
HAL Id: hal-00376711
https://hal.science/hal-00376711v1

Preprint submitted on 20 Apr 2009 (v1), last revised 27 Apr 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A short proof that adding some permutation rules to
beta preserves SN

René David

To cite this version:
René David. A short proof that adding some permutation rules to beta preserves SN. 2009. �hal-
00376711v1�

https://hal.science/hal-00376711v1
https://hal.archives-ouvertes.fr

A short proof that adding some permutation rules

to β preserves SN

René David

LAMA - Equipe LIMD - Université de Chambéry

e-mail : rene.david@univ-savoie.fr

April 20, 2009

Abstract

I show that, if a term is SN for β, it remains SN when some permutation

rules are added.

1 Introduction

Strong normalization (abbreviated as SN) is a property of rewriting systems that is
often desired. Since about 10 years many researchers have considered the following
question : If a λ-term is SN for the β-reduction, does it remain SN if some other
reduction rules are added ? They are mainly interested with permutation rules
they introduce to be able to delay some β-reductions in, for example, let x = ...
in ... constructions or in calculi with explicit substitutions. Here are some papers
considering such permutations rules: L. Regnier [7], F Kamareddine [3], E. Moggi
[5], R. Dyckhoff and S. Lengrand [2], A. J. Kfoury and J. B. Wells [4], Y. Ohta and
M. Hasegawa [6], J. Esprito Santo [8] and [9].

Most of these papers show that SN is preserved by the addition of the permuta-
tion rules they introduce. But these proofs are quite long and complicated or need
some restrictions to the rule. For example the rule (M (λx.N P)) ⊲ (λx.(M N) P)
is often restricted to the case when M is an abstraction (in this case it is usually
called assoc).

I give here a very simple proof that the permutations rules preserve SN when
they are added all together and with no restriction. It is done as follows. I show
that every term which is typable in the system (often called system D) of types
built with → and ∧ is strongly normalizing for all the rules (β and the permutation
rules). Since it is well known that a term is SN for the β-rule iff it is typable in
this system, the result follows.

2 Definitions and notations

Definition 2.1 • The set of λ-terms is defined by the following grammar

M := x | λx.M | (M M)

• The set T of types is defined by the following grammar where A is a set of
atomic constants

T ::= A | T → T | T ∧ T

1

• The typing rules are the following :

Γ, x : A ⊢ x : A

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ (M N) : B

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B

Γ ⊢ M : A ∧ B

Γ ⊢ M : A

Γ ⊢ M : A ∧ B

Γ ⊢ M : B

Γ ⊢ M : A Γ ⊢ M : B

Γ ⊢ M : A ∧ B

Definition 2.2 The reduction rules are the following.

• β : (λx.M N) ⊲ M [x := N]

• δ : (λy.λx.M N) ⊲ λx.(λy.M N)

• γ : (λx.M N P) ⊲ ((λx.M P) N)

• assoc : (M (λx.N P)) ⊲ (λx.(M N) P)

Note that, using Barendregt’s convention for the names of variables, we may
assume that, in γ (resp. δ, assoc), x is not free in P (resp. in N , in M).

Notation 2.1 • If t is a term, size(t) denotes its size and type(t) the size of
its type. If t ∈ SN (i.e. every sequence of reductions starting from t is finite),
η(t) denotes the length of the longest reduction of t.

• In a proof by induction, IH will denote the induction hypothesis.

• Let σ be a substitution. We say that σ is fair if the σ(x) for x ∈ dom(σ) all
have the same type (that will be denoted as type(σ)). We say that σ ∈ SN if,
for each x ∈ dom(σ), σ(x) ∈ SN .

• Let σ ∈ SN be a substitution and t be a term. We denote by η(σ, t) the
sum, over x ∈ dom(σ), of nb(t, x).η(σ(x)) where nb(t, x) is the number of
occurrences of x in t.

• If
−→
M is a sequence of terms, lg(

−→
M) denotes its length, M(i) denotes the i-th

element of the sequence and tail(
−→
M) denotes

−→
M from which the first element

has been deleted.

• Assume t = (H
−→
M) where H is an abstraction or a variable and lg(

−→
M) ≥ 1.

– If H is an abstraction (in this case we say that t is β-head reducible),

then M(1) will be denoted as Arg[t] and (R′ tail(
−→
M)) will be denoted by

B[t] where R′ is the reduct of the β-redex (H Arg[t]).

– If H = λx.N and lg(
−→
M) ≥ 2 (in this case we say that t is γ-head

reducible), then (λx.(N M(2)) M(1) M(3) ... M(lg(
−→
M))) will be denoted

by C[t].

– If H = λx.λy.N (in this case we say that t is δ-head reducible), then

(λy.(λx.N M(1)) M(2) ... M(lg(
−→
M))) will be denoted by D[t].

– If M(i) = (λx.N P), then the term (λx.(H M(1) ... M(i−1) N) P M(i+

1) ... M(lg(
−→
M))) will be denoted by A[t, i] and we say that M(i) is the

redex put in head position.

2

3 The theorem

Theorem 3.1 Let t be a term. Assume t is strongly normalizing for β. Then t is
strongly normalizing for β, δ, γ and assoc.

Proof This follows immediately from Theorem 3.2 and corollary 3.1 below. �

Theorem 3.2 A term is SN for the β-rule iff it is typable in system D.

Proof This is a classical result. For the sake of completeness I recall here the
proof of the only if direction given in [1]. Note that corollary 3.1 below actually
gives the other direction. The proof is by induction on 〈η(t), size(t)〉.

- If t = λx u. This follows immediately from the IH.
- If t = (x v1 ... vn). By the IH, for every j, let x : Aj , Γj ⊢ vj : Bj . Then

x :
∧

Aj ∧ (B1, ..., Bn → o),
∧

Γj ⊢ t : o.
- If t = (λx.a b −→c). By the IH, (a[x := b] −→c) is typable. If x occurs in a, let

A1 ... An be the types of the occurrences of b in the typing of (a[x := b] −→c). Then t

is typable by giving to x and b the type A1 ∧ ... ∧An. Otherwise, by the induction
hypothesis b is typable of type B and then t is typable by giving to x the type B. �

From now on the type system is system D and ⊲ denotes the reduction by one of
the rules β, δ, γ and assoc.

Lemma 3.1 1. The system satisfies subject reduction.

2. If t ⊲ t′ then t[x := u] ⊲ t′[x := u].

3. If t′ = t[x := u] ∈ SN then t ∈ SN and η(t) ≤ η(t′).

4. If a ∈ SN then (λx.a x) ∈ SN .

Proof (1) and (2) are immediate. (3) follows easily from (2). (4) is proved by
induction on 〈η(a), size(a)〉 looking at all possible reducts of (λx.a x). �

Lemma 3.2 Let t = (H
−→
M) be such that H is an abstraction or a variable and

lg(
−→
M) ≥ 1. Assume that

1. If t is δ-head reducible (resp. γ-head reducible, β-head reducible), then D[t] ∈
SN (resp. C[t] ∈ SN , Arg[t], B[t] ∈ SN).

2. For each i such that M(i)is a redex, A[t, i] ∈ SN ,

Then t ∈ SN .

Proof By induction on η(H) +
∑

η(M(i)). Show that each reduct of t is in
SN . �

Theorem 3.3 Let t ∈ SN and σ ∈ SN be a fair substitution. Then σ(t) ∈ SN .

Proof By induction on 〈type(σ), η(t), size(t), η(σ, t)〉. If t is an abstraction or a

variable the result is trivial. Thus assume t = (H
−→
M) where H is an abstraction or

a variable and n = lg(
−→
M) ≥ 1. Let

−→
N = σ(

−→
M).

Claim : Let
−→
P be a (strict) initial or a final sub-sequence of

−→
N . Then (z

−→
P) ∈ SN .

Proof : This follows immediately from Lemma 3.1 and the IH. �

We use Lemma 3.2 to show that σ(t) ∈ SN .

1. Assume σ(t) is δ-head reducible. We have to show that D[σ(t)] ∈ SN . There
are 3 cases to consider.

(a) If t was already δ-head reducible, then D[σ(t)] = σ(D[t]) and the result
follows from the IH.

3

(b) If H is a variable and σ(H) = λx.λy.a, then D[σ(t)] = t′[z := λy.(λx.a N(1))]

where t′ = (z tail(
−→
N)). By the claim, t′ ∈ SN and since type(z) <

type(σ) it is enough to check that λy.(λx.a N(1)) ∈ SN . But this is
λy.(z′ N(1))[z′ := λx.a]. But, by the claim, (z′ N(1)) ∈ SN and we
conclude by the IH since type(z′) < type(σ).

(c) If H = λx.z and σ(z) = λy.a, then D[σ(t)] = (λy.(λx.a N(1)) tail(
−→
N)) =

(z′ tail(
−→
M))[z′ := λy.(λx.a N(1))]. By the IH, it is enough to show

that (λx.a N(1)) ∈ SN . But this is (λx.z′′ N(1))[z′′ := a] and, since
type(a) < type(σ) it is enough to show that u = (λx.z′′ N(1)) =
σ((λx.z′′ M(1))) ∈ SN . But this follows from the IH since (λx.z′′ M(1))
is (up to α-equivalence) a strict sub-term of t.

2. Assume σ(t) is γ-head reducible. We have to show that C[σ(t)] ∈ SN . There
are 4 cases to consider.

(a) If H is an abstraction, then C[σ(t)] = σ(C[t]) and the result follows
immediately from the IH.

(b) H is a variable and σ(H) = λy.a, then C[σ(t)] = (λy.(a N(2)) N(1)
N(3) ... N(n)) = (λy.(a N(2)) y N(3) ... N(n))[y := N(1)]. Since
type(M(1) < type(H), it is enough, by the IH, to show that
(λy.(a N(2)) y N(3) ... N(n)) = (z N(3) ... N(n))[z := (λy.(a N(2)) y)] ∈
SN . By the claim and since type(z < type(H), it is enough to show that
(λy.(a N(2)) y)] ∈ SN , i.e. (by Lemma 3.1) (a N(2)) = (z′ N(2))[z′ :=
a] ∈ SN . But this follows from the claim and the IH since type(a) <

type(H).

(c) H is a variable and σ(H) = (λy.a b), then C[σ(t)] = (λy.(a N(1)) b

N(2) ... N(n)) = (z N(2) ... N(n))[z := (λy.(a N(1)) b)]. Since type(z) <

type(H), by the IH it is enough to show that u = (λy.(a N(1)) b) ∈ SN .
We use Lemma 3.2.

- We first have to show that B[u] ∈ SN . But this is (a[y := b] N(1))

which is in SN since u1 = (a[y := b]
−→
N) ∈ SN since u1 = τ(t1) where t1

is the same as t but where we have given to the variable H the fresh name
z, τ is the same as σ for the variables in dom(σ) and τ(z) = a[y := b]
and thus we may conclude by the IH since η(τ) < η(σ).

- We then have to show that, if b is a redex say (λz.b1 b2), then A[u, 1] =
(λz.(λy.a N(1) b1) b2) ∈ SN . Let u2 = τ(t2) where t2 is the same as t but
where we have given to the variable H the fresh name z, τ is the same as
σ for the variables in dom(σ) and τ(z) = A[σ(H)]. By the IH u2 ∈ SN .

But u2 = (λz.(λy.a b1) b2

−→
N) and thus u3 = (λz.(λy.a b1) b2 N(1)) ∈

SN . Since u3 reduces to A[u, 1] by using twice by the γ rule, it follows
that A[u, 1] ∈ SN .

(d) If H is a variable and σ(H) is γ-head reducible, then C[σ(t)] = τ(t′)
where t′ is the same as t but where we have given to the variable H the
fresh name z and τ is the same as σ for the variables in dom(σ) and
τ(z) = C[σ(H)]. The result follows then from the IH.

3. Assume that σ(t) is β-head reducible. We have to show that Arg[σ(t)] ∈ SN

and that B[σ(t)] ∈ SN . There are 3 cases to consider.

(a) If H is an abstraction, the result follows immediately from the IH since
then Arg[σ(t)] = σ(Arg[t]) and B[σ(t)] = σ(B[t]).

4

(b) If H is a variable and σ(H) = λy.v for some v. Then Arg[σ(t)] = N(1) ∈

SN by the IH and B[σ(t)] = (v[y := N(1)] tail(
−→
N) = (z tail(

−→
N))[z :=

v[y := N(1)]]. By the claim, (z tail(
−→
N)) ∈ SN . By the IH, v[y :=

N(1)] ∈ SN since type(M(1)) < type(σ). Finally the IH implies that
B[σ(t)] ∈ SN since type(v) < type(σ).

(c) H is a variable and σ(H) = (R
−→
M ′) where R is a β-redex. Then

Arg[σ(t)] = Arg[σ(H)] ∈ SN and B[σ(t)] = (R′
−→
M ′

−→
N) where R′ is

the reduct of R. But then B[σ(t)] = τ(t′) and t′ is the same as t but
where we have given to the variable H the fresh name z and τ is the

same as σ for the variables in dom(σ) and τ(z) = (R′
−→
M ′). We conclude

by the IH since η(τ) < η(σ).

4. We, finally, have to show that, for each i, A[σ(t), i] ∈ SN . There are again 3
cases to consider.

(a) If the redex put in head position is some N(j) and M(j) was already a
redex. Then A[σ(t), i] = σ(A[t, j]) and the result follows from the IH.

(b) If the redex put in head position is some N(j) and M(j) = (x a) and
σ(x) = λy.b then A[σ(t), i] = λy.(σ(H) N(1) ... N(j − 1) b) σ(a) N(j +
1) ... N(n)). Since type(σ(a)) < type(σ) it is enough, by the IH, to show
that λy.(σ(H) N(1) ... N(j − 1) b) y N(j + 1) ... N(n)) = (z N(j +
1) ... N(n))[z := λy.(σ(H) N(1) ... N(j−1) b) y] ∈ SN . Since type(z) <

type(σ) and, by the claim, (z N(j + 1) ... N(n)) ∈ SN it is enough to
show (λy.(σ(H) N(1) ... N(j − 1) b) y) ∈ SN i.e. (by Lemma 3.1) u =

(σ(H) N(1) ... N(j−1) b) ∈ SN . Let t′ = (H
−→
M ′) where M ′(k) = M(k),

for k 6= j, M ′(j) = z′. Since t = t′[z := (x a)], by Lemma 3.1 and the
IH, σ(t′) ∈ SN . Since type(b) < type(σ) it follows that σ(t′)[z′ := b] and
this implies u ∈ SN since u is a sub-term of it.

(c) If, finally, H is a variable, σ(H) = (H ′
−→
M ′) and the redex put in head

position is some M ′(j). Then, A[σ(t), i] = τ(A[t′, j]) where t′ is the same
as t but where we have given to the variable H the fresh variable z and
τ is the same as σ for the variables in dom(σ) and τ(z) = A[σ(H), j].
We conclude by the IH since η(τ) < η(σ).

�

Corollary 3.1 Let t be a term typable in system D. Then t is strongly normalizing.

Proof By induction on size(t). If t is an abstraction or a variable the result
is trivial. Otherwise t = (u v) = (x y)[x := u][y := v] and the result follows
immediately from Theorem 3.3 and the induction hypothesis. �

References

[1] R. David. Normalization without reducibility. APAL 107 (2001) p 121-130.

[2] R. Dyckhoff and S. Lengrand. Call-by-value λ-calculus and LJQ. Journal of
Logic and Computation, 17:1109-1134, 2007.

[3] F. Kamareddine. Postponement, Conservation and Preservation of Strong Nor-
malisation for Generalised Reduction . Journal of Logic and Computation, vol-
ume 10 (5), pages 721-738, 2000

5

[4] A. J. Kfoury and J. B. Wells. New notions of reduction and non-semantic proofs
of beta -strong normalization in typed lambda -calculi. In Proc. 10th Ann. IEEE
Symp. Logic in Comput. Sci., pages 311-321, 1995.

[5] E. Moggi. Computational lambda-calculus and monads. LICS 1989.

[6] Y. Ohta and M. Hasegawa. A terminating and confluent linear lambda cal-
culus. In Proc. 17th International Conference on Rewriting Techniques and
Applications (RTA’06). Springer LNCS 4098, pages 166-180, 2006.

[7] L Regnier. Une quivalence sur les lambda-termes, in TCS 126 (1994).

[8] J. E. Santo. Delayed substitutions, in Proceedings of RTA 2007, Lecture Notes
in Computer Science, volume 4533, pp. 169-183, Springer, 2007,

[9] J. E. Santo. Addenda to Delayed Substitutions, Manuscript (available in his
web page), July 2008.

6

