
HAL Id: hal-00376701
https://hal.science/hal-00376701v1

Submitted on 20 Apr 2009 (v1), last revised 22 Jul 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Maintenance of Anytime Available Spanning
Trees in Dynamic Networks

Arnaud Casteigts, Serge Chaumette, Frédéric Guinand, Yoann Pigné

To cite this version:
Arnaud Casteigts, Serge Chaumette, Frédéric Guinand, Yoann Pigné. Distributed Maintenance of
Anytime Available Spanning Trees in Dynamic Networks. Distributed Maintenance of Anytime Avail-
able Spanning Trees in Dynamic Networks, Jul 2013, Poland. pp.99-110. �hal-00376701v1�

https://hal.science/hal-00376701v1
https://hal.archives-ouvertes.fr

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009 1

Distributed Maintenance of Anytime Available
Spanning Trees in Dynamic Networks

Arnaud Casteigts1, Serge Chaumette2, Frédéric Guinand3 and Yoann Pigné3

1SITE, University of Ottawa 2LaBRI, University of Bordeaux 1 3University of Le Havre

800 Avenue King Edward 351 cours de la Libration LITIS EA 4108

Ottawa, Ontario K1N 6N5 33405 Talence cedex BP 540, 76058 Le Havre cedex

Canada France France

Abstract— This paper investigates the problem of building and
maintaining distributed spanning trees in dynamic networks.
Contrarily to previous solutions, we do not assume the existence
of stabilization periods between topological changes, andaddress
the more general case where such changes may occur at anytime
and disconnect the network. Hence, we present an algorithm that
relies on a perpetual alternation of topology-induced splittings
and computation-induced mergings of a forest of spanning trees,
using random walks of tokens. The original idea behind this
algorithm is simple: each tree in the forest hosts exactly one
token, whose circulation is strictly limited to the edges ofthe
tree. When two tokens meet, the trees are merged and one of the
two tokens is destroyed. When a link is broken, the adjacent node,
belonging to the token-free tree, generates a new token. Themain
features of this approach are that both mergings and splittings
are purely localized phenomenon, which allows a transparent
and continuous use of the involved subtrees (as far as no higher-
level communication is concerned). The algorithm presented here,
while briefly introduced in another context, was never analyzed
nor properly discussed. We do both here, and provide analytical
expressions of the expected merging time of two given trees.We
finally propose a substantial optimization to the algorithm that
consists in using amemory-based bias in the token walks. The
impact of this optimization is investigated both analytically and
experimentally.

I. I NTRODUCTION

Spanning trees are essential components in communication
networks. The availability of such structures simplifies a large
number of tasks, among which broadcasting, multicasting,
electing, or naming. The computation of spanning trees is
therefore a classic problem in distributed computing. From
a distributed point of view, constructing a spanning tree
implies the collaboration of neighboring nodes to establish
relations among some of their common links so that the
collection of these links forms a tree that connects them all.
In static networks, there is generally a distinction between the
construction of a tree and its effective use, both taking place
at a different time.

The present document is a working paper whose purpose is to summarize
the results we obtained so far on this problem. The reader is therefore invited
to check if a later, or published, version of this paper has been made available
since April 2009. The work presented here was supported by the Agence
National pour la Recherche, within the SARAH project, on contract ANR-
05-SSIA-0002-01.

Considering spanning trees in truly dynamic networks is
slightly different. Indeed, because links are frequently made
unavailable, the construction of the tree may not be durably
achievable and rather be considered as a continuously running
process. Moreover, in some kinds of emerging networks,
such asDelay-Tolerant Networks[Fal03], the constant end-
to-end connectivity of the network cannot be assumed, and
the possibility of a single spanning tree covering it may
not even exist. It appears however that most of the works
in this domain considered the approach of adaptating static
network algorithms to the dynamic context, still assuming
that constructing a single tree can be achieved during some
topologically stable periods.

In this paper we focus on dynamic networks where no stable
period can be assumed. As a consequence, the construction
of the tree(s) must be seen as a continuous, never-ending
process, during which topological events frequently occur. The
main idea behind the algorithm studied here, firstly introduced
in [Cas06], relies on an entangled alternation ofcomputation-
based mergingsand topology-based splittingsof a forest of
trees. The core mechanism is based on the circulation of sev-
eral tokens whose number is maintained at exactly one per tree.
The fact that each circulation is strictly limited to the edges of
the corresponding tree, and the fact that no unique identifiers
are required, allowsmergingsandsplittings to be handled in
purely decentralized and localized fashion, without requiring
any further communication. Also, the algorithm requires no
additional memory than what is needed for the strict encoding
of the tree (two bits per edge, and one per vertex). Later on,
we propose an optimized version where the circulation of the
token is constrained by its past movements. This optimized
version requires slightly more memory (from1 to n additional
bits per edge, wheren is logarithmic with the degree of the
corresponding endpoint vertices). No global knowledge is re-
quired for both versions. While offering interesting properties
in really dynamic networks, this algorithm is however expected
to perform quite poorly in a static network with identities
(compared to what a dedicated algorithm could do in that
context). It does not address the problem of minimizing the
sum of edge costs neither, as equal weights are assumed on
all edges.

After reviewing some relevant existing work in Section II
and giving preliminar information in Section III, we present

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009 2

and discuss the original version of the algorithm in SectionIV.
Section V is then devoted to its analysis using random walks
properties. In particular, we give an analytical expression of
the expected merging timeof two trees. In Section VI, a
substantial improvement of the algorithm is proposed based
on memorizing, locally to each vertex, then last visited edges
so that the token exploration is timely balanced. We conclude
in Section VII with some avenues for further research.

II. RELATED WORK

The problem of building distributed spanning trees in
communication networks, and more generally in graphs, has
been extensively studied during the last three decades and a
large literature exists on the topic. Providing a comprehensive
review of the domain is difficult, if not impossible, especially
because the problem was studied by different communities
(self-stabilization, random walk, distributed computing) using
different paradigms and terminologies (e.g. token, mobile
agent, random walk, legal state, stabilization time, merging
time, cover time, tree, forest, etc.). In spite of this complexity,
we attempt to review below the most relevant concepts and
approaches to solve this problem.

1) self-stabilization: a system that reaches alegal state
starting from anarbitrary state is calledself-stabilizing. After
a fault in the system, the time required to reach the legal state
is called thestabilization time. In the context of spanning trees
in dynamic networks, topological changes are the faults, and
having the entire network covered by a single tree, or in case
of partitioned networks one tree per connected component,
is the legal state. One approach to transform a non-self-
stabilizing algorithm into a self-stabilizing one, is toreset
the states of the nodes when a fault occurs, so that a new
execution of the algorithm is initiated. This approach has been
considered by most of the self-stabilizing algorithms proposed
so far for the spanning tree problem, and the one with the
smallest stabilization time was introduced in [AKM+93] (as
a coarse-grain graph algorithm, more recently translated into
the message passing model in [BK07]). We refer the reader to
[Gae03] for a more general survey on self-stabilizing spanning
tree algorithms. However, self-stabilizing algorithms assume
that no additional faults occur during the stabilization period,
which may not be realistic in unpredictable dynamic networks.
In contrast, the algorithm studied in the present paper has a
stabilization time of one operation, while considering a weaker
meaning of what is a legal state (i.e., covering the whole
network with a single tree is not part of the condition).

2) random walk:a random walk is a sequence of vertices
such that each vertex in the sequence (except the starting
vertex) is randomly selected among the neighbors of its
predecessor. The expected number of steps required to cover
the whole network is calledcover time. Random walks have
been used to solve several problems in distributed systems,
such as leader election, token management, and spanning trees.
The idea of using random walks to compute spanning trees
was first proposed in [Ald90], where a single random walk
is considered. Anytime, the set of all covered vertices, along
with the edges from which they were visited the first time,
defines a random tree that spans the nodes already visited.

3) mobile agents:mobile agents are entities that can ”phys-
ically” travel across the network, and perform tasks directly
on the nodes. These agents may or may not carry their own
memory, and adopt a variety of strategies to move within the
network. In [BFG+03], distributed random walks of mobile
agents (calledtokensin the paper) were used. More precisely,
colored tokens are annexing territories while walking within
the network. Each token builds a tree (a subtree of the global
spanning tree). When two tokens meet or when a token visits
a vertex that has already been visited, the two trees are merged
into one. This operation is performed by awave propagation,
which is a broadcast-based process that occurs along the
edges of the trees. The network is assumed connected and
no topological changes are allowed during the constructionof
the tree. Unique identifiers are also required.

A similar approach was presented more recently
in [AMZ06], where mobile colored agents (equivalent
to tokens) construct subtrees in a distributed way. These are
progressively merged into a final spanning tree. Whenever
one agent enters the region of another, the agent that have
the larger color progressively takes control of the vertices
and eventually destroys the other agent. The advantage of
this gradual process is that it avoids the wave propagation.
However, unique identifiers are required to generate the
colors. To regenerate agents after topological changes, the
authors assume an upper bound in the cover time. If a node
was not visited during this period, the process concludes that
the token was lost and regenerates a new one. The problem
is that relying on the cover time is not totally safe. Indeed,
a token might stay longer than expected in some part of the
tree (unless a very large value is considered). This mechanism
furthermore implies that the nodes know an upper bound on
the order of their tree (or at least of the entire graph) in order
to estimate the cover time. Also, if the rate of topological
events is higher than the expected cover time, then the trees
are never used.

In comparison to these approaches, the one we propose
and study here neither requires any stable periods, nor unique
identifiers or wave mechanisms. This is, to the best of our
knowledge, the first such attempt.

III. N ETWORK MODEL AND ASSUMPTIONS

Dynamic networks are generally represented by dynamic
graphs. However, as far as we investigated the problems
presented next, we did not specifically required a dynamic
graph model. At a given moment, the network is therefore
represented by an undirected simple graphG = (VG, EG),
whereVG stands for the set of nodes andEG stands for the
set of communication links available between them. Vertices
adjacent to a same edge are saidneighbors. The set of
neighbors of a vertexv is notedN(v). At anytimet, the state
of the network is given by alabelling on the corresponding
graph. More precisely, every vertexv ∈ VG is associated with
one labelλt(v) representing its algorithmic state, and another
labelλt(v, e) for each of its adjacent edges. Each edge is thus
labelled on both endpoints, with possibly different values.

The algorithm given in this paper is a coarse-grain atomicity
algorithm, which basically means that the communication

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009 3

model (e.g. mailbox, shared memory, or message passing) is
abstracted by atomic operations occuring possibly simultane-
ously on several neighbor vertices (and related edges).

Hence, the algorithm will be described using graph
relabelling operations, that are pairs of label patterns
(precondition, action), also calledrelabelling rules, which
define how the states of neighboring vertices are to be modi-
fied [LMS99]. For example,

(precondition:λ(v) = informed ∧ ∃v′ ∈ N(v) | λ(v′) = ¬informed,

action: λ(v′) := informed)

represents a propagation of information in the network. When
this is non ambiguous, an equivalent graphical notation canbe

used (e.g.inf ¬ inf inf inf).
A complete algorithm is then given by a (possibly ordered)

set of such rules. The fact of usingordered rules means
that a ruleri can be locally applied only if no rulerj<i

are locally applicable. Note that guaranteeing this property
requires to consider the whole neighborhood of the involved
vertices before each rule application. We concede that thismay
complicate the translation of such coarse-grain algorithminto
a real communication model.

IV. T HE SPANNING FOREST ALGORITHM

This section presents the spanning forest algorithm and
discuss some of its main properties.

A. The locality criterion

Let us consider the scenario depicted Figure 1, where two
nodes,A and B, are to decide whether their common edge
should be used to merge their respective trees. This scenario
illustrates some design choices of the algorithm.

A
B

?

C D

Fig. 1. An example scenario.

In order to take the decision, two problems must be solved:

1) Do A and B effectively belong to different trees, or is
there a path linking them within the tree?

2) How to guarantee that no other merging operation si-
multaneously occur between these two trees (e.g. if C

andD were performing the same operation in parallel)?

The second problem implies either that i) before merging,
a vertex knows that it is the only one capable of doing so
in its tree at this time, or that ii) it initiates a consultation in
its tree to get the permission from the other vertices or from
a central authority (typically the root of its tree). In really
dynamic networks, where topological events are expected to

occur frequently, raising a consultation within the tree isnot
conceivable since this may lead to the inefficiency of the
process, especially in case of multiple demands. It appearsa
better option to allow decisions to be made locally by de facto
having only one node being able to merge at a time. As a by-
product, this also solves the first problem, since two vertices
cannot simultaneously have the merging faculty if they do not
belong to different trees.

B. The Algorithm

The algorithm, given Figure 2, is based on three operations
on tokens:circulation, merging, andregeneration, which aim
at maintaining always one, and exactly one, token per tree.
Initially, every vertex is a one-vertex tree that has its owntoken
(labelT). When two tokens happen to be at distance1 (hosted
by neighboring vertices), they are merged into one single token
(the other node is relabelledN), and the corresponding edge
is marked as atree edge(rule r3) by using a different label
on each side (1 and2) to reflect the orientation induced by
the remaining token (see below). When no merging is locally
achievable, the token is transmitted to any neighbor inthe tree
(rule r4), and the orientation mark is updated consequently.

initial states:T for every vertex,∅ for every edge extremity.

r1 :
N T

1

off

r2 :
Any Any

2

off

r3 :
T T T N

∅ ∅ 2 1

r4 :
T N N T

2 1 1 2

Fig. 2. The spanning forest algorithm, given as a set of relabelling rules.

The key point here is that the labels of the edges always
define an oriented tree that is rooted in the vertex that hosts
the token. Thanks to these labels, everyN-labelled vertex
has a unique ’outgoing’ edge (label1), which indicates the
direction towards the token. If such an edge is broken for
any reason, them this node is thus aware to be now the top
most vertex in the hierarchy of its orphan part of the tree (this
property remains true whatever the number of simultaneous
edge failures). This vertex then simplyregeneratesa new token
(ruler1). On the parent side side, this induces only to ’remove’
the local state of the broken edge (ruler2), unrespectfully
to the fact that this node has the token or not. In order to
enforce potential mergings, we consider the rules as ordered
(that is, r4 cannot be applied ifr3 is applicable), which
implies, as previously mentioned at the end of Section III,
that a node consider its whole neighborhood before applyinga
rule. In some particular configuration however, a few possible
mergings may be missed (e.g. when aT-labelled vertex has
more than oneT-labelled neighbors at a time).

V. A NALYSIS

This section studies the question of how frequent the merg-
ings are. In particular, we characterize the expected number of
token moves before a merging occurs between two given trees,

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009 4

as a function of their orders and the number of their shared
links. We hope this may later help characterize the expected
size of the trees according to properties on the topology
dynamics.

A. Asynchronicity

The system is considered asynchronous in the sense that
no global clock is available and the distributed operationsdo
not necessarily occur at the same frequencies everywhere in
the network. Previous work in the area of local computations
considered underlying localized procedures to determine how
vertices choose each other to collaborate (e.g.[MSZ03]), with
the side effect that vertices become somehow synchronized
(confined intorounds). Since all distributed operations in our
algorithm involve at least oneT-labelled vertex, we do not
use these general-purpose procedures, but rather assume that
collaborations are to be initiated byT-labelled vertices only.
This makes it possible to consider that each token circulates
independently from the others, and consequently that every
move of every token constitutes a distinctstep in the global
system.

B. Bridges

Given two treesT1 andT2 in the same graphG, there might
exist some edges whose extremities belong toT1 on one side,
and T2 on the other. Let us call such edgesbridges. After
each individual token move, the probability that the two trees
merge is equivalent to the probability for their two tokens to
be located on the extremities of a same bridge.

A B

C

D

E

F
GT1 T2

Fig. 3. Example of two trees in the same graph. The bridges between them
are represented by dashed lines.

More formally, let us denote byBridges(T1, T2) the set of
edges(u, v) such thatu ∈ ET1

andv ∈ ET2
. The probability

that T1 andT2 merge at a given steps is thus equal to:

Pmerge(T1,T2) =
X

(u,v)∈Bridges(T1,T2)

P (λs(u)=T∧λs(v)=T). (1)

C. Token circulation vs. random walks

Assuming that aT-labelled vertex has equal chances to
apply the rule r4 with any of its child (this can be an
implementation choice), the circulation of each token becomes
a random walk in its tree. Now, the probability for a random
walking token to be positioned on a given vertexv in a graph

G (tree or not) is a well-known result that only depends on
the degree ofv, noteddG(v). At anytime, for any vertexv in
a treeT , the probability thatv hosts the token is:

P (λ(v) = T) =
dT (v)

2|ET |
(2)

In fact, these values hold only after a certain time of
circulation, before which the probabilities actually depend
on the starting vertex. In more technical terms, this random
walk can be seen as aMarkov chainwhosestationary (or
equilibrium) distribution corresponds to the values of Eq. 2.
Depending on the desired precision, this equilibrium can be
considered as reached after a certain time of circulation, which
is calledmixing time. As discussed later on in this paper, this
time has an important impact on the algorithm performance.

D. Expected merging time

The expected merging timeconstitutes an estimation of the
mean number of steps (number of token moves in our context)
required to merge the trees. Let us first assume that themixing
time is instantaneous, that is, the probabilities of presence of
the token are always equal to those of Eq. 2 for every vertex.
This assumption will be released in Section VI, where we
explore the impact of this time on the performances of the
algorithm. Hence, considering Eq. 1 together with Eq. 2, the
probability that two treesT1 andT2 merge at a given step is:

Pmerge(T1,T2) =
X

{(u,v)∈Bridges(T1,T2)}

dT1
(u)

2|ET1
|
×

dT2
(v)

2|ET2
|

(3)

which in turn gives theexpected merging time(in number of
steps), as:

Emerge(T1, T2) = (Pmerge(T1,T2))−1

=

0

@

X

{(u,v)∈Bridges(T1,T2)}

dT1
(u)

2|ET1
|
×

dT2
(v)

2|ET2
|

1

A

−1

(4)

E. Further analytical results

We have considered here the merging probabilities and
expected merging time of two static trees. While this provides
a good intuition of the performance of the algorithm, this is
not the end of the story. First of all the algorithm is intended
to run on dynamic topologies. The most interesting parameter
is thus the average number and order of trees one may expect
by running this algorithm in a given mobility scenario (e.g.
given an expected rate of topological changes). This study
will most likely require Eq. 4 as a first step, though. Also,
an intermediate step will certainly be to generalize it for
more than two trees and potential concurrency between their
mergings.

VI. OPTIMIZATION

This section presents a substantial optimization of the
algorithm, based on introducing the use of memory in the
random walk in order to reduce its mixing time.

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009 5

A. Motivations

To compare the expected time of Eq. 4 with simulation
results, we experimentally measured the merging time of pairs
of fixed order random trees (that were randomly generated).
Once a pair of trees built, the test consisted in adding three
random edges between them (bridges), and measuring the
number of steps required to merge thereafter. Two scenarios
were tested, with different orders for the trees. In the first
scenario, one of the trees was of order20, the other8. In the
second scenario, both trees were of order12. According to
Eq. 4, the expected merging time for the first scenario should
have been:

Emerge(T1, T2) =
“

P

1..3(
av.deg(T1)

2|ET1
|

× (av.deg(T2)
2|ET2

|
)
”−1

=
“

P

1..3(
|ET1

|/|VT1
|

2|ET1
|

× (
|ET2

|/|VT2
|

2|ET2
|

)
”−1

≃53.3 steps.

and 48 steps exactly for the second scenario. For both
scenarios, we ran3000 iterations of the test, each one executed
on different random trees. The average merging time we
observed was of121.0 steps in the first case (instead of53.3),
and104.2 in the second case (instead of48). This difference
means that the probabilities of token presence among the nodes
was not effectively distributed as predicted by Equation 2.In
other words, the equilibrium distribution cannot be considered
as reachedas soon as the walk has started, and this has an
impact on the performance.

More intuitively, this problem can be thought of as the token
going back and forth within a small subset of the vertices, and
taking a relatively long time to visit other new nodes. If the
number of nodes involved in a bridge is small in comparison
to the total number of nodes in the tree, then this obviously
increases the average time needed to reach such nodes (and
consequently the merging time). In terms of random walks,
we believe that themixing timehas an impact on thehitting
time, and that this impact is as negative as the relative number
of bridge nodes is small in the trees. Note that as far as this
paper is concerned, these statements are still to be formally
investigated.

B. A Memory-based approach

Based of the above observation, we propose an optimization
that intends to reduce themixing timein order to increase the
probability to visit minorities of vertices more quickly. The
improvement consists in memorizing, locally to each vertex
v, the n most recently visited incident edges so that the
token is not sent back on them, but preferably on any of the
d(v) − n other edges (or on the least recently visited one if
d(v) ≤ n). The chosen value forn actually controls the level
of randomness of the walk,0 being equivalent to the original
version, andmax(d(v) : v ∈ VT) − 1 being equivalent to a
deterministic token circulation.

In order to measure the impact of the memory leveln on
the mixing time, we considered single random trees of order
20 and observed how tokens circulate in them depending on
the value ofn. More precisely, we measured the difference
between the effective distribution of token presence on vertices

and the values given by Equation 2 The results averaged over
1000 simulations (with different initial graphs for each run)
are presented Figure 4.

0 1,000 2,000 3,000 4,000
0

20

40

60

Number of steps

D
iff

.
ef

fe
ct

iv
e/

st
at

io
n

ar
y

d
is

tr
ib

.
(%

)

0-memory
1-memory
2-memory
3-memory

Fig. 4. Impact of the level of memory on the mixing time towards the
values of Equation 2.

As expected, the mixing time decreases as the level of
memory increases. It can also be noted that all versions well
and truly converge towards the values of Equations 2 (which
fact was not necessarily obvious at first sight).

Now, using the same scenarios as considered in para-
graph VI-A, we tested the different levels of memory upon the
merging time. Figure 5 shows the results, averaged over3000
iterations for each memory level. As one can see on this plot,
these results are clear-cut, and even beyond expectations,since
the effective merging time becomes indentical to the expected
merging time of Eq. 4 as the level of memory increases.

0 1 2 3 4

53.3

60

80

100

121

Level of memory

M
er

g
in

g
tim

e
(in

st
ep

s)

effective merging time (simulations)
expected merging time (Equation 2)

Fig. 5. Impact of the level of memory on the merging time (Scenario 1).

The simulation results for the second scenario, shown in
Figure 6, are slightly less obvious to interpret. Indeed, it
appears that, in this case, the best level of memory is1 and
that the performance deteriorates for larger values. The reason
for this behavior is most probably due to the determinism
induced by the memory. Indeed, as the level of memory
increases, a cyclic effect on the token circulation will appear,
and in case of identical (orcoprime) orders for the trees,
this may put the tokens somehowin-phase. If the system
were globally synchronous, such effect could in fact generate
infinite merging times, which does not happen here. This
problem of phase is also likely to be mitigated by the network

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009 6

0 1 2 3 4

48

60

80

100
104.2

Level of memory

M
er

g
in

g
tim

e
(in

st
ep

s)

effective merging time (simulations)
expected merging time (Equation 2)

Fig. 6. Impact of the level of memory on the merging time (Scenario 2).

dynamics, whose side effect is to regularly breaks any potential
symmetry.

VII. C ONCLUSION

This paper presented several versions of a spanning forest
algorithm for dynamic networks. The originality of this algo-
rithm is that the construction (and maintainance) of the trees
is a continuous process that takes place at the same time as
the tree is used. This property results from a particular random
walk technique that turnssplittingsandmergingsof the trees
into purely localized phenomenons. Besides the presentation
of the algorithm, this work focused on understanding how
some properties of the walk could impact the performance.
To start, we characterized the expected merging time of two
given trees if the walks were to offer some ideal properties
(namely, amixing timeof 0). Based on experimental results,
we observed that the mixing time had indeed an impact on
the ability to reach (orhit) the nodes located on potential
bridges(the higher mixing time, the higher hitting time when
these nodes are a minority). An optimized version was then
proposed to try to improve the hitting time through the mixing
time. This optimization consisted in avoiding the lastk locally
visited edges during the walk. This technique, that one can see
in the spirit of tabu searches approaches, prove very efficient
in the tested scenarios (more than halving the average number
of token moves required to merge two given trees).

Beyond these analytical and experimental results, a number
of questions remain open at this stage of investigation. First,
the nature of the relation between the mixing and the hitting
time is not totally clear, and an extra work will be required
to get deeper insights on this question. A better understanding
on these mechanisms could also be obtained by measuring
the influence of additional parameters, such as the degree of
the bridge nodes or the existence of particular properties on
the network geometry (e.g. unit disc graph). We hope to be
eventually able to characterize the average size of the trees as
a function of the density and the rate of topological changes.
Another important question is how close the algorithm results
are from the optimal solution (that is, the average ratio between
the number of trees and the number of connected components).
Finally, one may wonder whether this kind of algorithms
is suitable to real networking contexts, such as state-of-the-
art wireless ad hoc networks, in which the detection of the

neighborhood is not instantaneous (nor totally guaranteed),
and each token move implicitely generates several exchanges
at the lower levels. We are currently performing some real-life
experiments to try to answer this question.

REFERENCES

[AKM +93] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and
G. Varghese. Time optimal self-stabilizing synchronization.
In STOC ’93: Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 652–661, New York,
NY, USA, 1993. ACM.

[Ald90] D.J. Aldous. The random walk construction of uniform spanning
trees and uniform labelled trees.SIAM J. Discret. Math.,
3(4):450–465, 1990.

[AMZ06] S. Abbas, M. Mosbah, and A. Zemmari. Distributed computation
of a spanning tree in a dynamic graph by mobile agents.
Engineering of Intelligent Systems, 2006 IEEE International
Conference on, pages 1–6, 0-0 2006.

[BFG+03] H. Baala, O. Flauzac, J. Gaber, M. Bui, and T. El-Ghazawi.
A self-stabilizing distributed algorithm for spanning tree con-
struction in wireless ad hoc networks.Journal of Parallel and
Distributed Computing, 63:97–104, 2003.

[BK07] J. Burman and S. Kutten. Time optimal asynchronous self-
stabilizing spanning tree. InDISC, pages 92–107, 2007.

[Cas06] A. Casteigts. Model driven capabilities of the DA-GRS model.
In ICAS ’06: Proceedings of the International Conference on
Autonomic and Autonomous Systems, pages 24–32, Washington,
DC, USA, 2006. IEEE Computer Society.

[Fal03] K. Fall. A delay-tolerant network architecture forchallenged
internets. InSIGCOMM ’03: Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for
computer communications, pages 27–34, New York, NY, USA,
2003. ACM.

[Gae03] F.C. Gaertner. A Survey of Self-Stabilizing Spanning-Tree
Construction Algorithms. Technical report, 2003.

[LMS99] I. Litovsky, Y. Métivier, and E. Sopena. Graph relabelling sys-
tems and distributed algorithms. In World Scientific Publishing,
editor, Handbook of graph grammars and computing by graph
transformation, volume III, Eds. H. Ehrig, H.J. Kreowski, U.
Montanari and G. Rozenberg, pages 1–56, 1999.

[MSZ03] Y. Métivier, N. Saheb, and A. Zemmari. Analysis of arandom-
ized rendezvous algorithm.Inf. Comput., 184(1):109–128, 2003.

