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René David

LAMA - Equipe LIMD - Université de Chambéry
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Abstract

I show that, if a term is SN for β, it remains SN when some permutation

rules are added.

1 Introduction

Strong normalization (abbreviated as SN) is a property of rewriting systems that is
often desired. Since about 10 years many researchers have considered the following
question : If a λ-term is SN for the β-reduction, does it remain SN if some other
reduction rules are added ? They are mainly interested with permutation rules
they introduce to be able to delay some β-reductions in, for example, let x = ...
in ... constructions or in calculi with explicit substitutions. Here are some papers
considering such permutations rules: L. Regnier [7], F Kamareddine [3], E. Moggi
[5], R. Dyckhoff and S. Lengrand [2], A. J. Kfoury and J. B. Wells [4], Y. Ohta and
M. Hasegawa [6], J. Esprito Santo [8] and [9].

Most of these papers show that SN is preserved by the addition of the permuta-
tion rules they introduce. But these proofs are quite long and complicated or need
some restrictions to the rule. For example the rule (M (λx.N P )) ⊲ (λx.(M N) P )
is often restricted to the case when M is an abstraction (in this case it is usually
called assoc).

I give here a very simple proof that the permutations rules preserve SN when
they are added all together and with no restriction. It is done as follows. I show
that every term which is typable in the system (often called system D) of types
built with → and ∧ is strongly normalizing for all the rules (β and the permutation
rules). Since it is well known that a term is SN for the β-rule iff it is typable in
this system, the result follows.

2 Definitions and notations

Definition 2.1 • The set of λ-terms is defined by the following grammar

M := x | λx.M | (M M)

• The set T of types is defined by the following grammar where A is a set of
atomic constants

T ::= A | T → T | T ∧ T
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• The typing rules are the following :

Γ, x : A ⊢ x : A

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ (M N) : B

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B

Γ ⊢ M : A ∧ B

Γ ⊢ M : A

Γ ⊢ M : A ∧ B

Γ ⊢ M : B

Γ ⊢ M : A Γ ⊢ M : B

Γ ⊢ M : A ∧ B

Definition 2.2 The reduction rules are the following.

• β : (λx.M N) ⊲ M [x := N ]

• δ : (λy.λx.M N) ⊲ λx.(λy.M N)

• γ : (λx.M N P ) ⊲ ((λx.M P ) N)

• assoc : (M (λx.N P )) ⊲ (λx.(M N) P )

Note that, using Barendregt’s convention for the names of variables, we may
assume that, in γ (resp. δ, assoc), x is not free in P (resp. in N , in M).

Notation 2.1 • If t is a term, size(t) denotes its size and type(t) the size of
its type. If t ∈ SN (i.e. every sequence of reductions starting from t is finite),
η(t) denotes the length of the longest reduction of t.

• In a proof by induction, IH will denote the induction hypothesis.

• Let σ be a substitution. We say that σ is fair if the σ(x) for x ∈ dom(σ) all
have the same type (that will be denoted as type(σ)). We say that σ ∈ SN if,
for each x ∈ dom(σ), σ(x) ∈ SN .

• Let σ ∈ SN be a substitution and t be a term. We denote by η(σ, t) the
sum, over x ∈ dom(σ), of nb(t, x).η(σ(x)) where nb(t, x) is the number of
occurrences of x in t.

• If
−→
M is a sequence of terms, lg(

−→
M) denotes its length, M(i) denotes the i-th

element of the sequence and tail(
−→
M) denotes

−→
M from which the first element

has been deleted.

• Assume t = (H
−→
M) where H is an abstraction or a variable and lg(

−→
M) ≥ 1.

– If H is an abstraction (in this case we say that t is β-head reducible),

then M(1) will be denoted as Arg[t] and (R′ tail(
−→
M)) will be denoted by

B[t] where R′ is the reduct of the β-redex (H Arg[t]).

– If H = λx.N and lg(
−→
M) ≥ 2 (in this case we say that t is γ-head

reducible), then (λx.(N M(2)) M(1) M(3) ... M(lg(
−→
M))) will be denoted

by C[t].

– If H = λx.λy.N (in this case we say that t is δ-head reducible), then

(λy.(λx.N M(1)) M(2) ... M(lg(
−→
M))) will be denoted by D[t].

– If M(i) = (λx.N P ), then the term (λx.(H M(1) ... M(i−1) N) P M(i+

1) ... M(lg(
−→
M))) will be denoted by A[t, i] and we say that M(i) is the

redex put in head position.
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3 The theorem

Theorem 3.1 Let t be a term. Assume t is strongly normalizing for β. Then t is
strongly normalizing for β, δ, γ and assoc.

Proof This follows immediately from Theorem 3.2 and corollary 3.1 below. �

Theorem 3.2 A term is SN for the β-rule iff it is typable in system D.

Proof This is a classical result. For the sake of completeness I recall here the
proof of the only if direction given in [1]. Note that corollary 3.1 below actually
gives the other direction. The proof is by induction on 〈η(t), size(t)〉.

- If t = λx u. This follows immediately from the IH.
- If t = (x v1 ... vn). By the IH, for every j, let x : Aj , Γj ⊢ vj : Bj . Then

x :
∧

Aj ∧ (B1, ..., Bn → o),
∧

Γj ⊢ t : o.
- If t = (λx.a b −→c ). By the IH, (a[x := b] −→c ) is typable. If x occurs in a, let

A1 ... An be the types of the occurrences of b in the typing of (a[x := b] −→c ). Then t

is typable by giving to x and b the type A1 ∧ ... ∧An. Otherwise, by the induction
hypothesis b is typable of type B and then t is typable by giving to x the type B. �

From now on the type system is system D and ⊲ denotes the reduction by one of
the rules β, δ, γ and assoc.

Lemma 3.1 1. The system satisfies subject reduction.

2. If t ⊲ t′ then t[x := u] ⊲ t′[x := u].

3. If t′ = t[x := u] ∈ SN then t ∈ SN and η(t) ≤ η(t′).

4. If a ∈ SN then (λx.a x) ∈ SN .

Proof (1) and (2) are immediate. (3) follows easily from (2). (4) is proved by
induction on 〈η(a), size(a)〉 looking at all possible reducts of (λx.a x). �

Lemma 3.2 Let t = (H
−→
M) be such that H is an abstraction or a variable and

lg(
−→
M) ≥ 1. Assume that

1. If t is δ-head reducible (resp. γ-head reducible, β-head reducible), then D[t] ∈
SN (resp. C[t] ∈ SN , Arg[t], B[t] ∈ SN).

2. For each i such that M(i)is a redex, A[t, i] ∈ SN ,

Then t ∈ SN .

Proof By induction on η(H) +
∑

η(M(i)). Show that each reduct of t is in
SN . �

Theorem 3.3 Let t ∈ SN and σ ∈ SN be a fair substitution. Then σ(t) ∈ SN .

Proof By induction on 〈type(σ), η(t), size(t), η(σ, t)〉. If t is an abstraction or a

variable the result is trivial. Thus assume t = (H
−→
M) where H is an abstraction or

a variable and n = lg(
−→
M) ≥ 1. Let

−→
N = σ(

−→
M ).

Claim : Let
−→
P be a (strict) initial or a final sub-sequence of

−→
N . Then (z

−→
P ) ∈ SN .

Proof : This follows immediately from Lemma 3.1 and the IH. �

We use Lemma 3.2 to show that σ(t) ∈ SN .

1. Assume σ(t) is δ-head reducible. We have to show that D[σ(t)] ∈ SN . There
are 3 cases to consider.

(a) If t was already δ-head reducible, then D[σ(t)] = σ(D[t]) and the result
follows from the IH.
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(b) If H is a variable and σ(H) = λx.λy.a, then D[σ(t)] = t′[z := λy.(λx.a N(1))]

where t′ = (z tail(
−→
N )). By the claim, t′ ∈ SN and since type(z) <

type(σ) it is enough to check that λy.(λx.a N(1)) ∈ SN . But this is
λy.(z′ N(1))[z′ := λx.a]. But, by the claim, (z′ N(1)) ∈ SN and we
conclude by the IH since type(z′) < type(σ).

(c) If H = λx.z and σ(z) = λy.a, then D[σ(t)] = (λy.(λx.a N(1)) tail(
−→
N )) =

(z′ tail(
−→
M))[z′ := λy.(λx.a N(1))]. By the IH, it is enough to show

that (λx.a N(1)) ∈ SN . But this is (λx.z′′ N(1))[z′′ := a] and, since
type(a) < type(σ) it is enough to show that u = (λx.z′′ N(1)) =
σ((λx.z′′ M(1))) ∈ SN . But this follows from the IH since (λx.z′′ M(1))
is (up to α-equivalence) a strict sub-term of t.

2. Assume σ(t) is γ-head reducible. We have to show that C[σ(t)] ∈ SN . There
are 4 cases to consider.

(a) If H is an abstraction, then C[σ(t)] = σ(C[t]) and the result follows
immediately from the IH.

(b) H is a variable and σ(H) = λy.a, then C[σ(t)] = (λy.(a N(2)) N(1)
N(3) ... N(n)) = (λy.(a N(2)) y N(3) ... N(n))[y := N(1)]. Since
type(M(1) < type(H), it is enough, by the IH, to show that
(λy.(a N(2)) y N(3) ... N(n)) = (z N(3) ... N(n))[z := (λy.(a N(2)) y)] ∈
SN . By the claim and since type(z < type(H), it is enough to show that
(λy.(a N(2)) y)] ∈ SN , i.e. (by Lemma 3.1) (a N(2)) = (z′ N(2))[z′ :=
a] ∈ SN . But this follows from the claim and the IH since type(a) <

type(H).

(c) H is a variable and σ(H) = (λy.a b), then C[σ(t)] = (λy.(a N(1)) b

N(2) ... N(n)) = (z N(2) ... N(n))[z := (λy.(a N(1)) b)]. Since type(z) <

type(H), by the IH it is enough to show that u = (λy.(a N(1)) b) ∈ SN .
We use Lemma 3.2.

- We first have to show that B[u] ∈ SN . But this is (a[y := b] N(1))

which is in SN since u1 = (a[y := b]
−→
N ) ∈ SN since u1 = τ(t1) where t1

is the same as t but where we have given to the variable H the fresh name
z, τ is the same as σ for the variables in dom(σ) and τ(z) = a[y := b]
and thus we may conclude by the IH since η(τ) < η(σ).

- We then have to show that, if b is a redex say (λz.b1 b2), then A[u, 1] =
(λz.(λy.a N(1) b1) b2) ∈ SN . Let u2 = τ(t2) where t2 is the same as t but
where we have given to the variable H the fresh name z, τ is the same as
σ for the variables in dom(σ) and τ(z) = A[σ(H)]. By the IH u2 ∈ SN .

But u2 = (λz.(λy.a b1) b2

−→
N ) and thus u3 = (λz.(λy.a b1) b2 N(1)) ∈

SN . Since u3 reduces to A[u, 1] by using twice by the γ rule, it follows
that A[u, 1] ∈ SN .

(d) If H is a variable and σ(H) is γ-head reducible, then C[σ(t)] = τ(t′)
where t′ is the same as t but where we have given to the variable H the
fresh name z and τ is the same as σ for the variables in dom(σ) and
τ(z) = C[σ(H)]. The result follows then from the IH.

3. Assume that σ(t) is β-head reducible. We have to show that Arg[σ(t)] ∈ SN

and that B[σ(t)] ∈ SN . There are 3 cases to consider.

(a) If H is an abstraction, the result follows immediately from the IH since
then Arg[σ(t)] = σ(Arg[t]) and B[σ(t)] = σ(B[t]).
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(b) If H is a variable and σ(H) = λy.v for some v. Then Arg[σ(t)] = N(1) ∈

SN by the IH and B[σ(t)] = (v[y := N(1)] tail(
−→
N ) = (z tail(

−→
N ))[z :=

v[y := N(1)]]. By the claim, (z tail(
−→
N )) ∈ SN . By the IH, v[y :=

N(1)] ∈ SN since type(M(1)) < type(σ). Finally the IH implies that
B[σ(t)] ∈ SN since type(v) < type(σ).

(c) H is a variable and σ(H) = (R
−→
M ′) where R is a β-redex. Then

Arg[σ(t)] = Arg[σ(H)] ∈ SN and B[σ(t)] = (R′
−→
M ′

−→
N ) where R′ is

the reduct of R. But then B[σ(t)] = τ(t′) and t′ is the same as t but
where we have given to the variable H the fresh name z and τ is the

same as σ for the variables in dom(σ) and τ(z) = (R′
−→
M ′). We conclude

by the IH since η(τ) < η(σ).

4. We, finally, have to show that, for each i, A[σ(t), i] ∈ SN . There are again 3
cases to consider.

(a) If the redex put in head position is some N(j) and M(j) was already a
redex. Then A[σ(t), i] = σ(A[t, j]) and the result follows from the IH.

(b) If the redex put in head position is some N(j) and M(j) = (x a) and
σ(x) = λy.b then A[σ(t), i] = λy.(σ(H) N(1) ... N(j − 1) b) σ(a) N(j +
1) ... N(n)). Since type(σ(a)) < type(σ) it is enough, by the IH, to show
that λy.(σ(H) N(1) ... N(j − 1) b) y N(j + 1) ... N(n)) = (z N(j +
1) ... N(n))[z := λy.(σ(H) N(1) ... N(j−1) b) y] ∈ SN . Since type(z) <

type(σ) and, by the claim, (z N(j + 1) ... N(n)) ∈ SN it is enough to
show (λy.(σ(H) N(1) ... N(j − 1) b) y) ∈ SN i.e. (by Lemma 3.1) u =

(σ(H) N(1) ... N(j−1) b) ∈ SN . Let t′ = (H
−→
M ′) where M ′(k) = M(k),

for k 6= j, M ′(j) = z′. Since t = t′[z := (x a)], by Lemma 3.1 and the
IH, σ(t′) ∈ SN . Since type(b) < type(σ) it follows that σ(t′)[z′ := b] and
this implies u ∈ SN since u is a sub-term of it.

(c) If, finally, H is a variable, σ(H) = (H ′
−→
M ′) and the redex put in head

position is some M ′(j). Then, A[σ(t), i] = τ(A[t′, j]) where t′ is the same
as t but where we have given to the variable H the fresh variable z and
τ is the same as σ for the variables in dom(σ) and τ(z) = A[σ(H), j].
We conclude by the IH since η(τ) < η(σ).

�

Corollary 3.1 Let t be a term typable in system D. Then t is strongly normalizing.

Proof By induction on size(t). If t is an abstraction or a variable the result
is trivial. Otherwise t = (u v) = (x y)[x := u][y := v] and the result follows
immediately from Theorem 3.3 and the induction hypothesis. �
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