N
N

N

HAL

open science

Distributed Maintenance of Anytime Available Spanning
Trees in Dynamic Networks

Arnaud Casteigts, Serge Chaumette, Frédéric Guinand, Yoann Pigné

» To cite this version:

Arnaud Casteigts, Serge Chaumette, Frédéric Guinand, Yoann Pigné. Distributed Maintenance of
Anytime Available Spanning Trees in Dynamic Networks. Distributed Maintenance of Anytime Avail-

able Spanning Trees in Dynamic Networks, Jul 2013, Poland. pp.99-110. hal-00376701v1

HAL Id: hal-00376701
https://hal.science/hal-00376701v1
Submitted on 20 Apr 2009 (v1), last revised 22 Jul 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00376701v1
https://hal.archives-ouvertes.fr

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009 1

Distributed Maintenance of Anytime Available
Spanning Trees in Dynamic Networks

Arnaud Casteigls Serge Chaumette Frédéric Guinant and Yoann Pign&

LSITE, University of Ottawa 2LaBRI, University of Bordeaux 1 3University of Le Havre

800 Avenue King Edward 351 cours de la Libration LITIS EA 4108
Ottawa, Ontario KIN 6N5 33405 Talence cedex BP 540, 76058 awdicedex
Canada France France

Abstract— This paper investigates the problem of building and Considering spanning trees in truly dynamic networks is
maintaining distributed spanning trees in dynamic networks. slightly different. Indeed, because links are frequentigde
Contrarily to previous solutions, we do not assume the exishce unavailable, the construction of the tree may not be durably

of stabilization periods between topological changes, anaddress hievabl d rather b idered fi | .
the more general case where such changes may occur at anytimealC ievable and rather be considered as a contnuouslynginni

and disconnect the network. Hence, we present an algorithnhat ~ Process. Moreover, in some kinds of emerging networks,
relies on a perpetual alternation of topology-induced splittings such asDelay-Tolerant Network¢$Fal03], the constant end-

and computation-induced mergings of a forest of spanning trees, to-end connectivity of the network cannot be assumed, and
using random walks of tokens. The original idea behind this the possibility of a single spanning tree covering it may

algorithm is simple: each tree in the forest hosts exactly om t st It h that t of th K
token, whose circulation is strictly limited to the edges ofthe not even exist. 1t appears however that most o € WOrks

tree. When two tokens meet, the trees are merged and one of thein this domain considered the approach of adaptating static
two tokens is destroyed. When a link is broken, the adjacentode, network algorithms to the dynamic context, still assuming
belonging to the token-free tree, generates a new token. Theain that constructing a single tree can be achieved during some
features of this approach are that both mergings and splittings topologically stable periods.

are purely localized phenomenon, which allows a transparen In thi f d . tworks wh tabl
and continuous use of the involved subtrees (as far as no high n IS paper we focus on dynamic networks where no sta .e
level communication is concerned). The algorithm presentehere, Period can be assumed. As a consequence, the construction
while briefly introduced in another context, was never analged of the tree(s) must be seen as a continuous, never-ending
nor properly discussed. We do both here, and provide analytial process, during which topological events frequently octhe
expressions of the expected merging time of two given treed/e i jgea behind the algorithm studied here, firstly intreeti

finally propose a substantial optimization to the algorithm that
consists in using amemory-based bias in the token walks. The N [Cas06], relies on an entangled alternatiorcofmputation-

impact of this optimization is investigated both analyticdly and based mergingsind topology-based splittingsf a forest of
experimentally. trees. The core mechanism is based on the circulation of sev-

eral tokens whose number is maintained at exactly one per tre
The fact that each circulation is strictly limited to the ed@f
. INTRODUCTION the corresponding tree, and the fact that no unique idergtifie

)]] _are required, allowsnergingsand splittingsto be handled in
Spanning trees are essential components in communicaifRely decentralized and localized fashion, without reqgi

networks. The availability of such structures simplifie®é any further communication. Also, the algorithm requires no
number of tasks, among which broadcasting, multicastingygitional memory than what is needed for the strict enapdin
electing, or naming. The computation of spanning trees ¢ the tree (two bits per edge, and one per vertex). Later on,
therefore a classic problem in distributed computing. Frofe propose an optimized version where the circulation of the
a distributed point of view, constructing a spanning trégyen is constrained by its past movements. This optimized
impli_es the collaboration of ne_ighboring nqdes to establigersion requires slightly more memory (frohto n additional
relations among some of their common links so that th§is per edge, where is logarithmic with the degree of the
collectl|on of these links forms a tree th.at.cor.mects them aryorresponding endpoint vertices). No global knowledgeeis r
In static networks, there is generally a distinction betwte quired for both versions. While offering interesting proes
constr_uction of a tree and its effective use, both taking®la;, really dynamic networks, this algorithm is however exgec
at a different time. to perform quite poorly in a static network with identities
(compared to what a dedicated algorithm could do in that
The present document is a working paper whose purpose ismmatize CONteXt). It does not address the problem of minimizing the

the results we obtained so far on this problem. The readéeiefore invited Sum of edge costs neither, as equal weights are assumed on
to check if a later, or published, version of this paper halmeade available || edges.

since April 2009. The work presented here was supported byAgence After reviewing some relevant existing work in SectiEh 1]
National pour la Recherchewithin the SARAH project, on contract ANR- 9 g

05-SSIA-0002-01. and giving preliminar information in SectiIII, we presen

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009 2

and discuss the original version of the algorithm in Sec@n 3) mobile agentsmobile agents are entities that can "phys-
Sectionﬂ’ is then devoted to its analysis using random wallcally” travel across the network, and perform tasks diyect
properties. In particular, we give an analytical expressdd on the nodes. These agents may or may not carry their own
the expected merging timef two trees. In SectimD/l, a memory, and adopt a variety of strategies to move within the
substantial improvement of the algorithm is proposed basedtwork. In [BFG 03], distributed random walks of mobile
on memorizing, locally to each vertex, thdast visited edges agents (calledokensin the paper) were used. More precisely,
so that the token exploration is timely balanced. We coreludolored tokens are annexing territories while walking with

in Section[VI] with some avenues for further research. the network. Each token builds a tree (a subtree of the global
spanning tree). When two tokens meet or when a token visits
Il. RELATED WORK a vertex that has already been visited, the two trees areetierg

The problem of building distributed spanning trees ifnto one. This operation is performed bynave propagation
communication networks, and more generally in graphs, habich is a broadcast-based process that occurs along the
been extensively studied during the last three decades aneldges of the trees. The network is assumed connected and
large literature exists on the topic. Providing a comprehen no topological changes are allowed during the construaiion
review of the domain is difficult, if not impossible, espéigia the tree. Unique identifiers are also required.
because the problem was studied by different communitiesA similar approach was presented more recently
(self-stabilization, random walk, distributed compujinging in [AMZ06], where mobile colored agents (equivalent
different paradigms and terminologieg.q. token, mobile to tokens) construct subtrees in a distributed way. These ar
agent, random walk, legal state, stabilization time, maggi progressively merged into a final spanning tree. Whenever
time, cover time, tree, forest, ecln spite of this complexity, one agent enters the region of another, the agent that have
we attempt to review below the most relevant concepts atfie larger color progressively takes control of the vestice
approaches to solve this problem. and eventually destroys the other agent. The advantage of

1) self-stabilization: a system that reaches lagal state this gradual process is that it avoids the wave propagation.
starting from ararbitrary state is calledself-stabilizing After However, unique identifiers are required to generate the
a fault in the system, the time required to reach the legé staolors. To regenerate agents after topological changes, th
is called thestabilization time In the context of spanning treesauthors assume an upper bound in the cover time. If a node
in dynamic networks, topological changes are the faultd, awas not visited during this period, the process concludast th
having the entire network covered by a single tree, or in calee token was lost and regenerates a new one. The problem
of partitioned networks one tree per connected componeistthat relying on the cover time is not totally safe. Indeed,
is the legal state. One approach to transform a non-seiftoken might stay longer than expected in some part of the
stabilizing algorithm into a self-stabilizing one, is teset tree (unless a very large value is considered). This meshani
the states of the nodes when a fault occurs, so that a niwthermore implies that the nodes know an upper bound on
execution of the algorithm is initiated. This approach hesrb the order of their tree (or at least of the entire graph) ireord
considered by most of the self-stabilizing algorithms megd to estimate the cover time. Also, if the rate of topological
so far for the spanning tree problem, and the one with tlewents is higher than the expected cover time, then the trees
smallest stabilization time was introduced in [AKM3] (as are never used.

a coarse-grain graph algorithm, more recently translaténl i In comparison to these approaches, the one we propose
the message passing model in [BKO7]). We refer the readerand study here neither requires any stable periods, nouaniq
[Gae03] for a more general survey on self-stabilizing sjpamn identifiers or wave mechanisms. This is, to the best of our
tree algorithms. However, self-stabilizing algorithmswase knowledge, the first such attempt.

that no additional faults occur during the stabilizatiomipe,

which may not be realistic in unpredictable dynamic network I1l. N ETWORK MODEL AND ASSUMPTIONS

In contrast, the algorithm studied in the present paper has @ynamic networks are generally represented by dynamic
stabilization time of one operation, while considering aaker graphs. However, as far as we investigated the problems
meaning of what is a legal stateg, covering the whole presented next, we did not specifically required a dynamic
network with a single tree is not part of the condition). graph model. At a given moment, the network is therefore

2) random walk:a random walk is a sequence of verticesepresented by an undirected simple graph= (Vg, Ec),
such that each vertex in the sequence (except the startivigere Vi stands for the set of nodes aiff}; stands for the
vertex) is randomly selected among the neighbors of &t of communication links available between them. Vestice
predecessor. The expected number of steps required to cadjacent to a same edge are sadighbors The set of
the whole network is calledover time Random walks have neighbors of a vertex is noted N (v). At anytimet, the state
been used to solve several problems in distributed systermafthe network is given by dabelling on the corresponding
such as leader election, token management, and spannésg trgraph. More precisely, every vertexc Vg is associated with
The idea of using random walks to compute spanning treese label\;(v) representing its algorithmic state, and another
was first proposed in [Ald90], where a single random wallabel \;(v, ¢) for each of its adjacent edges. Each edge is thus
is considered. Anytime, the set of all covered verticesn@lo labelled on both endpoints, with possibly different values
with the edges from which they were visited the first time, The algorithm given in this paper is a coarse-grain atomicit
defines a random tree that spans the nodes already visitedalgorithm, which basically means that the communication

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009 3

model €.g.mailbox, shared memory, or message passing)ascur frequently, raising a consultation within the treendg
abstracted by atomic operations occuring possibly simalta conceivable since this may lead to the inefficiency of the
ously on several neighbor vertices (and related edges). process, especially in case of multiple demands. It appears

Hence, the algorithm will be described using graphetter option to allow decisions to be made locally by dedact
relabelling operations, that are pairs of label patterf@ving only one node being able to merge at a time. As a by-
(precondition, action), also calledrelabelling rules which product, this also solves the first problem, since two vestic
define how the states of neighboring vertices are to be modannot simultaneously have the merging faculty if they db no
fied [LMS99]. For example, belong to different trees.
(precondition:\(v) = i nf or med A v’ € N(v) | A(v') = —i nf or med,

action: A(v') := i nf or ned) B. The Algorithm

represents a propagation of information in the network. kVhe The algorithm, given FigurE 2, is based on three operations

this is non ambiguous, an equivalent graphical notationbean on tolgens_:c?rculation, merging andregeneration which aim

inf —inf inf inf at maintaining always one, and exactly one, token per tree.
used €.g. _) _)') Initially, every vertex is a one-vertex tree that has its deken
A complete algorithm is then given by a (possibly ordered)ype| 1y, \When two tokens happen to be at distand@osted
set of such rules. The fact of usingrdered rules means y, neighhoring vertices), they are merged into one singlerio
that a ruler; can be locally applied only if no rule;<; (the other node is relabellel), and the corresponding edge

are locally applicable. Note that guaranteeing this pryperg marked as dree edge(rule) by using a different label

requires to consider the whole neighborhood of the involved, each side1 and 2) to reflect the orientation induced by
vertices before each rule application. We concede thatibis 1, remaining token (see below). When no merging is locally

complicate the translation of such coarse-grain algoriti® pieyable, the token is transmitted to any neighbdhéntree
a real communication model. (rule), and the orientation mark is updated consequently.

IV. THE SPANNING FOREST ALGORITHM initial states:T for every vertex,p for every edge extremity.
N T
. ff
This section presents the spanning forest algorithm arid : ®— ——— @
discuss some of its main properties. Any Any

r2: @ — @

A. The locality criterion T3

o1 @
s
s
ez 04

Let us consider the scenario depicted Figﬂre 1, where two .
nodes,A and B, are to decide whether their common edge
should be used to merge their respective trees. This soenﬁ’gé
illustrates some design choices of the algorithm.

2 1
. 2. The spanning forest algorithm, given as a set of edlialg rules.

The key point here is that the labels of the edges always
define an oriented tree that is rooted in the vertex that hosts
the token. Thanks to these labels, evéabelled vertex
has a unique 'outgoing’ edge (lab&), which indicates the
direction towards the token. If such an edge is broken for
any reason, them this node is thus aware to be now the top
most vertex in the hierarchy of its orphan part of the treés(th
property remains true whatever the number of simultaneous
edge failures). This vertex then simpgenerates new token
(rulery). On the parent side side, this induces only to remove’
the local state of the broken edge (rulg), unrespectfully
to the fact that this node has the token or not. In order to
In order to take the decision, two problems must be solvedenforce potential mergings, we consider the rules as oddere

1) Do A and B effectively belong to different trees, or is(that is, r4 cannot be applied ifr; is applicable), which

there a path linking them within the tree? implies, as previously mentioned at the end of Sec I,
2) How to guarantee that no other merging operation ghat a node consider its whole neighborhood before applying

multaneously occur between these two treeg).(f C rule. In some particular configuration however, a few pdssib

and D were performing the same operation in parallel)mergings may be misse@.¢. when aT-labelled vertex has

The second problem implies either that i) before mergingiore than ond-labelled neighbors at a time).
a vertex knows that it is the only one capable of doing so
in its tree at this time, or that ii) it initiates a consultatiin V. ANALYSIS
its tree to get the permission from the other vertices or from This section studies the question of how frequent the merg-
a central authority (typically the root of its tree). In rgal ings are. In particular, we characterize the expected nuwibe
dynamic networks, where topological events are expectedttken moves before a merging occurs between two given trees,

Fig. 1. An example scenario.

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009 4

as a function of their orders and the number of their sharétl (tree or not) is a well-known result that only depends on
links. We hope this may later help characterize the expectiée degree ob, notedds(v). At anytime, for any vertex in
size of the trees according to properties on the topologytree7, the probability thaty hosts the token is:
dynamics.

_ dr(v)

PA(v) =T) = 2Fr] (2)
A. Asynchronicity 7

The system is considered asynchronous in the sense the{P Ifapt, trl;esfe valuhgshh(;:d Onl{) %f'ier a certallln E'jme of
no global clock is available and the distributed operatidos circulation, before which the probabilities actually dege

not necessarily occur at the same frequencies everywheré)ﬂ]tkhe statr)tlng vertex. In nlzore ';]ec_hmcr:]al terms, this random
the network. Previous work in the area of local computa‘tioﬁf%a ¢ can be seen as Warkov chainwhose stationary (or
considered underlying localized procedures to determave hequnlbrlgm) d|str|butlon_correspo_nFjs to the val_u_es_ of E@ 2.
vertices choose each other to collaboratg (MSZ03]), with Depe_ndlng on the desired precision, _th|s equ_|I|br|ur_n can be
the side effect that vertices become somehow synchroni sidered as reached after a certain time of circulatidghw
(confined intorounds. Since all distributed operations in our'S c@lledmixing time As discussed later on in this paper, this
algorithm involve at least ond-labelled vertex, we do not time has an important impact on the algorithm performance.
use these general-purpose procedures, but rather assame th

collaborations are to be initiated Bi¢labelled vertices only. D. Expected merging time

This makes it possible to consider that each token circsilate The expected merging timeonstitutes an estimation of the
independently from the others, and consequently that evefiéan number of steps (number of token moves in our context)
move of every token constitutes a distiratepin the global required to merge the trees. Let us first assume thanikiag

system. time is instantaneous, that is, the probabilities of presence of
the token are always equal to those of Eq. 2 for every vertex.
B. Bridges This assumption will be released in Sectip VI, where we

Given two treeZ; and7; in the same grapty, there might explqre the impact of t_his _time on the perform_ances of the
exist some edges whose extremities belongiten one side, algorithm. Hence, considering EH. 1 together with Ha. 2, the
and 7, on the other. Let us call such edgbsdges After probability that two tree§; and7; merge at a given step is:
each individual token move, the probability that the tweese
merge is equivalent to thg_probability for their two tokens t Prerge(Ti, T2) = dr; (u) 5 97 (v) @)
be located on the extremities of a same bridge. ((uw)eBridges(i, 7o)y 2IERl 21ET]

which in turn gives theexpected merging timgn number of
steps), as:

Eme'r'ge(/]—lv 7—2) = (Pmer'ge (7—17 7—2))71

—1
dz, () | d, ()
2‘E71‘ 2|ET2‘

({(u,zz)EB'r'idges(Tl 72)}
4

E. Further analytical results

Fig. 3. Example of two trees in the same graph. The bridgeseset them \We have considered here the merging probabilities and
are represented by dashed lines. expected merging time of two static trees. While this presid
a good intuition of the performance of the algorithm, this is
not the end of the story. First of all the algorithm is intedde
More formally, let us denote bridges(77,72) the set of to run on dynamic topologies. The most interesting paramete
edges(u, v) such thatu € E7; andv € E7,. The probability is thus the average number and order of trees one may expect
that 7; and7; merge at a given stepis thus equal to: by running this algorithm in a given mobility scenarie.q.
given an expected rate of topological changes). This study
Prerge(, 73) = 3 POW=TArs=T). (1) will _most Iikgly require Eq[|4 as a first step, though. Also,
(u,0)€ Bridges(T1,Ts) an intermediate step will certainly be to generalize it for
more than two trees and potential concurrency between their

C. Token circulation vs. random walks mergings.

Assuming that aT-labelled vertex has equal chances to
apply the rulers; with any of its child (this can be an V1. OPTIMIZATION
implementation choice), the circulation of each token Ioee® This section presents a substantial optimization of the
a random walk in its tree. Now, the probability for a randoralgorithm, based on introducing the use of memory in the
walking token to be positioned on a given vertein a graph random walk in order to reduce its mixing time.

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009 5

A. Motivations and the values given by Equatiﬁh 2 The results averaged over

To compare the expected time of E@I 4 with simulatioh000 simulations_ (with different initial graphs for each run)
results, we experimentally measured the merging time afpafife presented Figufg 4.
of fixed order random trees (that were randomly generated).
Once a pair of trees built, the test consisted in adding three
random edges between them (bridges), and measuring the
number of steps required to merge thereafter. Two scenarios
were tested, with different orders for the trees. In the first
scenario, one of the trees was of or@ér the others. In the
second scenario, both trees were of ord2r According to
Eq. B the expected merging time for the first scenario should
have been:

-1
_ av.deg(7Ty) av.deg(7T3)
Emerge(ﬂ,ﬂ)—(zl__s(aenr X (CHEg) 0 1,000 2000 3000 4000

=(x (\ETH/\VTJ % (\ETZ\/\VTZ\) -1 Number of steps
=\ 3\ T2 EL T 2By

~53.3 steps. Fig. 4. Impact of the level of memory on the mixing time towarthe

and 48 steps exactly for the second scenario. For botflues of Equatio]2.
scenarios, we raB000 iterations of the test, each one executed - .
on different random trees. The average merging time weS expected, the mixing time decreases as the level of
observed was of21.0 steps in the first case (instead#.3) memory increases. It can also be noted that all versions well
and 104.2 in the second case (instead 4%). This differenc,e and truly converge tovyards the vaIue_s of _Equatiﬁns 2 (which
means that the probabilities of token presence among thesnoﬁmt was not necessarily obvious at first sight).

; - : ; Now, using the same scenarios as considered in para-
was not effectively distributed as predicted by Equatiomn2. : X
other words, the equilibrium distribution cannot be coesidi 9"3Ph[VI-A, we tested the different levels of memory upon the

as reachedas soon as the walk has started, and this has §r9ind time. Figur¢]5 shows the results, averaged sve
impact on the performance iterations for each memory level. As one can see on this plot,
More intuitively, this problem can be thought of as the tokel'€S€ results are clear-cut, and even beyond expectasions,
going back and forth within a small subset of the vertices, e effectl_ve merging time becomes indentical t_o the exgubct
taking a relatively long time to visit other new nodes. If th&nerging time of Eq[|4 as the level of memory increases.

number of nodes involved in a bridge is small in comparison : : : :

(=2
o

40

Diff. effective/stationary distrib. (%)
Do
(=}

(=]

to the total number of nodes in the tree, then this obviously o 121 —+—effective merging time (simulation)

increases the average time needed to reach such nodes (and & expected merging time (Equation

consequently the merging time). In terms of random walks, i 100 |

we believe that thenixing timehas an impact on thhitting P

time, and that this impact is as negative as the relative number £

of bridge nodes is small in the trees. Note that as far as this o 0F |

paper is concerned, these statements are still to be fgrmall g

investigated. = 60| a
53.3 B

B. A Memory-based approach 0 T 2 3 1

Based of the above observation, we propose an optimization Level of memory

that intends to reduce thmaixing timein order to increase the
probability to visit minorities of vertices more quickly.h& Fig. 5. Impact of the level of memory on the merging time (Sr&n1).
improvement consists in memorizing, locally to each vertex
v, the n most recently visited incident edges so that the The simulation results for the second scenario, shown in
token is not sent back on them, but preferably on any of tirégure ES are slightly less obvious to interpret. Indeed, it
d(v) — n other edges (or on the least recently visited one @ppears that, in this case, the best level of memory é&nd
d(v) < n). The chosen value fot actually controls the level that the performance deteriorates for larger values. Tasore
of randomness of the walk), being equivalent to the original for this behavior is most probably due to the determinism
version, andmaz(d(v) : v € V) — 1 being equivalent to a induced by the memory. Indeed, as the level of memory
deterministic token circulation. increases, a cyclic effect on the token circulation will @ap

In order to measure the impact of the memory lewedn and in case of identical (ocoprim@ orders for the trees,
the mixing time, we considered single random trees of orddris may put the tokens somehow-phase If the system
20 and observed how tokens circulate in them depending amere globally synchronous, such effect could in fact geteera
the value ofn. More precisely, we measured the differencmfinite merging times, which does not happen here. This
between the effective distribution of token presence otices problem of phase is also likely to be mitigated by the network

TECHNICAL REPORT, RR-1457-09 LABRI, APRIL 2009

T T T T T
~104.2 |- Q\ —e— effective merging time (simulations)) |
3 100\ expected merging time (Equation)|
] \
%) \
£ \
=
o 80 *
=
e \
o
c \\
£ \ ., s
2 60l \ /
] kS
= _
48 |- *
Il Il Il Il Il

0 1 2 3 4

Level of memory [Ald90]

Fig. 6. Impact of the level of memory on the merging time (2c&n2). [AMZ06]

dynamics, whose side effect is to regularly breaks any piaien [BFG*03]
symmetry.

VIl. CONCLUSION

. . . [BKO7]

This paper presented several versions of a spanning forest
algorithm for dynamic networks. The originality of this alg [Cas06]
rithm is that the construction (and maintainance) of thedre
is a continuous process that takes place at the same time as
the tree is used. This property results from a particuladoam [Fal03]
walk technique that turnsplittings and mergingsof the trees
into purely localized phenomenons. Besides the presentati
of the algorithm, this work focused on understanding how
some properties of the walk could impact the performané@.aem]
To start, we characterized the expected merging time of tywasgg]
given trees if the walks were to offer some ideal properties
(namely, amixing timeof 0). Based on experimental results,
we observed that the mixing time had indeed an impact on
the ability to reach (orhit) the nodes located on potentialMSZ03]
bridges(the higher mixing time, the higher hitting time when
these nodes are a minority). An optimized version was then
proposed to try to improve the hitting time through the mgxin
time. This optimization consisted in avoiding the ladbcally
visited edges during the walk. This technique, that one ean s
in the spirit of tabu searches approaches, prove very efficie
in the tested scenarios (more than halving the average numbe
of token moves required to merge two given trees).

Beyond these analytical and experimental results, a number
of questions remain open at this stage of investigatiorst,Fir
the nature of the relation between the mixing and the hitting
time is not totally clear, and an extra work will be required
to get deeper insights on this question. A better understignd
on these mechanisms could also be obtained by measuring
the influence of additional parameters, such as the degree of
the bridge nodes or the existence of particular properties o
the network geometrye(g. unit disc graph We hope to be
eventually able to characterize the average size of the ase
a function of the density and the rate of topological changes
Another important question is how close the algorithm rssul
are from the optimal solution (that is, the average ratiovieen
the number of trees and the number of connected components).
Finally, one may wonder whether this kind of algorithms
is suitable to real networking contexts, such as statéef-t
art wireless ad hoc networks, in which the detection of the

neighborhood is not instantaneous (nor totally guaranteed
\ and each token move implicitely generates several exclsange
\ at the lower levels. We are currently performing some rial-|
\ experiments to try to answer this question.

0

REFERENCES

[AKM 193] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and

G. Varghese. Time optimal self-stabilizing synchroniaati
In STOC '93: Proceedings of the twenty-fifth annual ACM
symposium on Theory of computimmpges 652-661, New York,
NY, USA, 1993. ACM.

D.J. Aldous. The random walk construction of unifospanning
trees and uniform labelled trees.SIAM J. Discret. Math.
3(4):450-465, 1990.

S. Abbas, M. Mosbah, and A. Zemmari. Distributed qaoutation

of a spanning tree in a dynamic graph by mobile agents.
Engineering of Intelligent Systems, 2006 IEEE Internatlon
Conference onpages 1-6, 0-0 2006.

H. Baala, O. Flauzac, J. Gaber, M. Bui, and T. El-Ghazawi.
A self-stabilizing distributed algorithm for spanning éreon-
struction in wireless ad hoc networksournal of Parallel and
Distributed Computing63:97-104, 2003.

J. Burman and S. Kutten. Time optimal asynchronoul- se
stabilizing spanning tree. IBDISC, pages 92-107, 2007.

A. Casteigts. Model driven capabilities of the D&R& model.

In ICAS '06: Proceedings of the International Conference on
Autonomic and Autonomous Systepeges 24—-32, Washington,
DC, USA, 2006. IEEE Computer Society.

K. Fall. A delay-tolerant network architecture fohallenged
internets. INSIGCOMM '03: Proceedings of the 2003 conference
on Applications, technologies, architectures, and protedor
computer communicationpages 27-34, New York, NY, USA,
2003. ACM.

F.C. Gaertner. A Survey of Self-Stabilizing SpagrTree
Construction Algorithms. Technical report, 2003.

I. Litovsky, Y. Métivier, and E. Sopena. Graph reédling sys-
tems and distributed algorithms. In World Scientific Puiitig,
editor, Handbook of graph grammars and computing by graph
transformation volume Ill, Eds. H. Ehrig, H.J. Kreowski, U.
Montanari and G. Rozenberg, pages 1-56, 1999.

Y. Métivier, N. Saheb, and A. Zemmari. Analysis ofandom-
ized rendezvous algorithminf. Comput, 184(1):109-128, 2003.

