sure term takes into account the local grain distribution

and assure a good match with experiments but is not de-

duced from a precise homogenization reasoning as the

shear term.

2.2. Shakedown, dissipation and HCF

The plasticity developed in some grains will produce an

instantaneous mesoscopic plastic dissipation dp. By using

the previous framework corresponding to the Section 2.1,

dp can be computed from:

dp ¼ r : _ep ð3Þ

As a consequence, the Papadopoulos fatigue criterion can

be redefine in terms of dissipation. A sketch of the ideas

presented next is drawn on Fig. 9.

(1) If k� 6 ry, with ry the yield limit of the grain, no

plasticity occurs at the mesoscopic scale. As a conse-

quence a fully elastic behavior is assured and no

crack initiation will occur. Moreover:

k� 6 ry if and only if dp ¼ 0 ð4Þ

saturation 

τ 

Σ|γ | 
p 

τ s 

τ y,0

Fig. 8. Schematic hardening curve of a monocrystal under cyclic loading.

s is the resolved shear stress on the slip plane.
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(2) If ry 6 k� 6 ks, the grain plastifies but reaches an

elastic shakedown state and, therefore, no crack ini-

tiation can be observed. As an elastic shakedowned

state is attained, the shakedown theorem assure that

the cumulated plastic work Wpð1Þ is bounded, as

demonstrated by Nguyen (2003):

Wpð1Þ ¼

Z 1

0

rðtÞ : _epðtÞdt ¼
Z 1

0

dpðtÞdt < 1

Therefore dp leads to zero with the number of load-

ing cycles and it can be stated that:

ry 6 k� 6 ks if and only if lim
t!1

dpðtÞ ¼ 0 ð5Þ

(3) ks < k�, elastic shakedown is not reached and a crack

will initiate in one of the slip bands of the misori-

ented grains. The material assumptions of the fati-

gue criterion imply that the isotropic hardening is

saturated at ks and only kinematic hardening is acti-

vated. Moreover, applying Halphen’s shakedown

theorem for elastoplastic structures with kinematic

hardening Halphen (1976) indicates that under a

periodic loading, the structure will have a periodic

solution for stress and strain tensors. As elastic

shakedown is not possible anymore, the misoriented

grain reaches a plastic shakedown state. Therefore,

in this case, it can simply be proved that the plastic

work over a loading cycle:

Dwp ¼

Z

cycle
dpdt

is constant. Then,

k� > ks if and only if lim
N!þ1

Dwp ¼ constant

ð6Þ

The three types of evolution of the plastic dissipation:

(4)–(6) are schematically represented on Figs. 9 and 10.

The plots represent the evolution of the cumulated plastic

work Wpð1Þ versus the number of cycles of a fatigue test

and the plastic work per cycle Dwp versus the applied load

represented by k�, respectively. Fig. 10 shows that the

stabilized dissipative regime depends on the loading: up

to a critical load, denoted ks and related to the definition

of shakedown in the fatigue criterion, no dissipation can

be observed. As loading is increased, a plastic shakedown

regime is obtained which conducts to limited endurance

or low cycle fatigue.

Both Figs. 9 and 10 relate directly the fatigue regime

with different plastic dissipative states. Unfortunately, di-

rect experimental measurements of the plastic dissipation

at the mesoscopic scale are not possible. However, differ-

ent indirect measurement techniques can be employed;

for example, measuring the plastic dissipation through

the temperature increase. Therefore, the next section will

present the heat Eq. (7), as deduced from the Thermody-

namics of Irreversible Processes (TIP), which exhibits a

coupling between temperature and plastic dissipation

(see Appendix B). Different steps will be discussed and

related to experimental results.

3. A thermoplastic two scales model

3.1. Mesoscopic heat balance equation

In the Dang Van and Papadopoulos HCF framework

(Section 2.1), the considered REV of material is elastic

and the plasticity is localized is some grains, represented

then as a plastic inclusion of volume fraction fv in an elastic

matrix. This assumption is justified as the effect of very

small macroscopic plastic strains is negligible in the inter-

action law (A.1) and therefore, in the estimation of the

macroscopic stresses. However, it will be shown that this

is no more the case for the estimation of the macroscopic

dissipation. Therefore, in the following, we generalize the

Dang Van assumptions by considering, as a first step, a

plastic matrix where the macroscopic strains correspond

to the mean plastic strains in the REV, i.e. Ep ¼ fvep, where

Ep and ep are respectively, the macroscopic and mesoscopic

plastic strain tensors. As a consequence of the relation

(A.2), trðrÞ ¼ trðRÞ; the mesoscopic heat balance equation

can then be simplified as (see the Appendix B):

Δw 

k* 

elasticity  or

elastic shakedown

plastic shakedown 

p

Fig. 10. Theoretical evolution of the mesoscopic dissipated energy per

cycle Dw versus the previous defined stress k� .

Δw =Cst

pW

N 

d=0 

d    0 

p

(  )oo

Fig. 9. Theoretical evolution of the mesoscopic cumulated mechanical

dissipation dcumul .
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qCv
_T � divðj � ~gradðTÞÞ ¼ r � aTtr _R� 9Ka2T _T þU ð7Þ

where q is the density, Cv is the specific heat, T is the abso-

lute temperature, j is the second rank tensor of thermal

conductivity, a is the thermal expansion coefficient and K
is the bulk modulus. Ee and ee denote the macroscopic,

respectively, mesoscopic, elastic strain tensors. In the right

terms of this Eq. 7, r is the distribution of external heat

sources; both following terms correspond to the reversible

thermoelastic coupling and U is the intrinsic dissipation,

defined as:

U ¼ R : _Ep þ fv R : _Ee � r : _ee �
2

3
hep : _ep

� �

where h is the mesoscopic hardening modulus. Noting that

Ep ¼ fvep, the interaction law (A.1) and the relation (A.2)

conducts to the following relation between r and R:

R ¼ rþ 2lð1� bÞð1� fvÞep

In all the cases, the same elastic behavior at the mesoscop-

ic and the macroscopic scale is assumed. Therefore, the

previous relation implies:

E ¼ ee þ ð1� bÞð1� fvÞep

Then, introducing these both relations in the previous

expression of U, and by neglecting the f 2v and f 3v terms,

the following relation is obtained:

U ¼ fvr : _ep þ fv 2lð1� bÞð2� bÞ �
2

3
h

� �

ep : _ep

þ fvð1� bÞðr : _ep þ _r : epÞ

where b is a constant depending on the homogenization

scheme and l is one of the Lamé’s coefficient (see Appen-

dix A). The first term corresponds to the plastic dissipation

in the REV. The other terms are associated to the mechan-

ical power stored in the linear kinematic hardening and in

the mesoscopic residual stresses due to the strain incom-

patibility between the inclusion and the matrix. It is

important to note that, in the proposed modeling, these

last terms are reversible Bornert et al., 2001b. Therefore,

by considering a periodic cyclic loading, one has:

Z

cycle
2lð1�bÞð2�bÞ�

2

3
c

� �

ep : _epþð1�bÞðr : _epþ _r :epÞ

� �

dt¼0

This simple modeling is a first step. However, one has to

point out that other models consider non reversible stored

energy. This is the particular case of the dislocation based

model of Tanaka andMura (1981). By considering irrevers-

ible motions in dislocation pile-ups, Tanaka and Mura

(1981) proposed a ratcheting mechanisms conducting to

the creation of extrusion or intrusion. This type of model-

ing can therefore modify the intrinsic dissipation, conduct-

ing to other cyclic evolutions. This aspect certainly has to

be improved in future works.

The coupled heat Eq. 7 can now be solved in the partic-

ular case of a tension–compression experiment, defined by

a macroscopic stress tensor of the form:

R ¼ R11 sinðxtÞe1 � e1

and, in the absence of heat sources, r ¼ 0.

Following Boulanger et al. (2004) or Doudard et al.

(2005), it is assume that the specimen is a thin plate where

the conduction phenomenon is isotropic (j ¼ jI). In order

to simplify the computations, their estimation of the ther-

mal exchanges associated term (see Boulanger, 2004 for

more details) is used:

�divðj � ~gradðTÞÞ ’ qCv
h

seq

where seq is a constant representative of the heat ex-

changes of the specimen with the environment through

the surface in contact with the air and the grips and

h ¼ T � T0. This hypothesis is acceptable provided the bulk

temperature is considered equal to the surface tempera-

ture of the specimen and homogeneous along the surface,

and the temperature variations are small. If the previous

experimental observations of Stärk (1980) (see Fig. 5) are

considered, under low level loadings, this hypothesis

seems to be acceptable.

Then, the mesoscopic heat balance Eq. (7) can be simpli-

fied as:

1þ
9Ka2T
qCv

� �

_Tþ
h

seq
¼

fv
qCv

r : _ep�
2

3
hep : _ep

�

þ2lð1�bÞð2�bÞep : _ep

þð1�bÞðr : _epþ _r :epÞ

�

�
aT
qCv

trð _RÞ ð8Þ

This equation can easily be integrated provided the

mesoscopic plastic strains are determined. They will be

computed from the macroscopic loading using the homog-

enization scheme and a radial-return plastic integration

algorithm. A simple numerical integration scheme is given

in the Appendix C.

3.2. Results and discussion for a cyclic tension–compression
experiment

It is also important to explain the cyclic technique load-

ing used in this type of experiment, as explained in Doudard

etal. (2005), Fargione et al. (2002) and Luong (1995). Differ-

ent stress amplitudes are applied on the specimen and each

amplitude is maintained until a stabilization of the temper-

ature is observed. The stabilized temperature amplitude is

defined as hstab ¼ Tstab � T0, with T0, the initial temperature.

During the tests, it can be observed on the one hand, the

cyclic variation of temperature, i.e. at each cycle a heating

in compression and a cooling in extension as predicted by

the thermoelastic coupling (see Fig. 15), and, on the other

hand, a small but continuous growth of the mean tempera-

ture due to the plastic dissipation of themisoriented grains,

as observed macroscopically by Dillon (1963) or Stärk

(1980) (see also Figs. 3 and 4).

In order to integrate numerically the previous Eq. (8),

the material parameters displayed in Tables 1 and 2 are

used. They correspond in large to the ferrite-martensite

dual phase steels (DP60 and DP600) as in Boulanger

(2004) or Doudard (2004), Doudard et al. (2005). q;a;Cv;

E; m; seq have been deduced from Boulanger et al. (2004),

Doudard (2004) and Doudard et al. (2005). The estimation

of the mesoscopic tensile yield stress ry ¼ 120 MPa is

7



extracted from Monchiet et al. (2006). For the plastic hard-

ening behavior, a hardening modulus h ¼ 1000 MPa has

been chosen. The proposed value denotes small distance

to a perfect plastic behavior, which is considered as a first

approximation. Let us remark that a perfectly plastic model

would not be acceptable numerically for the Sachsmodel as

this would imply infinite plastic strains as soon as the stress

is beyond the yield limit (see Eq. (C.6) with b ¼ 1 and

h ¼ 0).

A delicate point is the estimation of the volume ratio of

plastic inclusions, fv. The present values are based on a pre-

vious work of Cugy and Galtier (2002) on low carbon steel.

The only available data are the relative surface covered by

slip bands, which can not exactly be correlated to the vol-

ume ratio. A first assumption is to consider this surface ra-

tio as representative of fv and to take into account the

values obtained for low carbon steel. The values observed

by Cugy and Galtier are closed to zero near the endurance

limit and less than 20% when the stress range is equal to

the standard yield stress at 0.2% (see Fig. 11). As a conse-

quence, a value of fv ¼ 3% is chosen for a stress amplitude

of 180 MPa, a value of fv ¼ 10% for a stress amplitude of

250MPa and a value of fv ¼ 20% for a stress amplitude of

300MPa which correspond to the three simulated loadings.

Of course, this coarse assumption has to be refined in

future work. The example discussed next corresponds to

tensile fatigue tests at Rr ¼ �1 with a loading frequency

of 50 Hz and stress amplitudes of 180, 250 and 300 MPa,

performed by Boulanger (2004). It presents the same qual-

itative characteristics as results obtained by Luong (1995)

on a XC55 steel and Fargione et al. (2002) on different

steels. First, the macroscopic and mesoscopic stress–strain

curves for the different homogenization scheme are com-

pared. In Fig. 12, the results obtained in the case of the

Sachs scheme are displayed. As expected, due to the equal-

ity between macroscopic and mesoscopic stress fields and

to h � E, mesoscopic plastic strains in the inclusion are

very important (6%), which is not realistic, and it can be

concluded that the Sachs scheme is not appropriate for this

type of loading. Fig. 13 presents the differences between

Lin–Taylor’s and Kr0̈ner’s schemes. It can be observed that

the stress–strain curves are similar, with stresses and

strains of the same order of magnitude. By analyzing the

different obtained results, it can be concluded that only

Taylor’s and Kröner’s homogenization schemes enable the

achievement of consistent qualitative results, as proved

by the studied example displayed on Fig. 14. The quantita-

tive predictions are cyclic temperature amplitude of

Table 1

Thermal material parameters used for the DP60 steel, after Doudard (2004)

and Boulanger (2004).

q (kg m�3) a ðK�1Þ Cv ðJ kg
�1 K�1Þ seq ðsÞ

7800 0.00001 460 80

Table 2

Mechanical material parameters used for the DP60 steel, after Doudard

(2004), Boulanger (2004) and Monchiet et al. (2006).

E ðMPaÞ m h ðMPaÞ ry ðMPaÞ

210,000 0.3 1000 120

stress range (MPa) 

420              440 460              480 500

0

4

8

12

16

20

percentage of surface covered by slip bands

Fig. 11. Percentage of surface covered by slip bands for different stress

amplitudes. The results come from a previous work of Cugy and Galtier

(2002) on low carbon steel whose endurance limit rD ¼ 235 MPa.

total strain

stress (MPa)

−0.06          −0.04          −0.02 0.02           0.04            0.06

−200

−150

−100

−50

0

50

100

150

200

macro.loading 

Sachs model

Fig. 12. Stress–strain curves corresponding to the elastic macroscopic

loading and to the mesoscopic response for the Sachs scheme.

total strain

stress (MPa)

−0.0015        -0.001      -0.0005  0 0.0005 0.001        0.0015

−200

−150

−100

−50

0

50

100

150

200

macro. loading

Taylor’s model

Kröner’s model

Fig. 13. Stress–strain curves corresponding to the elastic macroscopic

loading and to the mesoscopic responses for the Kröner’s and Taylor’s

schemes.
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approximately 0.3 K (see on Fig. 15), due to the thermo-

elastic coupling, and a mean temperature increase of about

0.4–0.7 K which is in the order of magnitude of the exper-

imental observations of Boulanger et al., 2004 and which is

due to the intrinsic dissipation.

A direct comparison of the numerical prediction of the

mean temperature increase with respect to the applied

load amplitude with experiments of Boulanger et al.

(2004) is presented on Fig. 16. A relatively good match

between predictions and experiments can be observed

for low level of loadings. The quality of the match is

decreasing with increasing loading but this dissipative re-

gime corresponds to limited endurance and, progres-

sively, to LCF. Then, the mismatch can be explained, in

particular, by the simple slip system and the confined

plasticity hypothesis which are very restrictive and not

representative of the local behavior. Therefore, LCF has

to be analyzed with other conditions which correspond

to macroscopic plasticity at the REV scale. This is the mat-

ter of future works.

4. Conclusion

In this paper, a dissipative framework is proposed,

which enables the treatment of metals fatigue, indepen-

dently of the mechanical loading domain. It follows the

pioneering works of Dang Van in HCF and is based on

the shakedown concepts. The theoretical analysis at the

mesoscopic scale, compared to existing experimental re-

sults, showed the validity of this approach. In order to

propose a complete unified dissipative treatment in fati-

gue, three particular aspects have to be examine: the

mean stress and the phase difference effects in HCF and

the extension of this approach to LCF. For the first two

points, the recent work of Monchiet et al. (2006, 2008),

coupling plasticity and damage in HCF, seems to be prom-

ising and could also allow a re-interpretation of the exist-

ing LCF criteria based on dissipated energy, whose last

contribution postulates a linear relation between dissi-

pated energy and hydrostatic pressure (Amiable et al.,

2006a,b; Park and Nelson, 2000). Therefore, the extension

to LCF seems to come straightforward and will be the

objective of future works.

Appendix A. Meso–macro passage: Kröner’s self-

consistent scheme

In the present context of a plastic inclusion in an elasto-

plasticmatrix, in the case of confinedplasticity, the relations

betweenmesoscopic andmacroscopic fields can be reached,

for example, using one of the following homogenization

assumptions (see for example Cano et al., 2004; Monchiet

et al., 2006):

� Lin–Taylor supposes strain equality: e ¼ E. This is the

hypothesis of the initial Dang Van or Papadopoulos

fatigue criterion.

� Sachs supposes stress equality: r ¼ R

� Kröner assumes:

r ¼ R� C : ðI� P : CÞ : ðep � EpÞ

where C and P are respectively, the fourth rank elastic

moduli and Hill tensors. In the particular case of an ide-

alized spherical inclusion, P reads:

time (s)

temperature range (K)

0 40 80 120              160              200
0.0

0.4

0.8

1.2

1.6

Taylor’s model

Kröner’s model

Fig. 14. Evolution of the temperature range during cyclic loading for the

Taylor’s and Kröner’s schemes for a stress amplitude of 180 MPa.

time (s)

temperature range (K)

0.0 0.2         0.4           0.6         0.8          1.0         1.2

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0,3 K

Fig. 15. Evolution of the temperature range during the first 10 cycles for

the Kröner’s scheme: the quasi-sinusoidal response is due to the

thermoelastic coupling.

stress range (MPa) 

stabilized temperature range (K)

200 300 400 500 600
0

5

10

15

20

25

30

Experiment

Taylor

Kröner

Fig. 16. Evolution of the stabilized mean temperature with respect to the

loading amplitude. The experimental results stem from Boulanger (2004).
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P ¼
a
3K

Jþ
b
2l

K with : a ¼
3K

3K þ 4l
and

b ¼
6

5

K þ 2l
3K þ 4l

where J ¼ 1
3
I � I;K ¼ I� J with I the fourth rank iden-

tity tensor, K is the bulk modulus, K ¼ 3kþ 2l and k;l
are the Lamé’s parameters.

In all the cases, the same elastic behavior at the meso-

scopic and the macroscopic scale is assumed. Then, the

relation between mesoscopic and macroscopic fields can

be written in the general form:

r ¼ R� C
� : ðep � EpÞ ¼ Rþ q

� ðA:1Þ

where q
� should be interpreted as a mesoscopic residual

stress field.

The particular cases of each model are obtained for the

next form of C�:

� for Lin–Taylor’s model, C� ¼ C

� for Sachs model, C� ¼ 0 and

� for Kröner’s scheme, C� ¼ C : ðI� P : CÞ

In the case of isotropic elastic behavior with a classically

defined deviatoric plasticity, one can remark that:

trðrÞ¼ trðRÞ q
� ¼�C

� : ðep�EpÞ¼�2lð1�bÞðep�EpÞ

ðA:2Þ

where b ¼ 1 for the Sachs’s model and b ¼ 0 for the Lin-

Taylor’s model.

Appendix B. Continuum thermodynamics

The Thermodynamics of Irreversible Processes (TIP) is

described in numerous works (for example Lemaitre and

Chaboche, 1985; Maugin, 1992) and enables the determi-

nation of the heat coupled equation connecting the ther-

mal field and the mechanical fields. By defining a free

energy W depending on state variables aj; ðj ¼ 1;2; . . . ;n),
this heat equation can be written as:

qCv
_T ¼ rþdiv j � ~gradðTÞ

� �

þ R : _EþqT
@
2
W

@T@aj
_aj�q

@W

@aj
_aj

!

ðB:1Þ

where q is the density, C the specific heat, T the absolute

temperature, r the distribution of external heat sources, k

the second rank tensor of thermal conductivity, E the mac-

roscopic strain tensor, i.e. at the boundary of the REV, and

R the macroscopic stress tensor.

One can remark that this expression of the heat coupled

Eq. (B.1) is completely independent of the mechanical con-

stitutive law. In the last term on the right, one find the

intrinsic dissipation U:

U ¼ R : _E � q
@W

@aj

_aj

which takes into account the mechanical power contribu-

tion and the stored part in the material, associated to a

coupling thermomechanical term qT @2W
@T@aj

_aj.

In this paper, a macroscopically plastic REV of matrix-

inclusion type is considered. The inclusion admits an

elastoplastic behavior and, for sake of simplicity, a linear

kinematic hardening. As the plasticity is supposed very

confined in a few grains, the volume fraction of plastic

inclusion, fv, is considered low. The matrix is considered

perfectly plastic and its volume fraction is ð1� fvÞ. The state
variables are then Ee

; ee and ep and their thermodynamical

associated forces, R and r themacro- andmesoscopic stress

tensors and x the stress tensor associated to the kinematic

hardening. Consequently, the Helmholtz’s free energy is

decomposed in two parts, Wmat associated to the matrix

and Win associated to the inclusion, which conducts to:

Win ¼ WinðT; ee; epÞ Wmat ¼ WmatðT;EÞ

In the case of the isotropic elasticity and thermoelastic-

ity, both linear, the Helmholtz free energy Wmat takes the

following form in the matrix:

qWmatðT;E
eÞ ¼

1

2
ðktrðEeÞ2 þ 2ltrðEe2 ÞÞ

� ð3kþ 2lÞahtrðEeÞ þ
Cvh

2

2T0

and, in the same way, in the plastic inclusion:

qWinðT; ee; epÞ ¼
1

2
ðktrðeeÞ2 þ 2ltrðee

2

ÞÞ

� ð3kþ 2lÞahtrðeeÞ þ
1

3
htrðep

2

Þ þ
Cvh

2

2T0

Then the following heat coupled equation is obtained:

qCv
_T ¼ r þ divðj � ~gradðTÞÞ þ R : _E � ð1� fvÞ

	 ðR : _Ee þ aTtrð _RÞ þ 9Ka2T _TÞ

� fvðr : _ee þ
2

3
hep : _ep þ aTtrð _rÞ þ 9Ka2T _TÞ ðB:2Þ

As trð _rÞ ¼ trð _RÞ (see relation (A.2)), this equation can be

simplified and conducts to:

qCv
_T � divðj � ~gradðTÞÞ ¼ r � aTtrð _RÞ þ 9Ka2T _T

þ R : _E � ð1� fvÞR : _Ee � fv r : _ee þ
2

3
hep : _ep

� �

¼ r � aTtrð _RÞ þ 9Ka2T _T þU ðB:3Þ

The first term on the right, r, corresponds to external heat

sources, the two next terms, to the thermoelastic coupling

and the last terms U, to the intrinsic dissipation:

U ¼ R : _Ep þ fv R : _Ee � r : _ee �
2

3
hep : _ep

� �

ðB:4Þ

Appendix C. Incremental determination of the

mesoscopic fields

C.1. Plastic strain increment computation

The incremental problem which is considered here con-

sists in the determination of the increment of the meso-

scopic plastic strain tensor due to an increment of the

elastic macroscopic stress tensor. The framework is the
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elastoplasticity, with a linear kinematic hardening rule and

the previous Self-Consistent Scheme (SCS) presented in the

Appendix A. In this way, one can first define the relative

stress r
� as follow:

r
� ¼ r�

2

3
hep

where h is the hardening modulus. This stress can be ex-

pressed as a function of the macroscopic stress tensor R

by using the SCS interaction corresponding to the Eq.

(A.1). The macroscopic plastic strain tensor Ep is defined

as the mean of the plastic strain in the REV, i.e. Ep ¼ fvep:

r
� ¼R�ð1� fvÞC

� : ep�
2

3
hep ¼R� ð1� fvÞC

�þ
2

3
hI

� �

: ep

Moreover, as a purely deviatoric von Mises plastic criterion

is chosen, the deviator of this relative stress is written

A ¼ devðr�Þ, which can be expressed as:

A ¼ K : r� ¼ devðRÞ �K : ð1� fvÞC
� þ

2

3
hI

� �

: ep

As K : C ¼ 2lI and:

K : K ¼ K; J : J ¼ J and K : J ¼ J : K ¼ 0

one can easily show that:

K : ð1� fvÞC
� þ

2

3
hI

� �

¼ 2lð1� bÞð1� fvÞ þ
2

3
h

� �

I

Therefore, at the increment n:

An ¼ devðRnÞ � 2lð1� bÞð1� fvÞ þ
2

3
h

� �

epn

The objective is the determination of the relative stress at

the nþ 1 increment, Anþ1:

Anþ1 ¼AnþdevðDRÞ� 2lð1�bÞð1� fvÞþ
2

3
h

� �

Dep ðC:1Þ

To determine the plastic increment, one can finally define a

trial stress A
�
nþ1 which corresponds to a freezing plastic

flow (i.e. Dep ¼ 0):

A
�
nþ1 ¼ An þ devðDRÞ

¼ devðRnÞ � 2lð1� bÞð1� fvÞ þ
2

3
h

� �

epn þ devðDRÞ

The relative stress at the increment nþ 1 is then written

as:

Anþ1 ¼ A
�
nþ1 � 2lð1� bÞð1� fvÞ þ

2

3
h

� �

Dep

The implicit normality rule implies the following relation

at the increment nþ 1:

_e
p
nþ1 ¼ cp

Anþ1

kAnþ1k
¼ cp

A
�
nþ1

kA�
nþ1k

¼
Dep

Dt
ðC:2Þ

By using the relation (C.2), one can find:

Anþ1 ¼ A
�
nþ1 � 2lð1� bÞð1� fvÞ þ

2

3
h

� �

Dtc
A

�
nþ1

kA�
nþ1k

ðC:3Þ

which is equivalent to:

kAnþ1k ¼ kA�
nþ1k � 2lð1� bÞð1� fvÞ þ

2

3
h

� �

Dtc ðC:4Þ

The consistency condition (Kuhn–Tucker) fnþ1 ¼ 0 corre-

sponds to this equation:

J2ðAnþ1Þ ¼ ry

which is equivalent, by introducing the relation (C.4), to:
ffiffiffi

3

2

r

kA�
nþ1k � 2lð1� bÞð1� fvÞ þ

2

3
h

� �

Dtcp

� �

¼ ry

One can therefore obtain the plastic multiplier c:

cp ¼

ffiffi

3
2

q

kA�
nþ1k � ry

ffiffi

3
2

q

2lð1� bÞð1� fvÞ þ 2
3
h

	 


Dt
ðC:5Þ

and the plastic strain increment comes straightforward

with the relation (C.2):

Dep ¼ cpDt
A

�
nþ1

kA�
nþ1k

¼

ffiffi

3
2

q

kA�
nþ1k � ry

ffiffi

3
2

q

2lð1� bÞð1� fvÞ þ 2
3
h

	 


A
�
nþ1

kA�
nþ1k

ðC:6Þ

with A
�
nþ1 ¼devðRnÞ� 2lð1�bÞð1� fvÞþ 2

3
h

	 


e
p
nþdevðDRÞ.

The determination of the temperature increment DT is

detailed in the part C.2 of the present appendix.

C.2. Integration of the heat balance equation

The heat balance Eq. (B.2) has been simplified to the

following form (8):

1þ
9Ka2T
qCv

� �

_Tþ
h

seq
¼

fv
qCv

r : _ep�
2

3
hep : _ep

�

þ2lð1�bÞð2�bÞep : _ep

þð1�bÞðr : _epþ _r : epÞÞ�
aT
qCv

trð _RÞ

For common metallic materials, the following simplifica-

tion can be done:

9Ka2T
qCv

<< 1

The heat coupled equation can then be written as:

_Tþ
T�T0

seq
¼

fv
qCv

r : _ep�
2

3
hep : _epþ2lð1�bÞð2�bÞep : _ep

�

þð1�bÞðr : _epþ _r : epÞ

�

�
aT
qCv

trð _RÞ

which allows to assess the temperature at the next time

increment by using an explicit time integration scheme:

Tnþ1¼

Tn
Dtþ

T0
seq

þ fv
qCvDt

rn :De
p�2

3
hepn :Dep�2lð1�bÞð2�bÞepn :Dep

	 


1
Dtþ

1
seq

þ a
qCvDt

trðDRÞ

þ

fv
qCvDt

ðð1�bÞðrn :De
pþepn :DrÞÞ

1
Dtþ

1
seq

þ a
qCvDt

trðDRÞ
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