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A short proof that adding some permutation rules to β preserves SN

I show that, if a term is SN for β, it remains SN when some permutation rules are added.

Introduction

Strong normalization (abbreviated as SN ) is a property of rewriting systems that is often desired. Since about 10 years many researchers have considered the following question : If a λ-term is SN for the β-reduction, does it remain SN if some other reduction rules are added ? They are mainly interested with permutation rules they introduce to be able to delay some β-reductions in, for example, let x = ... in ... constructions or in calculi with explicit substitutions. Here are some papers considering such permutations rules: L. Regnier [START_REF] Regnier | Une équivalence sur les lambda-termes[END_REF], F Kamareddine [START_REF] Kamareddine | Postponement, Conservation and Preservation of Strong Normalisation for Generalised Reduction[END_REF], E. Moggi [START_REF] Moggi | Computational lambda-calculus and monads[END_REF], R. Dyckhoff and S. Lengrand [START_REF] Dyckhoff | Call-by-value λ-calculus and LJQ[END_REF], A. J. Kfoury and J. B. Wells [START_REF] Kfoury | New notions of reduction and non-semantic proofs of beta -strong normalization in typed lambda -calculi[END_REF], Y. Ohta and M. Hasegawa [START_REF] Ohta | A terminating and confluent linear lambda calculus[END_REF], J. Esprito Santo [START_REF] Santo | Delayed substitutions[END_REF] and [START_REF] Santo | Addenda to Delayed Substitutions[END_REF].

Most of these papers show that SN is preserved by the addition of the permutation rules they introduce. But these proofs are quite long and complicated or need some restrictions to the rule. For example the rule (M (λx.N P )) ⊲ (λx.(M N ) P ) is often restricted to the case when M is an abstraction (in this case it is usually called assoc).

I give here a very simple proof that the permutations rules preserve SN when they are added all together and with no restriction. It is done as follows. I show that every term which is typable in the system (often called system D) of types built with → and ∧ is strongly normalizing for all the rules (β and the permutation rules). Since it is well known that a term is SN for the β-rule iff it is typable in this system, the result follows.

Definitions and notations

Definition 2.1

• The set of λ-terms is defined by the following grammar

M := x | λx.M | (M M)
• The set T of types is defined by the following grammar where A is a set of atomic constants

T ::= A | T → T | T ∧ T
• The typing rules are the following :

Γ, x : A ⊢ x : A Γ ⊢ M : A → B Γ ⊢ N : A Γ ⊢ (M N ) : B Γ, x : A ⊢ M : B Γ ⊢ λx.M : A → B Γ ⊢ M : A ∧ B Γ ⊢ M : A Γ ⊢ M : A ∧ B Γ ⊢ M : B Γ ⊢ M : A Γ ⊢ M : B Γ ⊢ M : A ∧ B Definition 2.2
The reduction rules are the following.

• β : (λx.M N ) ⊲ M [x := N ]
• δ : (λy.λx.M N ) ⊲ λx.(λy.M N )

• γ : (λx.M N P ) ⊲ (λx.(M P ) N )

• assoc : (M (λx.N P )) ⊲ (λx.(M N ) P ) Using Barendregt's convention for the names of variables, we assume that, in γ (resp. δ, assoc), x is not free in P (resp. in N , in M ).

The rules δ and γ have been introduced by Regnier in [START_REF] Regnier | Une équivalence sur les lambda-termes[END_REF] and are called there the σ-reduction. It seems that the first formulation of assoc appears in Moggi [START_REF] Moggi | Computational lambda-calculus and monads[END_REF] in the restricted case where M is an abstraction and in a "let ... in ..." formulation.

Notation 2.1

• If t is a term, size(t) denotes its size and type(t) the size of its type. If t ∈ SN (i.e. every sequence of reductions starting from t is finite), η(t) denotes the length of the longest reduction of t.

• Let σ be a substitution. We say that σ is fair if the σ(x) for x ∈ dom(σ) all have the same type (that will be denoted as type(σ)). We say that σ ∈ SN if, for each x ∈ dom(σ), σ(x) ∈ SN .

• Let σ ∈ SN be a substitution and t be a term. We denote by size(σ, t) (resp. η(σ, t)) the sum, over x ∈ dom(σ), of nb(t, x).size(σ(x)) (resp. nb(t, x).η(σ(x))) where nb(t, x) is the number of occurrences of x in t.

• If -→ M is a sequence of terms, lg( -→ M ) denotes its length, M (i) denotes the i-th element of the sequence and tail( -→ M ) denotes -→
M from which the first element has been deleted.

• Assume t = (H -→ M )
where H is an abstraction or a variable and lg(

-→ M ) ≥ 1.
-If H is an abstraction (in this case we say that t is β-head reducible), then M (1) will be denoted as Arg[t] and (R ′ tail( -→ M )) will be denoted by

B[t] where R ′ is the reduct of the β-redex (H Arg[t]). -If H = λx.N and lg( -→ M ) ≥ 2 (in this case we say that t is γ-head reducible), then (λx.(N M (2)) M (1) M (3) ... M (lg( -→ M ))) will be denoted by C[t].
-If H = λx.λy.N (in this case we say that t is δ-head reducible), then

(λy.(λx.N M (1)) M (2) ... M (lg( -→ M ))) will be denoted by D[t].
-If M (i) = (λx.N P ), then the term (λx.(H M (1) ... M (i-1) N ) P M (i+ 1) ... M (lg( -→ M ))) will be denoted by A[t, i] and we say that M (i) is the redex put in head position.

• Finally, in a proof by induction, IH will denote the induction hypothesis. [START_REF] Kamareddine | Postponement, Conservation and Preservation of Strong Normalisation for Generalised Reduction[END_REF] The theorem Theorem 3.1 Let t be a term. Assume t is strongly normalizing for β. Then t is strongly normalizing for β, δ, γ and assoc. Proof This follows immediately from Theorem 3.2 and corollary 3.1 below.

Theorem 3.2 A term is SN for the β-rule iff it is typable in system D. Proof
This is a classical result. For the sake of completeness I recall here the proof of the only if direction given in [START_REF] David | Normalization without reducibility[END_REF]. Note that it is the only direction that is used in this paper and that corollary 3.1 below actually gives the other direction. The proof is by induction on η(t), size(t) .

-If t = λx u. This follows immediately from the IH.

-If t = (x v 1 ... v n ). By the IH, for every j, let x : A j , Γ j ⊢ v j : B j . Then x : A j ∧ (B 1 , ..., B n → C), Γ j ⊢ t : C where C is any type, for example any atomic type.

- From now on, ⊲ denotes the reduction by one of the rules β, δ, γ and assoc.

Lemma 3.1 1. The system satisfies subject reduction i.e. if Γ ⊢ t : A and t ⊲ t ′ then Γ ⊢ t ′ : A.

If t ⊲ t

′ then t[x := u] ⊲ t ′ [x := u]. 3. If t ′ = t[x := u] ∈ SN then t ∈ SN and η(t) ≤ η(t ′ ). Proof Immediate. Lemma 3.2 Let t = (H -→ M )
be such that H is an abstraction or a variable and lg(

-→ M ) ≥ 1. Assume that 1. If t is δ-head reducible (resp. γ-head reducible, β-head reducible), then D[t] ∈ SN (resp. C[t] ∈ SN , Arg[t], B[t] ∈ SN ). 2. For each i such that M (i)is a redex, A[t, i] ∈ SN , Then t ∈ SN . Proof By induction on η(H) + η(M (i)). Show that each reduct of t is in SN . Lemma 3.3 If (t -→ u ) ∈ SN then (λx.t x -→ u ) ∈ SN . Proof
This is a special case of the following result. If t ∈ SN then so is F (t) where F (t) is obtained in the following way: choose a node on the left branch of t and replace the sub-term u at this node by (λx.u x). The proof is by induction on type(u), η(t), size(t) , using Lemma 3.2. The only non immediate cases are when the head redex has been created by the transformation F . The case of β is trivial. For δ and γ, the result follows from the fact that the type of the sub-term modified has decreased and there is nothing to prove for assoc since the the change is in the left branch. 

Proof

By induction on type(σ), η(t), size(t), η(σ, t), size(σ, t) . If t is an abstraction or a variable the result is trivial. Thus assume t = (H -→ M ) where H is an abstraction or a variable and n = lg(

-→ M ) ≥ 1. Let -→ N = σ( -→ M ). Claim : Let
-→ P be a (strict) initial or a final sub-sequence of -→ N . Then (z -→ P ) ∈ SN . Proof : This follows immediately from Lemma 3.1 and the IH.

We use Lemma 3.2 to show that σ(t) ∈ SN . . By the IH, it is enough to show that (λx.a N (1)) ∈ SN . But this is (λx.z ′′ N (1))[z ′′ := a] and, since type(a) < type(σ) it is enough to show that u = (λx.z ′′ N (1)) = σ ′ (t ′′ ) ∈ SN where t ′′ is a sub-term of t (up to the renaming of z into z ′′ ) and σ ′ is as σ but z ′′ ∈ dom(σ ′ ). This follows from the IH since size(σ ′ , t ′′ ) < size(σ, t). -→ N ) ∈ SN since u 1 = τ (t 1 ) where t 1 is the same as t but where we have given to the variable H the fresh name z, τ is the same as σ for the variables in dom(σ) and τ (z) = a[y := b] and thus we may conclude by the IH since η(τ, t) < η(σ, t).

-We then have to show that, if b is a redex say (λz.b 1 b 2 ), then A[u, 1] = (λz.(λy.a N (1) b 1 ) b 2 ) ∈ SN . Let u 2 = τ (t 2 ) where t 2 is the same as t but where we have given to the variable H the fresh name z, τ is the same as σ for the variables in dom(σ) and τ (z) = σ(A[H, 1]). By the IH, u 2 ∈ SN .

  If t = (λx.a b -→ c ). By the IH, (a[x := b] -→ c ) is typable. If x occurs in a, let A 1 ... A n be the types of the occurrences of b in the typing of (a[x := b] -→ c ). Then t is typable by giving to x and b the type A 1 ∧ ... ∧ A n . Otherwise, by the induction hypothesis b is typable of type B and then t is typable by giving to x the type B.

Theorem 3 . 3

 33 Let t ∈ SN and σ ∈ SN be a fair substitution. Then σ(t) ∈ SN .

1 .

 1 Assume σ(t) is δ-head reducible. We have to show that D[σ(t)] ∈ SN . There are 3 cases to consider. (a) If t was already δ-head reducible, then D[σ(t)] = σ(D[t]) and the result follows from the IH. (b) If H is a variable and σ(H) = λx.λy.a, then D[σ(t)] = t ′ [z := λy.(λx.a N (1))] where t ′ = (z tail( -→ N )). By the claim, t ′ ∈ SN and since type(z) < type(σ) it is enough to check that λy.(λx.a N (1)) ∈ SN . But this is λy.(z ′ N (1))[z ′ := λx.a]. But, by the claim, (z ′ N (1)) ∈ SN and we conclude by the IH since type(z ′ ) < type(σ).

  (c) If H = λx.z and σ(z) = λy.a, then D[σ(t)] = (λy.(λx.a N (1)) tail( -→ N )) = τ (t ′ ) where t ′ = (z ′ tail( -→ M )) and τ is the same as σ on the variables of tail( -→ M ) and τ (z ′ ) = λy.(λx.a N (1))

2 .

 2 Assume σ(t) is γ-head reducible. We have to show that C[σ(t)] ∈ SN . There are 4 cases to consider. (a) If H is an abstraction, then C[σ(t)] = σ(C[t]) and the result follows immediately from the IH. (b) H is a variable and σ(H) = λy.a, then C[σ(t)] = (λy.(a N (2)) N (1) N (3) ... N (n)) = (λy.(a N (2)) y N (3) ... N (n))[y := N (1)]. Since type(N (1)) < type(σ), it is enough, by the IH, to show (λy.(a N (2)) y N (3) ... N (n)) ∈ SN and so, by Lemma 3.3, that u = (a N (2) N (3) ... N (n)) ∈ SN . By the claim, (z tail( -→ N )) ∈ SN and the result follows from the IH since u = (z tail( -→ N ))[z := a] and type(a) < type(σ). (c) H is a variable and σ(H) = (λy.a b), then C[σ(t)] = (λy.(a N (1)) b N (2) ... N (n)) = (z tail( -→ N ))[z := (λy.(a N (1)) b)]. Since type(z) < type(σ), by the IH it is enough to show that u = (λy.(a N (1)) b) ∈ SN . We use Lemma 3.2. -We first have to show that B[u] ∈ SN . But this is (a[y := b] N (1)) which is in SN since u 1 = (a[y := b]

where t ′ is the same as t but where we have given to the variable H the fresh name z and τ is the same as σ for the variables in dom(σ) and τ (z) = σ(C[H]). The result follows then from the IH. 

) and t ′ is the same as t but where we have given to the variable H the fresh name z and τ is the same as σ for the variables in dom(σ) and τ (z) = (R ′ -→ M ′ ). We conclude by the IH since η(τ, t ′ ) < η(σ, t). 

] and u = σ(t ′ ) the result follows from Lemma 3.1 and the IH.

) and the redex put in head position is some M ′ (j). Then, A[σ(t), i] = τ (A[t ′ , j]) where t ′ is the same as t but where we have given to the variable H the fresh variable z and τ is the same as σ for the variables in dom(σ) and τ (z) = A[σ(H), j]. We conclude by the IH since η(τ, t ′ ) < η(σ, t). Corollary 3.1 Let t be a typable term. Then t is strongly normalizing.

Proof

By induction on size(t). If t is an abstraction or a variable the result is trivial. Otherwise t = (u v) = (x y)[x := u][y := v] and the result follows immediately from Theorem 3.3 and the IH.