Localization for the random displacement model at weak disorder

Fatma Ghribi, Frédéric Klopp

To cite this version:

Fatma Ghribi, Frédéric Klopp. Localization for the random displacement model at weak disorder. 2009. hal-00376644v1

HAL Id: hal-00376644
https://hal.science/hal-00376644v1
Preprint submitted on 19 Apr 2009 (v1), last revised 9 Sep 2009 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LOCALIZATION FOR THE RANDOM DISPLACEMENT MODEL AT WEAK DISORDER

FATMA GHRIBI AND FRÉDÉRIC KLOPP

Abstract

This paper is devoted to the study of the random displacement model on \mathbb{R}^{d}. We prove that, in the weak displacement regime, Anderson and dynamical localization holds near the bottom of the spectrum under a generic assumption on the single site potential and a fairly general assumption on the support of the possible displacements. This result follows from the proof of the existence of Lifshitz tail and of a Wegner estimate for the model under scrutiny.

Résumé. Cet article est consacré à l'étude d'un modèle de petits déplacements aléatoires. Sous une hypothèse générique sur le potentiel de simple site et des hypothèses assez générales sur les déplacements autorisés, on démontre que le bas du spectre est exponentiellement et dynamiquement localisé dans la limite des petits déplacements. La preuve repose sur la preuve d'une estimée de Lifshitz et d'une estimée de Wegner pour le modèle étudié.

0. Introduction

We consider the following random displacement model

$$
\begin{equation*}
H_{\lambda, \omega}=-\Delta+p+q_{\lambda, \omega}, \text { where } q_{\lambda, \omega}(x)=\sum_{\gamma \in \mathbb{Z}^{d}} q\left(x-\gamma-\lambda \omega_{\gamma}\right), \tag{0.1}
\end{equation*}
$$

acting on $L^{2}\left(\mathbb{R}^{d}\right)$. We assume the following:
(H.0.0): The potential p is a real valued, \mathbb{Z}^{d}-periodic function.
(H.0.1): The single site potential q is a twice continuously differentiable, real valued function and compactly supported.
(H.0.2): $\omega:=\left(\omega_{\gamma}\right)_{\gamma \in \mathbb{Z}^{d}}$ is a collection of non trivial, independent, identically distributed, bounded random variables; let K be the support of their common distribution.
(H.0.3): λ is a small non negative coupling constant.

Under these assumptions, $H_{\lambda, \omega}$ is ergodic and, for all $\omega, H_{\lambda, \omega}$ is selfadjoint on $\mathcal{H}^{2}\left(\mathbb{R}^{d}\right)$. The theory of ergodic operators teaches us that the spectrum of $H_{\lambda, \omega}$ is w-almost surely independent of ω (see e.g. [10, 18]); we denote it by Σ_{λ}.
Our assumptions on $q_{\lambda, \omega}$ imply that Σ_{λ} is lower semi-bounded. Define $E_{\lambda}:=\inf \Sigma_{\lambda}$.
The goal of the present paper is to study the nature of the spectrum
of $H_{\lambda, \omega}$ near E_{λ}. When studying its spectral properties, an important feature of $H_{\lambda, \omega}$ is that it depends non monotonically (see e.g. [16]) on the random variables $\left(\omega_{\gamma}\right)_{\gamma \in \mathbb{Z}^{d}}$, even if q is assumed to be signdefinite. As each of the random variables $\left(\omega_{\gamma}\right)_{\gamma \in \mathbb{Z}^{d}}$ is multidimensional, there cannot be a real monotonicity. Nevertheless, we exhibit a set of assumptions on the single site potential q and on the random variables $\left(\omega_{\gamma}\right)_{\gamma \in \mathbb{Z}^{d}}$ that guarantee that, for sufficiently small disorder λ,

- there exists a neighborhood of E_{λ} where $H_{\lambda, \omega}$ admits a Wegner estimate,
- $H_{\lambda, \omega}$ exhibits a Lifshitz tails at E_{λ}.

It is well known that such result then entail Anderson and dynamical localization near E_{λ} (see e.g. [6]).
Our assumptions are presumably not optimal; we show that they hold for a small generic q. The assumptions on the random variables involve a part on their regularity. As they are multi-dimensional, absolute continuity with respect to the d-dimensional Lebesgue measure is not necessary; actually, they can be concentrated on subset of dimension one (see section 1.2.3). As for the support of the single site random variable, they can have a wide variety of shapes but need to satisfy a type of strict convexity condition at certain points; we refer to section 1.3 for more details.

Due to the non monotonicity of $H_{\lambda, \omega}$, few rigorous results are known for the random displacement model in dimension larger than 1.
For the one-dimensional displacement model, localization at all energies was proven in [1] and, with different methods and, under more general assumptions, in [5]. These proofs establish the Wegner estimate using two-parameter spectral averaging and use lower bounds on the Lyapunov exponent to replace the Lifshitz tails behavior.
For the multi-dimensional random displacement model, the only available result on localization prior to the present paper was [13] establishing the existence of a localized region for the semi-classical operator $-h^{2} \Delta+p+q_{\lambda, \omega}$ when h is sufficiently small. The Wegner estimate was established through a careful analysis of quantum tunneling. The Lifshitz tails behavior was neither proved nor used as, in the energy region under consideration, because of the semi-classical regime, the model is in a large disorder regime.
It has been discovered recently that, for random displacement models, Lifshitz tails need not hold (see [3, 15]).
Related to the study of the occurrence of the Lifshitz tails, an important point is the study of the infimum of the almost sure spectrum and, in particular of the finite volume configurations of the random parameter, if any, that give rise to the same ground state energy. Such a study for non monotonous models has been undertaken recently in $[2,16]$. In the present paper, we give an analysis of those configuration in the small displacement case.

1. The main results

For $n \geq 0$, let $\Lambda_{n}=[-n-1 / 2, n+1 / 2]^{d}$. For $\left(\omega_{\gamma}\right)_{\gamma \in \mathbb{Z}}$, define the differential expression

$$
\begin{equation*}
H_{\lambda, \omega, n}=-\Delta+p+\sum_{\beta \in(2 n+1) \mathbb{Z}^{d}} \sum_{\gamma \in \mathbb{Z}^{d} /(2 n+1) \mathbb{Z}^{d}} q\left(x-\beta-\gamma-\lambda \omega_{\gamma}\right) . \tag{1.1}
\end{equation*}
$$

Let $H_{\lambda, \omega, n}^{P}$ be restriction of $H_{\lambda, \omega, n}$ to the cube Λ_{n} with periodic boundary conditions. $H_{\lambda, \omega, n}^{P}$ has only discrete spectrum and is bounded from below. For $E \in \mathbb{R}$, the integrated density of states is, as usual, defined by

$$
N_{\lambda}(E)=\lim _{n \rightarrow+\infty} \frac{1}{(2 n+1)^{d}} \#\left\{\text { eigenvalues of } H_{\lambda, \omega, n}^{P} \text { in }(-\infty, E]\right\} .
$$

We refer to $[10,18]$ for details on this function and the proofs of various standard results.
1.1. The assumptions. We now state our assumptions on the random potential. Therefore, we introduce the periodic operator obtained by shifting all the single site potentials by exactly the same amount i.e. for $\zeta \in K$ (see assumption (H.0.2)), let

$$
\begin{equation*}
H_{\zeta}=H_{\lambda, \bar{\zeta}}=-\Delta+p+\sum_{\gamma \in \mathbb{Z}^{d}} q(x-\gamma-\lambda \zeta) \tag{1.2}
\end{equation*}
$$

Here and in the sequel, $\bar{\zeta}$ denotes the constant vector with entries all equal to ζ i.e. $\bar{\zeta}=(\zeta)_{\gamma \in \mathbb{Z}^{d}}$.
The spectrum of the \mathbb{Z}^{d}-periodic operator H_{ζ} is purely absolutely continuous; it is a union of intervals (see e.g. [19]). Let $E(\lambda, \zeta)$ be the infimum of this spectrum. As $E(\zeta, \lambda)$ is the bottom of the spectrum of the periodic operator H_{ζ}, we know that it is a simple Floquet eigenvalue associated to the Floquet quasi-momentum $\theta=0$ (see section 2.1 for more details); hence, it is a twice continuously differentiable function of ζ.
We assume that
(H.1.1): there exits $\lambda_{0}>0$ such that, for $\lambda \in\left(0, \lambda_{0}\right)$, there exists a unique point $\zeta(\lambda) \in K$ so that

$$
E(\lambda, \zeta(\lambda))=\min _{\zeta \in K} E(\lambda, \zeta) ;
$$

(H.1.2): there exists $\alpha_{0}>0$ such that, for for $\lambda \in\left(0, \lambda_{0}\right)$ and $\zeta \in K$, one has

$$
\begin{equation*}
\nabla_{\zeta} E(\lambda, \zeta(\lambda)) \cdot(\zeta-\zeta(\lambda)) \geq \alpha_{0} \lambda|\zeta-\zeta(\lambda)|^{2} \tag{1.3}
\end{equation*}
$$

In section 1.3, we discuss concrete conditions on p, q and K that ensure that assumption (H.1) is valid. We now turn to our main results.
1.2. The results. We start with a description of the realizations of the random potential where the infimum of the almost sure spectrum is attained. Then, we state our results on Lifshitz tails, a Wegner estimate and the result on localization.
1.2.1. The infimum of the almost sure spectrum. Of course, as Σ_{λ} is the almost sure spectrum, almost all realization have its infimum as the infimum of the spectrum. The realization we are interested in are those that attain this infimum when restricted to a finite volume. In the present paper, we construct these restrictions using periodic boundary conditions, actually considering periodic realizations of the random potential. In $[2,3,16,15]$, the restrictions were performed using Neumann boundary conditions.
We define periodic configurations of the random potential. Fix $n \geq$ 0 and, for $\left(\omega_{\gamma}\right)_{\gamma \in \mathbb{Z}^{d} /(2 n+1) \mathbb{Z}^{d}}$, consider the differential operator $H_{\lambda, \omega, n}$ defined by (1.1) with domain $H^{2}\left(\mathbb{R}^{d}\right)$. It is $(2 n+1) \mathbb{Z}^{d}$-periodic; let $E_{0}^{n}(\lambda \omega)$ be its ground state energy i.e. the infimum of its spectrum.
One has
Theorem 1.1. Under assumptions (H.0) and (H.1), there exists $\lambda_{0}>$ 0 such that, for any $n \geq 0$, for $\lambda \in\left(0, \lambda_{0}\right]$, on $K^{(2 n+1)^{d}}$, the function $\omega \mapsto E_{0}^{n}(\lambda \omega)$ reaches its infimum $E(\lambda, \zeta(\lambda))$ at a single point, the point $\omega=(\zeta(\lambda))_{\gamma \in \mathbb{Z}^{d} /(2 n+1) \mathbb{Z}^{d}}$.

So, when it comes to finding the "ground state" of our random system, for small λ, the Hamiltonian behaves as if it were monotonous in the random variables $\left(\omega_{\gamma}\right)_{\gamma}$.
By the standard characterization of the almost sure spectrum in terms of the spectra of the periodic approximations (see e.g. [18]), for λ sufficiently small, one has that $E_{\lambda}=\inf \Sigma_{\lambda}=E(\lambda, \zeta(\lambda))$.
1.2.2. The Lifshitz tails. As a consequence of the determination of the minimum, we obtain

Theorem 1.2. Under assumptions (H.0) and (H.1), there exists $\lambda_{0}>$ 0 such that for all $\lambda \in] 0, \lambda_{0}$],

$$
\lim _{E \rightarrow E_{\lambda}} \frac{\log \mid \log \left(N_{\lambda}(E)-N_{\lambda}\left(E_{\lambda}\right) \mid\right.}{\log \left(E-E_{\lambda}\right)} \leq-\frac{d}{2}
$$

Moreover, if the common distribution of the random variables $\left(\omega_{\gamma}\right)_{\gamma}$ is such that, for all λ and δ positive sufficienlty small, one has

$$
\mathbb{P}\left(\left\{\left|\omega_{0}-\zeta(\lambda)\right| \leq \varepsilon\right\}\right) \geq e^{-\varepsilon^{-\delta}}
$$

for ε positive sufficienlty small, then

$$
\lim _{E \rightarrow E_{\lambda}} \frac{\log \mid \log \left(N_{\lambda}(E)-N_{\lambda}\left(E_{\lambda}\right) \mid\right.}{\log \left(E-E_{\lambda}\right)}=-\frac{d}{2}
$$

This behavior is well known for monotonous alloy type models. It has also been discovered recently that, for general displacement or non monotonous alloy type models, this behavior need not hold (see [3, 16, 15]).
1.2.3. The Wegner estimate. A Wegner estimate is an estimate on the probability that a restriction of the random Hamiltonian to a cube admits an eigenvalue in a fixed energy interval. Clearly, the estimate should grow with the size of the cube and decrease with the length of the interval in which one looks for eigenvalues.
The restrictions we choose are the periodic ones i.e those defined at the beginning of section 1.2. We assume that
(H.2): There exists $C>0$ such that, for λ sufficiently small, one has $E_{\lambda} \leq E_{0}-\lambda / C$.
Clearly, Theorem 1.1 show that this assumption is a consequence of assumptions (H.0) and (H.1).
For the alloy type models, it is well known that a Wegner estimate will hold only under a regularity assumption. We now turn to the correesponding assumption for our displacement model. We keep the notations of section 1.2.1. Consider the polar decomposition of the random variable ω_{0}, say $\omega_{0}=r\left(\omega_{0}\right) \sigma\left(\omega_{0}\right)$. For $\sigma \in \mathbb{S}^{d-1}$, define $r_{\sigma}\left(\omega_{0}\right)$, the random variable $r\left(\omega_{0}\right)$ conditioned on $\sigma\left(\omega_{0}\right)=\sigma$.
We assume that
(H.3): for almost all $\sigma \in \mathbb{S}^{d-1}$, the distribution of $r_{\sigma}\left(\omega_{0}\right)$ admits a density with respect to the Lebesgue measure, say, h_{σ} that itself is absolutely continuous with respect to the Lebesgue measure; moreover, one has

$$
\begin{equation*}
{\operatorname{ess}-\sup _{\sigma \in \mathbb{S}^{d-1}}\left\|h_{\sigma}^{\prime}\right\|_{\infty}<+\infty ~ . ~}_{\text {. }} \tag{1.4}
\end{equation*}
$$

We prove
Theorem 1.3. Under assumptions (H.O), (H.2) and (H.3), for any $\nu \in(0,1)$, there exists $\lambda_{0}>O$ such that, for $\lambda \in\left(0, \lambda_{0}\right]$, there exists $C_{\lambda}>0$ such that, for all $E \in\left[E_{\lambda}, E_{\lambda}+\lambda / C\right]$ and $\varepsilon>0$ such that

$$
\begin{equation*}
\mathbb{P}\left(\operatorname{dist}\left(\sigma\left(H_{\lambda, \omega, n}^{P}\right), E\right) \leq \varepsilon\right) \leq C_{\lambda} \varepsilon^{\nu} n^{d} . \tag{1.5}
\end{equation*}
$$

The result is essentially a quite simple consequence of Theorem 6.1 of [8]; the modifications are indicated in section 2.5 .
In the case of monotonous random operators, under our smoothness assumptions for the distribution of the random variables, the estimate (1.5) can be improved in the sense that the power ν can be taken equal to 1 (see [4]). It seems reasonable to think that the same holds true for most non monotonous models; to our knowledge, no proof of this fact exists.
A Wegner estimate of the type (1.5) implies a minimal regularity for
N_{λ}, the integrated density of states of $H_{\lambda, \omega}$ in the low energy region. Indeed, one proves

Corollary 1.1. Under the assumptions of Theorem 1.3, for any $\nu \in$ $(0,1)$, the integrated density of states N_{λ} is ν-Hölder continuous is the region $\left[E_{\lambda}, E_{\lambda}+\lambda / C\right]$ defined in Theorem 1.3.
1.2.4. Localization. Once Theorems 1.2 and 1.3 are proved, localization follows by the now standard multiscale argument (see e.g. [6])

Theorem 1.4. Under assumptions (H.0), (H.1) and (H.3), there exists $\lambda_{0}>0$ such that, for $\left.\left.\lambda \in\right] 0, \lambda_{0}\right]$, Anderson and strong dynamical localization near the bottom of the spectrum. Namely, there exist $E_{\lambda, 1}>E_{\lambda}$ such that $H_{\lambda, \omega}$ has dense pure point spectrum on $\left[E_{\lambda}, E_{\lambda, 1}\right]$ almost surely, and each eigenfunction associated to an energy in this interval decays exponentially as $|x| \rightarrow \infty$.

We omit the details of the proofs of this result. We only note that the Combes-Thomas estimate and the decomposition of resolvents in the multiscale argument work for the random displacement model in the same way as for alloy type models.
1.3. The validity of assumption (H.1). Let us now describe some concrete conditions on q and K that ensure that assumption (H.1) does hold. Let $H_{0}=H_{\lambda, 0}$ be defined by (1.2) for $\zeta=0$. The spectrum of this operator is purely absolutely continuous; it is a union of intervals (see e.g. [19]). Let E_{0} be the infimum of this spectrum and φ_{0} be the solution to the following spectral problem

$$
\left\{\begin{array}{l}
H_{0} \varphi_{0}=E_{0} \varphi_{0}, \tag{1.6}\\
\forall \gamma \in \mathbb{Z}^{d}, \varphi_{0}(x+\gamma)=\varphi_{0}(x)
\end{array}\right.
$$

This solution is unique up to a constant; it can be chosen positive and normalized (see [11, 20]). We will then call it the ground state for H_{0}. Recall that K is the essential support of the random variables $\left(\omega_{\gamma}\right)_{\gamma}$. We prove
Proposition 1.1. Assume that K is a convex set with C^{2}-boundary such that all its principal curvatures are positive at all points and that

$$
\begin{equation*}
v(q):=-\int_{\mathbb{R}^{d}} \nabla q(x)\left|\varphi_{0}(x)\right|^{2} d x \neq 0 \tag{1.7}
\end{equation*}
$$

Then, assumption (H.1) holds.
For a fixed periodic potential p that is not constant, by perturbation theory, it is not difficult to see that condition (1.7) is satisfied for a generic small q. Indeed, if ψ_{0} is the ground state for $-\Delta+p$ (in the sense defined above), as ψ_{0} is positive, its modulus is constant if and only if it is constant. In which case, the eigenvalue equation (1.6) tells us that p is constant, identically equal to E_{0}. So we may assume that ψ_{0}
is not constant, one can then find q smooth and compactly supported such that (1.7) holds. Indeed, by integration by parts,

$$
w(q):=\int_{\mathbb{R}^{d}} \partial_{i} q(x) \psi_{0}^{2}(x) d x=2 \int_{\mathbb{R}^{d}} q(x) \psi_{0}(x) \partial_{i} \psi_{0}(x) d x
$$

which vanishes for all smooth compactly supported functions if and only if $\partial_{i} \psi_{0}$ vanishes identically. Hence, $w(q)$ vanishes for all q small, smooth and compactly supported if and only if ψ_{0} is a constant (as $q \mapsto w(q)$ is linear $)$.
As φ_{0} is the ground state for the operator $-\Delta+p+\sum_{\gamma} q(\cdot-\gamma)$ and this ground state is a real analytic function of the potential q, the difference $\psi_{0}-\varphi_{0}$ is small for q small. So, if we pick q_{0} such that $w\left(q_{0}\right) \neq 0$, for ε small and $q=\varepsilon q_{0}$, we know that $v(q)$ does not vanish i.e. (1.7) is satisfied.

Let us now give another assumption on K under which (H.1) holds. We prove

Proposition 1.2. Assume that (1.7) is satisfied and that the set K satisfies that, there exists $\varepsilon>0$ and $\zeta_{0} \in K$, such that, for all $\zeta \in K$ and $|v-v(q)|<\varepsilon$, one has

$$
v \cdot\left(\zeta-\zeta_{0}\right) \geq 0
$$

Then, assumption (H.1) holds. Moreover, for λ small, the minimum $\zeta(\lambda)$ satisfies $\zeta(\lambda)=\zeta_{0}$.
Before we proceed to the proofs of Propositions 1.1 and 1.2, let us compare our setting to the one studied in [2, 3, 15]. In those studies, assumption (1.7) but also assumption (H.1) are not fulfilled. Indeed, there, p and q are assumed to be reflection symmetric with respect to the coordinate planes i.e. for any $\sigma=\left(\sigma_{1}, \ldots, \sigma_{d}\right) \in\{0,1\}^{d}$ and any $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$,

$$
q\left(x_{1}, \ldots, x_{d}\right)=q\left((-1)^{\sigma_{1}} x_{1}, \ldots,(-1)^{\sigma_{d}} x_{d}\right)
$$

Hence, the potential $p(\cdot)+\sum_{\gamma} q(\cdot-\gamma)$ and the ground state φ_{0} satisfy the same reflection symmetry. This implies that

$$
\int_{\mathbb{R}^{d}} \nabla q(x)\left|\varphi_{0}(x)\right|^{2} d x=-\int_{\mathbb{R}^{d}} \nabla q(x)\left|\varphi_{0}(x)\right|^{2} d x=0
$$

The fact that, in the setting of $[2,3,15]$, assumption (H.1.1) is not satisfied is seen directly from those papers as the ground state of the periodic operator H_{ζ} reaches its minimum at 2^{d} values as soon as K is reflexion symmetric.
1.4. The proofs of Propositions 1.1 and 1.2. Consider the mapping $\zeta \mapsto F(\lambda, \zeta)=\lambda^{-1} E(\lambda, \zeta)$ on some large ball B containing K. As $E(\lambda, \zeta)$ is a simple Floquet eigenvalue associated to the normalized Floquet eigenvector $\varphi_{0}(\lambda, \zeta, 0)$ (see section 2.1), we can compute the
gradient of F in the ζ-variable using the Feynman-Hellmann formula to obtain

$$
\nabla_{\zeta} F(\lambda, \zeta)=\int_{\mathbb{R}^{d}} \nabla q(x-\lambda \zeta)\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2} d x
$$

Hence,

$$
\begin{equation*}
\sup _{\zeta \in B}\left|\nabla_{\zeta} F(\lambda, \zeta)-v(q)\right| \underset{\lambda \rightarrow 0}{\rightarrow} 0 \tag{1.8}
\end{equation*}
$$

Proof of Proposition 1.1. Assumption (1.7) and equation (1.8) guarantee that, for λ small, one can find a C^{2}-diffeomorphism, say Ψ_{λ}, from B to $\Psi_{\lambda}(B)$ such that $\left|\Psi_{\lambda}-\operatorname{Id}\right|_{C^{2}} \rightarrow 0$ when $\lambda \rightarrow 0$ and

$$
\nabla_{\zeta}\left(F\left(\lambda, \Psi_{\lambda}(\zeta)\right)\right)=v(q)
$$

Now, assume that K is a convex set with a C^{2}-boundary having all its principal curvatures positive at all points. Then, for λ small, the set $K_{\lambda}=\Psi_{\lambda}^{-1}(K)$ also is convex with a C^{2}-boundary having all its principal curvatures positive at all points; moreover, the curvatures are bounded away from 0 independently of λ for λ small.
On the convex set K_{λ}, the linear function $G(\zeta):=F\left(\lambda, \Psi_{\lambda}(\zeta)\right)=v(q) \cdot \zeta$ reaches its infimum at a single point, say $\tilde{\zeta}(\lambda)=\Psi_{\lambda}^{-1}(\zeta(\lambda)), \zeta(\lambda) \in \partial K$. Hence, we have that, for $\zeta \in K, F(\lambda, \zeta) \geq F(\lambda, \zeta(\lambda))$. The convexity of K and the positivity of the principal curvatures of ∂K then ensure that, for $\zeta \in K \backslash\{\zeta(\lambda)\}$, one has

$$
\nabla_{\zeta} F(\lambda, \zeta(\lambda)) \cdot(\zeta-\zeta(\lambda))>0 .
$$

To show (1.3), it suffices to show that, for $\zeta \in K$,

$$
\begin{equation*}
\nabla_{\zeta} F(\lambda, \zeta(\lambda)) \cdot(\zeta-\zeta(\lambda)) \geq \frac{1}{C_{0}}|\zeta-\zeta(\lambda)|^{2} \tag{1.9}
\end{equation*}
$$

Let H_{λ} be the hyperplane orthogonal to $\nabla_{\zeta} F(\lambda, \zeta(\lambda))$ at $\zeta(\lambda)$. It intersects K at $\zeta(\lambda)$ and K is contained in one of the half-spaces defined by this hyperplane. Thus the hyperplane is tangent to K at $\zeta(\lambda)$ (see e.g. [9]). Hence, there exists $\alpha_{0}>0$ such that, for $\zeta \in K$, one has

$$
\begin{equation*}
\nabla_{\zeta} F(\lambda, \zeta(\lambda)) \cdot(\zeta-\zeta(\lambda)) \geq \alpha_{0} d\left(\zeta, H_{\lambda}\right)^{2} \tag{1.10}
\end{equation*}
$$

where $d\left(\zeta, H_{\lambda}\right)$ denotes the distance from ζ to H_{λ}. The constant α_{0} can be chosen independent of λ for λ small as the principal curvatures of ∂K are uniformly positive. Now, if $u=\left\|\nabla_{\zeta} F(\lambda, \zeta(\lambda))\right\|^{-1} \nabla_{\zeta} F(\lambda, \zeta(\lambda))$, for $\zeta \in K$ as K is compact, one has

$$
\begin{align*}
\nabla_{\zeta} F(\lambda, \zeta(\lambda)) \cdot(\zeta-\zeta(\lambda)) & =\left\|\nabla_{\zeta} F(\lambda, \zeta(\lambda))\right\|[u \cdot(\zeta-\zeta(\lambda))] \tag{1.11}\\
& \geq \alpha_{0}[u \cdot(\zeta-\zeta(\lambda))]^{2}
\end{align*}
$$

As $|\zeta-\zeta(\lambda)|^{2}=d\left(\zeta, H_{\lambda}\right)^{2}+[u \cdot(\zeta-\zeta(\lambda))]^{2}$, the lower bounds (1.10) and (1.11) imply (1.9).
This completes the proof of Proposition 1.1.

Proof of Proposition 1.2. By assumption, for $\zeta \in K$ and $|v-v(q)|<\varepsilon$, one has $v \cdot\left(\zeta-\zeta_{0}\right) \geq 0$. Hence, as K is compact, there exists $c>0$ such that, for all $\zeta \in K$ and $|v-v(q)|<\varepsilon / 2$, one has

$$
\begin{equation*}
v \cdot\left(\zeta-\zeta_{0}\right) \geq c\left|\zeta-\zeta_{0}\right| \tag{1.12}
\end{equation*}
$$

Let B be a closed ball centered in ζ_{0} such that $K \subset B$. By (1.8), (1.12) implies that, for λ sufficiently small, for all $\tilde{\zeta} \in B$ and $\zeta \in K$, one has

$$
\nabla_{\zeta} F(\lambda, \tilde{\zeta}) \cdot\left(\zeta-\zeta_{0}\right) \geq c\left|\zeta-\zeta_{0}\right|
$$

Hence,
$F(\lambda, \zeta)-F\left(\lambda, \zeta_{0}\right)=\int_{0}^{1} \nabla_{\zeta} F\left(\lambda, \zeta_{0}+t\left(\zeta-\zeta_{0}\right)\right) \cdot\left(\zeta-\zeta_{0}\right) d t \geq c\left|\zeta-\zeta_{0}\right|$.
So ζ_{0} is the unique minimum of $\zeta \mapsto F(\lambda, \zeta)$ in K i.e. for λ sufficiently small, $\zeta(\lambda)=\zeta_{0}$. Using again the boundedness of K, we get the estimate (1.3) of assumption (H.1). This completes the proof of Proposition 1.2.

2. The reduction to a discrete model

In this section, we prove the results announced in section 1.2.1. Therefore, we will use the Floquet decomposition for periodic operators to reduce our operator to some discrete model in the way it was done in $[14,7]$.
2.1. Floquet theory. Pick $\zeta \in K$ and let H_{ζ} be the \mathbb{Z}^{d}-periodic operator defined by (1.2). For $\theta \in \mathbb{T}^{*}:=\mathbb{R}^{d} /\left(2 \pi \mathbb{Z}^{d}\right)$ and $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, the Schwartz space of rapidly decaying functions, following [19], we define

$$
(U u)(\theta, x)=\sum_{\gamma \in \mathbb{Z}^{d}} e^{i \gamma \cdot \theta} u(x-\gamma)
$$

which can be extended as a unitary isometry from $L^{2}\left(\mathbb{R}^{d}\right)$ to \mathcal{H}. Its inverse is given by

$$
\text { for } v \in \mathcal{H},\left(U^{*} v\right)(x)=\frac{1}{\operatorname{Vol}\left(\mathbb{T}^{*}\right)} \int_{\mathbb{T}^{*}} v(\theta, x) d \theta
$$

As $H_{\lambda, \bar{\zeta}}$ is \mathbb{Z}^{d}-periodic, $H_{\lambda, \bar{\zeta}}$ admits the Floquet decomposition

$$
U H_{\lambda, \bar{\zeta}} U^{*}=\int_{\mathbb{T}^{*}}^{\oplus} H_{\lambda, \bar{\zeta}}(\theta) d \theta
$$

where $H_{\lambda, \bar{\zeta}}(\theta)$ is the differential operator $H_{\lambda, \bar{\zeta}}$ acting on \mathcal{H}_{θ} with domain \mathcal{H}_{θ}^{2} where

- $K_{0}=\left\{x \in \mathbb{R}^{d} ; \forall 1 \leq j \leq d,-\frac{1}{2}<x_{j} \leq \frac{1}{2}\right\}$ is the fundamental cell of \mathbb{Z}^{d}.
- for $v \in \mathbb{R}^{d}, \tau_{v}: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ denotes the "translation by v " operator i.e for $\varphi \in \underset{9}{2}\left(\mathbb{R}^{d}\right)$ and $x \in \mathbb{R}^{d},\left(\tau_{v} \varphi\right)(x)=\varphi(x-v)$;
- $\mathcal{D}_{\theta}^{\prime}$ is the space θ-quasi-periodic distribution in \mathbb{R}^{d} i.e the space of distributions $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ such that, for any $\gamma \in \mathbb{Z}^{d}$, we have $\tau_{\gamma} u=e^{-i \gamma \cdot \theta} u$. Here $\theta \in \mathbb{T}^{*}$;
- $H_{\text {loc }}^{k}\left(\mathbb{R}^{d}\right)$ is the space of distributions that locally belong to $H^{k}\left(\mathbb{R}^{d}\right)$ and we define $\mathcal{H}_{\theta}^{k}=H_{\text {loc }}^{k}\left(\mathbb{R}^{d}\right) \cap \mathcal{D}_{\theta}^{\prime}$;
- for $k=0$, we define $\mathcal{H}_{\theta}=\mathcal{H}_{\theta}^{0}$ and identify it with $L^{2}\left(K_{0}\right)$; equipped with the L^{2}-norm over K_{0}, it is a Hilbert space; the scalar product will be denoted by $\langle\cdot, \cdot\rangle_{\theta}$.
We know that $H_{\lambda, \bar{\zeta}}(\theta)$ is self-adjoint and has a compact resolvent; hence its spectrum is discrete. Its eigenvalues repeated according to multiplicity, called Floquet eigenvalues of $H_{\lambda, \bar{\zeta}}$, are denoted by

$$
E_{0}(\lambda, \zeta, \theta) \leq E_{1}(\lambda, \zeta, \theta) \leq \cdots \leq E_{n}(\lambda, \zeta, \theta) \rightarrow+\infty
$$

The functions $\left((\lambda, \zeta, \theta) \mapsto E_{n}(\lambda, \zeta, \theta)\right)_{n \in \mathbb{N}}$ are Lipschitz-continuous in the variable θ; they are even analytic in (λ, ζ, θ) when they are simple eigenvalues.
Define $\varphi_{n}(\lambda, \zeta, \theta)$ to be a normalized eigenvector associated to the eigenvalue $E_{n}(\lambda, \zeta, \theta)$. The family $\left(\varphi_{n}(\lambda, \zeta, \theta)\right)_{n \geq 0}$ is chosen so as to be a Hilbert basis of \mathcal{H}_{θ}. If $E_{n}\left(\lambda_{0}, \zeta_{0}, \theta_{0}\right)$ is a simple eigenvalue, the function $(\lambda, \zeta, \theta) \mapsto \varphi_{n}(\lambda, \zeta, \theta)$ is analytic near $\left(\lambda_{0}, \zeta_{0}, \theta_{0}\right)$.
It is well known (see e.g. [11]) that, for given λ and ζ, the eigenvalue $E_{0}(\lambda, \zeta, \theta)$ reaches its minimum at $\theta=0$, and that it is simple for θ small.
2.2. The reduction procedure. Recall that the $\left(\varphi_{n}(\lambda, \zeta, \theta)\right)_{n \geq 0}$ are the Floquet eigenvalues for $H_{\lambda, \bar{\zeta}}$. Let $\Pi_{\lambda, \zeta, 0}(\theta)$ and $\Pi_{\lambda, \zeta,+}(\theta)$ respectively denote the orthogonal projections in \mathcal{H}_{θ} on the vector spaces respectively spanned by $\varphi_{0}(\lambda, \zeta, \theta)$ and $\left(\varphi_{n}(\lambda, \zeta, \theta)\right)_{n \geq 1}$. Obviously, these projectors are mutually orthogonal and their sum is the identity for any $\theta \in \mathbb{T}^{*}$.
Define $\Pi_{\lambda, \zeta, \alpha}=U^{*} \Pi_{\lambda, \zeta, \alpha}(\theta) U$ where $\alpha \in\{0,+\} . \Pi_{\lambda, \zeta, \alpha}$ is an orthogonal projector on $L^{2}\left(\mathbb{R}^{d}\right)$ and, for $\gamma \in \mathbb{Z}^{d}$, we have $\tau_{\gamma}^{*} \Pi_{\lambda, \zeta, \alpha} \tau_{\gamma}=\Pi_{\lambda, \zeta, \alpha}$. It is clear that that $\Pi_{\lambda, \zeta, 0}+\Pi_{\lambda, \zeta,+}=I d_{L^{2}\left(\mathbb{R}^{d}\right)}$ and $\Pi_{\lambda, \zeta, 0}$ and $\Pi_{\lambda, \zeta,+}$ are mutually orthogonal. For $\alpha \in\{0,+\}$, we set $\mathcal{E}_{\lambda, \zeta, \alpha}=\Pi_{\lambda, \zeta, \alpha}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$. These spaces are translation-invariant and $\mathcal{E}_{\lambda, \zeta, 0}$ is of finite energy (see [14]). For $u \in L^{2}\left(\mathbb{T}^{*}\right)$, we define

$$
P_{\lambda, \zeta}(u)=U^{*}\left(u(\theta) \varphi_{0}(\lambda, \zeta, \theta)\right) .
$$

The mapping $P_{\lambda, \zeta}: L^{2}\left(\mathbb{T}^{*}\right) \rightarrow \mathcal{E}_{\lambda, \zeta, 0}$ defines a unitary equivalence (see [14]); its inverse is given by

$$
P_{\lambda, \zeta}^{*}(v)=\left\langle(U v)(\theta), \varphi_{0}(\lambda, \zeta, \theta)\right\rangle, \quad v \in \mathcal{E}_{\lambda, 0} .
$$

One checks that $P_{\lambda, \zeta} P_{\lambda, \zeta}^{*}=\Pi_{\lambda, \zeta, 0}$ and $P_{\lambda, \zeta}^{*} P_{\lambda, \zeta}=I d_{L^{2}\left(\mathbb{T}^{*}\right)}$.
The main result of this section is

Theorem 2.1. Under assumptions (H.0) and (H.1), there exists $C_{0}>$ 0 such that, for any $\alpha>0$, there exists $\lambda_{\alpha}>0$ such that, for $\lambda \in\left(0, \lambda_{0}\right)$, for any $\zeta \in K$ and any $\omega=\left(\omega_{\gamma}\right)_{\gamma \in \mathbb{Z}^{d}} \in K^{\mathbb{Z}^{d}}$, one has

$$
\begin{align*}
& \frac{1}{C_{0}}\left(P_{\lambda, \zeta} h_{\lambda, \omega, \zeta}^{-} P_{\lambda, \zeta}^{*}+\Pi_{\lambda, \zeta,+}\right) \\
& \quad \leq H_{\lambda, \omega}-E(\lambda, \zeta) \tag{2.1}\\
& \quad \leq C_{0}\left(P_{\lambda, \zeta} h_{\lambda, \omega, \zeta}^{+} P_{\lambda, \zeta}^{*}+\tilde{H}_{\lambda, \bar{\zeta},+}\right)
\end{align*}
$$

where

- $\tilde{H}_{\lambda, \bar{\zeta},+}=\left(H_{\lambda, \bar{\zeta}}-E(\lambda, \zeta)\right) \Pi_{\lambda, \zeta,+}$.
- $h_{\lambda, \omega, \zeta}^{ \pm}$is the random operator acting on $L^{2}\left(\mathbb{T}^{*}\right)$ defined by

$$
\begin{aligned}
& h_{\lambda, \omega, \zeta}^{+}=C_{0} \varpi(\cdot)+\lambda \sum_{\gamma \in \mathbb{Z}^{d}}\left[v(\lambda, \zeta) \cdot\left(\omega_{\gamma}-\zeta\right)+C_{0} \alpha\left\|\omega_{\gamma}-\zeta\right\|^{2}\right] \Pi_{\gamma} \\
& h_{\lambda, \omega, \zeta}^{-}=\frac{1}{C_{0}} \varpi(\cdot)+\lambda \sum_{\gamma \in \mathbb{Z}^{d}}\left[v(\lambda, \zeta) \cdot\left(\omega_{\gamma}-\zeta\right)-C_{0} \alpha\left\|\omega_{\gamma}-\zeta\right\|^{2}\right] \Pi_{\gamma}
\end{aligned}
$$

- ϖ is the multiplication operator by the function

$$
\begin{equation*}
\varpi(\theta)=\sum_{j=1}^{d}\left(1-\cos \left(\theta_{j}\right)\right) \tag{2.2}
\end{equation*}
$$

- Π_{γ} is the orthogonal projector on $e^{i \gamma \theta}$,
- the vector $v(\lambda, \zeta)$ is given by

$$
\begin{equation*}
v(\lambda, \zeta)=-\int_{\mathbb{R}^{d}} \nabla q(x-\lambda \zeta)\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2} d x=\frac{1}{\lambda} \nabla_{\zeta} E(\lambda, \zeta) \tag{2.3}
\end{equation*}
$$

The proof of Theorem 2.1 is the content of section 3. We now use this result to derive Theorem 1.1 and 1.2.
2.3. The characterization of the infimum of the almost sure spectrum. We now prove Theorem 1.1. Using Theorem 2.1 for $\zeta=$ $\zeta(\lambda)$, assumption (1.3) and (2.3), we see that, for λ sufficiently small, for $\omega \in K^{(2 n+1)^{d}}$, one has

$$
\begin{equation*}
H_{\lambda, \omega, n}-E_{\lambda} \geq \frac{1}{C_{0}}\left(P_{\lambda, \zeta} h_{\lambda, \omega, \zeta(\lambda), \alpha, n}^{-} P_{\lambda, \zeta}^{*}+\Pi_{\lambda, \zeta,+}\right) \tag{2.4}
\end{equation*}
$$

By (1.3), taking $C_{0} \alpha \leq \alpha_{0} / 2$, we get

$$
h_{\lambda, \omega, \zeta(\lambda), n}^{-} \geq \varpi(\cdot)+\frac{\lambda \alpha_{0}}{2} \sum_{\beta \in(2 n+1) \mathbb{Z}^{d}} \sum_{\gamma \in \mathbb{Z}^{d} /(2 n+1) \mathbb{Z}^{d}}\left\|\omega_{\gamma}-\zeta(\lambda)\right\|^{2} \Pi_{\gamma} .
$$

As the spectrum of $h_{\lambda, \omega, \zeta(\lambda), n}^{-}$is non negative, the operator in the left hand side of (2.4) is clearly non negative; recall that $P_{\lambda, \zeta} P_{\lambda, \zeta}^{*}+\Pi_{\lambda, \zeta,+}=$ $I d_{L^{2}}, \Pi_{\lambda, \zeta,+}$ is an orthogonal projector and $P_{\lambda, \zeta}^{*}$ is a partial unitary equivalence.

To prove Theorem 1.1, we will show that, if $\omega \neq(\zeta(\lambda))_{\gamma \in \mathbb{Z}^{d} /(2 n+1) \mathbb{Z}^{d}}$, then, there exists $c(\omega)>0$ such that $h_{\lambda, \omega \zeta(\lambda), n}^{-} \geq c(\omega)$. Therefore, recall that $h_{\lambda, \omega, \zeta(\lambda), n}^{-}$is a periodic operator so we can do its Floquet decomposition in the same way as in section 2.1. In the present case, as we deal with a discrete model, the fiber operators will be finite dimensional matrices (see e.g. [12]); they can also be represented as the operator $h_{\lambda, \omega, \zeta(\lambda), n}^{-}$acting on the finite dimensional space of linear combinations of the Dirac masses $\left(\delta_{2 \pi k /(2 n+1)+\theta}\right)_{k \in \mathbb{Z}^{d} /(2 n+1) \mathbb{Z}^{d}}$; the Floquet parameter θ belongs to $(2 n+1)^{-1} \mathbb{T}^{*}$.
As $\varpi \geq 0$ and $h_{\lambda, \omega, \zeta(\lambda), n}^{-}-\varpi \geq 0,0$ is in the spectrum of $h_{\lambda, \omega, \zeta(\lambda), n}^{-}$if and only if there exists $\theta \in(2 n+1)^{-1} \mathbb{T}^{*}$ and v, a linear combination of the Dirac masses $\left(\delta_{2 \pi k /(2 n+1)+\theta}\right)_{k \in \mathbb{Z}^{d} /(2 n+1) \mathbb{Z}^{d}}$ (seen as distributions on $\left.\mathbb{T}^{*}\right)$ such that $\varpi \cdot v=0$ and $h_{\lambda, \omega, \zeta(\lambda), n}^{-} v=0$. Now, $\varpi \cdot v=0$ implies that $\theta=0$ and $v=c \delta_{0}$. Hence, $h_{\lambda, \omega, \zeta(\lambda), n}^{-} v=0$ implies that

$$
\sum_{\beta \in(2 n+1) \mathbb{Z}^{d}} \sum_{\gamma \in \mathbb{Z}^{d} /(2 n+1) \mathbb{Z}^{d}}\left\|\omega_{\gamma}-\zeta(\lambda)\right\|^{2}=0
$$

i.e. $\omega=(\zeta(\lambda))_{\gamma \in \mathbb{Z}^{d} /(2 n+1) \mathbb{Z}^{d}}$.

So we see that the function $\omega \mapsto E_{0}^{n}(\lambda \omega)$ reaches its infimum only at the point $\omega=(\zeta(\lambda))_{\gamma \in \mathbb{Z}^{d} /(2 n+1) \mathbb{Z}^{d}}$. This completes the proof of Theorem 1.1.
2.4. The Lifshitz tails. We now prove Theorem 1.2. Therefore, we again use the reduction given by Theorem 2.1.
Fix $\zeta=\zeta(\lambda)$. First, the operators $h_{\lambda, \omega, \zeta(\lambda)}^{ \pm}$are both standard discrete Anderson models and, as such, admit each integrated density of states that we denote by $N_{r}^{ \pm}$. As we have seen in the previous section, there spectra are contained in \mathbb{R}^{+}.
The inequality (2.1) implies that, for λ sufficiently small and $E \in$ $\left[0,1 / C_{0}^{2}\right]$ (C_{0} is the constant given in Theorem 2.1), one has

$$
N_{r}^{+}\left(E / C_{0}\right) \leq N_{\lambda}\left(E_{\lambda}+E\right) \leq N_{r}^{-}\left(C_{0} E\right)
$$

Now, Theorem 1.2 immediately follows from the existence of Lifshitz tail for the Anderson models $h_{\lambda, \omega, \zeta(\lambda)}^{ \pm}$(see e.g. [18]) which, in turn, follows from the facts that, for λ sufficiently small, under our assumptions, if $C_{0} \alpha \leq \alpha_{0} / 2$, by (1.3), the random variables

$$
\omega_{\gamma}^{ \pm}=\left[v(\lambda, \zeta(\lambda)) \cdot\left(\omega_{\gamma}-\zeta(\lambda)\right)\right] \pm C_{0} \alpha\left\|\omega_{\gamma}-\zeta(\lambda)\right\|^{2}
$$

are i.i.d, non negative, non trivial and 0 belongs to their support (see e.g. [18, 21]).

Now if the common distribution of the random variables $\left(\omega_{\gamma}\right)_{\gamma}$ is such that, for all λ and δ positive sufficiently small, one has

$$
\mathbb{P}\left(\left\{\left|\omega_{0}-\zeta(\lambda)\right| \leq \varepsilon\right\}\right) \geq e^{-\varepsilon^{-\delta}}
$$

for ε positive sufficiently small, then, by virtue of (1.3), for all λ and δ positive sufficiently small, one has

$$
\mathbb{P}\left(\left\{\omega_{0}^{ \pm} \geq \varepsilon\right\}\right) \geq e^{-\varepsilon^{-\delta}}
$$

for ε positive sufficiently small. It is well known that, under this assumption, the Lifshitz exponent for the density of states of the discrete Anderson model is equal to $d / 2$ (see e.g. [18]).
This completes the proof of Theorem 1.2.
2.5. The Wegner estimate. We now prove Theorem 1.3 using the results of [8]. Let $H_{\lambda, r, \sigma, n}^{P}$ be the operator $H_{\lambda, \omega, n}^{P}$ where the random variables $\left(\omega_{\gamma}\right)_{\gamma \in \mathbb{Z}^{d}}$ are written in polar coordinates i.e. $\left(\omega_{\gamma}\right)_{\gamma \in \mathbb{Z}^{d}}=$ $\left(r_{\gamma}(\omega) \sigma_{\gamma}(\omega)\right)_{\gamma_{\gamma} \in \mathbb{Z}^{d}}$ where $r=\left(r_{\gamma}(\omega)\right)_{\gamma \in \mathbb{Z}^{d}}$ has only non negative components and $\sigma=\left(\sigma_{\gamma}(\omega)\right)_{\gamma \in \mathbb{Z}^{d}} \in\left[\mathbb{S}^{d-1}\right]^{\mathbb{Z}^{d}}$. Then, the basic observation is that
(2.5) $\mathbb{P}\left(\operatorname{dist}\left(\sigma\left(H_{\lambda, \omega, n}^{P}\right), E\right) \leq \varepsilon\right)=\mathbb{E}_{\sigma}\left(\mathbb{P}_{r}\left(\operatorname{dist}\left(\sigma\left(H_{\lambda, r, \sigma, n}^{P}\right), E\right) \leq \varepsilon \mid \sigma\right)\right)$
where $\mathbb{P}_{r}(\cdot \mid \sigma)$ denotes the probability in the r-variable conditioned on σ, and \mathbb{E}_{σ}, the expectation in the σ-variable.
Now, fix $\sigma \in\left[\mathbb{S}^{d-1}\right]^{\mathbb{Z}^{d}}$. Using the notations of section 1.2.3, we write

$$
\begin{equation*}
H_{\lambda, \omega}=H_{0}+\lambda \sum_{\gamma \in \mathbb{Z}^{d}} r_{\sigma}\left(\omega_{\gamma}\right) v_{\sigma_{\gamma}}(\cdot-\gamma)+\lambda^{2} V_{2, \omega, \lambda} \tag{2.6}
\end{equation*}
$$

where

- $v_{\sigma_{\gamma}}=-\sigma_{\gamma} \cdot \nabla q$,
- $V_{2, \omega, \lambda}$ is a potential bounded uniformly in λ and ω.

As q is C^{2} with compact support, for any $\sigma_{0} \in \mathbb{S}^{d-1}, v_{\sigma_{0}}$ is C^{1} with compact support and does not vanish identically. Assumptions (H.0.2) and (H.3) guarantee that the random variables $\left(r_{\gamma}(\omega)\right)_{\gamma \in \mathbb{Z}^{d}}$ are independent and nicely distributed.
Hence, the model (2.6) satisfies the assumptions considered in section 6 of [8] except for the fact that, in the present case, $V_{2, \omega, \lambda}$ depends on λ. This does not matter as it is bounded uniformly in λ. In particular, Lemma 6.1 of [8] from asserts that there exists $\lambda_{0}>0$ such that, for $\lambda \in\left(0, \lambda_{0}\right]$, there exists $C_{\lambda}>0$ such that, for all $E \in\left[E_{\lambda}, E_{\lambda}+\lambda / C\right]$ and $\varepsilon>0$ such that

$$
\begin{equation*}
\mathbb{P}\left(\operatorname{dist}\left(\sigma\left(H_{\lambda, \omega, \sigma, n}^{P}\right), E\right) \leq \varepsilon \mid \sigma\right) \leq C_{\lambda}\left[\sup _{\gamma \in \mathbb{Z}^{d}}\left\|h_{\sigma_{\gamma}}^{\prime}\right\|_{\infty}\right] \varepsilon^{\nu} n^{d} . \tag{2.7}
\end{equation*}
$$

Actually, Lemma 6.1 does not give this form to the constant in the right hand side of (2.7); the dependence on $\left\|h_{\sigma}^{\prime}\right\|_{\infty}$ can be obtained by examining the computations leading to the proof of Lemma 6.1 in [8]. The bound (1.4) then garantees that the sup in (2.7) is essentially bounded as a function of σ. We then complete the proof of Theorem 1.3 by integrating (2.7) with respect to σ and using (2.5).

3. Proof of Theorem 2.1

We now turn to the proof of Theorem 2.1. The proof follows the spirit of $[14,7]$.
For $\gamma \in \mathbb{Z}^{d}$, define $\tilde{\omega}=\left(\tilde{\omega}_{\gamma}\right)_{\gamma \in \mathbb{Z}^{d}}=\left(\omega_{\gamma}-\zeta\right)_{\gamma \in \mathbb{Z}^{d}}$. Write

$$
\begin{equation*}
V_{\lambda, \omega}=V_{\lambda, \bar{\zeta}}+\lambda \delta V_{\lambda, \tilde{\omega}}=V_{\lambda, \bar{\zeta}}+\lambda V_{1, \lambda, \tilde{\omega}}+\lambda^{2} V_{2, \lambda, \tilde{\omega}} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{1, \lambda, \tilde{\omega}}=-\sum_{\gamma \in \mathbb{Z}^{d}} \nabla q(x-\gamma-\lambda \zeta) \cdot \tilde{\omega}_{\gamma} . \tag{3.2}
\end{equation*}
$$

We decompose our random Hamiltonian $H_{\lambda, \tilde{\omega}}:=H_{\lambda, \omega}$ on the transla-tion-invariant subspaces $\mathcal{E}_{\lambda, \zeta, 0}$ and $\mathcal{E}_{\lambda, \zeta,+}$ defined in the section 2.2. Thus, we obtain the random operators

$$
H_{\lambda, \tilde{\omega}, 0}=\Pi_{\lambda, \zeta, 0} H_{\lambda, \tilde{\omega}} \Pi_{\lambda, \zeta, 0} \quad \text { and } \quad H_{\lambda, \tilde{\omega},+}=\Pi_{\lambda, \zeta,+} H_{\lambda, \tilde{\omega}} \Pi_{\lambda, \zeta,+}
$$

In the orthogonal decomposition of $L^{2}\left(\mathbb{R}^{d}\right)=\mathcal{E}_{\lambda, \zeta, 0} \stackrel{\perp}{\oplus} \mathcal{E}_{\lambda, \zeta,+}, H_{\lambda, \tilde{\omega}}$ is represented by the matrix

$$
\left(\begin{array}{cc}
H_{\lambda, \tilde{\omega}, 0} & \lambda \Pi_{\lambda, \zeta, 0} \delta V_{\lambda, \tilde{\omega}} \Pi_{\lambda, \zeta,+} \tag{3.3}\\
\lambda \Pi_{\lambda, \zeta,+} \delta V_{\lambda, \tilde{\omega}} \Pi_{\lambda, \zeta, 0} & H_{\lambda, \tilde{\omega},+}
\end{array}\right)
$$

In section 3.1, give lower and upper bounds on $H_{\lambda, \tilde{\omega}, 0}$ which we prove in section 3.2. Theorem 2.1 then follows form the fact that the offdiagonal terms in (3.3) are controlled by the diagonal ones; this is explained in section 3.3.
3.1. The operator $\Pi_{\lambda, \zeta, 0} H_{\lambda, \tilde{\omega}} \Pi_{\lambda, \zeta, 0}$. In this section, using the nondegeneracy for the density of states of $H_{\lambda, \bar{\zeta}}$ at $E(\lambda, \zeta)$, we give lower and upper bounds on $H_{\lambda, \tilde{\omega}, 0}$.
As seen in section 2.2, the operator $\Pi_{\lambda, \zeta, 0} H_{\lambda, \tilde{\omega}} \Pi_{\lambda, \zeta, 0}$ is unitarily equivalent to the operator $h_{\lambda, \tilde{\omega}}$ acting on $L^{2}\left(\mathbb{T}^{*}\right)$ and defined by

$$
h_{\lambda, \tilde{\omega}}=h_{\lambda}+\lambda v_{1, \lambda, \tilde{\omega}}+\lambda^{2} v_{2, \lambda, \tilde{\omega}},
$$

where

- h_{λ} is the multiplication by $E_{0}(\lambda, \zeta, \theta)$,
- the operator $v_{1, \lambda, \tilde{\omega}}$ has the kernel

$$
\begin{equation*}
v_{1, \lambda, \tilde{\omega}}\left(\theta, \theta^{\prime}\right)=\left\langle V_{1, \lambda, \tilde{\omega}} \varphi_{0}(\lambda, \zeta, \theta, \cdot), \varphi_{0}\left(\lambda, \zeta, \theta^{\prime}, \cdot\right)\right\rangle_{L^{2}\left(K_{0}\right)} \tag{3.4}
\end{equation*}
$$

- the operator $v_{2, \lambda, \tilde{\omega}}$ has the kernel

$$
v_{2, \lambda, \tilde{\omega}}\left(\theta, \theta^{\prime}\right)=\left\langle V_{2, \lambda, \tilde{\omega}} \varphi_{0}(\lambda, \zeta, \theta, \cdot), \varphi_{0}\left(\lambda, \zeta, \theta^{\prime}, \cdot\right)\right\rangle_{L^{2}\left(K_{0}\right)} .
$$

The potential $V_{1, \lambda, \tilde{\omega}}$ and $V_{2, \lambda, \tilde{\omega}}$ are defined in (3.1) and (3.2). They are bounded uniformly in all parameters. This will be used freely without a special mention.

We now recall a number of facts and definitions taken from [14]. Let $t \in L^{2}\left(\mathbb{T}^{*}, \mathcal{H}_{\theta}\right)$. We define the operator $P_{t}: L^{2}\left(\mathbb{T}^{*}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ by

$$
\forall u \in L^{2}\left(\mathbb{T}^{*}\right),\left[P_{t}(u)\right](x)=\int_{\mathbb{T}^{*}} t(\theta, x) u(\theta) d \theta
$$

It satisfies

$$
\begin{equation*}
\left\|P_{t}\right\|_{L^{2}\left(\mathbb{T}^{*}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)} \leq\|t\|_{L^{2}\left(\mathbb{T}^{*}, \mathcal{H}_{\theta}\right)} \tag{3.5}
\end{equation*}
$$

As the Floquet eigenvalue $E_{0}(\lambda, \zeta, \theta)$ is simple in a neighborhood of 0 , the Floquet eigenvector $\varphi_{0}(\lambda, \zeta, \theta, \cdot)$ is analytic in this neighborhood. Recall that ϖ is defined in (2.2). We define the functions $\varphi_{0, \lambda, \zeta}, \tilde{\varphi}_{0, \lambda, \zeta}$ and $\delta \varphi_{0, \lambda, \zeta}$ in $L^{2}\left(\mathbb{T}^{*}, \mathcal{H}_{\theta}\right)$ by

$$
\begin{gathered}
\varphi_{0, \lambda, \zeta}(\theta, x)=\varphi_{0}(\lambda, \zeta, \theta ; x), \quad \tilde{\varphi}_{0, \lambda, \zeta}(\theta, x)=\varphi_{0, \lambda, \zeta}(0, x) e^{i \theta \cdot x} \\
\delta \varphi_{0, \lambda, \zeta}(\theta, x)=\frac{1}{\sqrt{\varpi(\theta)}}\left(\varphi_{0}(\lambda, . \zeta, \theta ; x)-\tilde{\varphi}_{0, \lambda, \zeta}(\theta, x)\right)
\end{gathered}
$$

Furthermore, these functions are bounded in $L^{2}\left(\mathbb{T}^{*}, \mathcal{H}_{\theta}\right)$ uniformly in ζ and λ small.
Finally, we note that, for $u \in L^{2}\left(\mathbb{T}^{*}\right)$,

$$
\begin{equation*}
P_{\varphi_{0, \lambda, \zeta}}(u)=P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)+P_{\delta \varphi_{0, \lambda, \zeta}}(\sqrt{\varpi} u) . \tag{3.6}
\end{equation*}
$$

Remark 3.1. It is proved in [14] that, there exits $C>1$ such that, as operators on $L^{2}(\mathbb{T})$, one has

$$
\frac{1}{C} \varpi \leq h_{\lambda}-E(\lambda, \zeta) \leq C \varpi .
$$

3.1.1. Lower and upper bounds on $v_{1, \lambda, \tilde{\omega}}$ and $v_{2, \lambda, \tilde{\omega}}$.

Proposition 3.1. Recall that $v(\lambda, \zeta)$ is defined in (2.3). There exists $C>0$ such that, for $u \in L^{2}\left(\mathbb{T}^{*}\right)$ and $\alpha>0$, we have

$$
\begin{align*}
\mid\left\langle v_{1, \lambda, \tilde{\omega}} u, u\right\rangle & -\sum_{\gamma \in \mathbb{Z}^{d}}\left[v(\lambda, \zeta) \cdot \tilde{\omega}_{\gamma}\right] \cdot|\hat{u}(\gamma)|^{2} \mid \tag{3.7}\\
& \leq C\left(\alpha \sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2} \cdot|\hat{u}(\gamma)|^{2}+\left(1+\frac{1}{\alpha}\right)\langle\varpi u, u\rangle\right)
\end{align*}
$$

and

$$
\begin{align*}
\left|\left\langle v_{2, \lambda, \tilde{\omega}} u, u\right\rangle\right| & +\left\|V_{1, \lambda, \tilde{\omega}} P_{\varphi_{0, \lambda, \zeta}}(u)\right\|^{2}+\left\|V_{2, \lambda, \tilde{\omega}} P_{\varphi_{0, \lambda, \zeta}}(u)\right\|^{2} \\
& \leq C\left(\sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2} \cdot|\hat{u}(\gamma)|^{2}+\langle\varpi u, u\rangle\right) . \tag{3.8}
\end{align*}
$$

Propositions 3.1 is proved in section 3.2. We now use these results to give lower and upper bounds on $h_{\lambda, \tilde{\omega}}$.
3.1.2. Lower and upper bounds for $H_{\lambda, \tilde{\omega}, 0}-E(\lambda, \zeta)$. We prove

Proposition 3.2. Under assumptions (H.O) and (H.1), there exists $C_{0}>0$ such that, for $\alpha>0$, there exists $\lambda_{\alpha}>0$ and $C_{\alpha}>0$ such that, for all $\lambda \in\left[0, \lambda_{0}\right]$, on $\mathcal{E}_{\lambda, \zeta, 0}$, one has

$$
\frac{1}{C_{0}} P_{\lambda, \zeta} h_{\lambda, \tilde{\omega}, \zeta}^{-} P_{\lambda, \zeta}^{*} \leq \tilde{H}_{\lambda, \tilde{\omega}, 0}:=H_{\lambda, \tilde{\omega}, 0}-E(\lambda, \zeta) \leq C_{0} P_{\lambda, \zeta} h_{\lambda, \tilde{\omega}, \zeta}^{+} P_{\lambda, \zeta}^{*},
$$

where $h_{\lambda, \tilde{\omega}, \zeta}^{ \pm}$are the random operators defined in Theorem 2.1.
Proof of Proposition 3.2. For λ small, Proposition 3.1 and Remark 3.1 imply that, there exists $C_{0}>0$ such that, for $\alpha>0$, there exists $\lambda_{\alpha}>0$ such that for all $\lambda \in\left[0, \lambda_{\alpha}\right]$,

$$
\frac{1}{C_{0}} \varpi+\lambda \sum_{\gamma \in \mathbb{Z}^{d}}\left[v(\lambda, \zeta) \cdot \tilde{\omega}_{\gamma}-C_{0} \alpha\left\|\tilde{\omega}_{\gamma}\right\|^{2}\right] \cdot \Pi_{\gamma} \leq h_{\lambda, \tilde{\omega}}-E(\lambda, \zeta)
$$

and

$$
h_{\lambda, \tilde{\omega}}-E(\lambda, \zeta) \leq C_{0} \varpi+\lambda \sum_{\gamma \in \mathbb{Z}^{d}}\left[v(\lambda, \zeta) \cdot \tilde{\omega}_{\gamma}+C_{0} \alpha\left\|\tilde{\omega}_{\gamma}\right\|^{2}\right] \cdot \Pi_{\gamma} .
$$

As $H_{\lambda, \tilde{\omega}, 0}$ and $h_{\lambda, \tilde{\omega}}$ are unitarily equivalent, this completes the proof of Proposition 3.2.
3.2. The proof of Propositions 3.1. We first prove

Lemma 3.1. There exists a constant $C>0$ such that, for all $u \in$ $L^{2}\left(\mathbb{T}^{d}\right)$ and $\alpha>0$, one has

$$
\begin{align*}
& \left.\left|\left\langle V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u), P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\rangle-\sum_{\gamma \in \mathbb{Z}^{d}}\left[v(\lambda, \zeta) \cdot \tilde{\omega}_{\gamma}\right]\right| \hat{u}(\gamma)\right|^{2} \mid \tag{3.9}\\
& \leq C\left(\alpha \sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2} \cdot|\hat{u}(\gamma)|^{2}+\left(1+\frac{4}{\alpha}\right)\langle\varpi u, u\rangle\right), \\
& \left\|V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\|^{2}+\left\|V_{2, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\|^{2} \\
& \quad \leq C\left(\alpha \sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2} \cdot|\hat{u}(\gamma)|^{2}+\left(1+\frac{4}{\alpha}\right)\langle\varpi u, u\rangle\right), \tag{3.10}
\end{align*}
$$

Proof of Lemma 3.1. We compute

$$
\begin{aligned}
& \left\langle V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u), P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\rangle \\
& \quad=-\sum_{\gamma \in \mathbb{Z}^{d}} \tilde{\omega}_{\gamma} \cdot \int_{\mathbb{R}^{d}} \nabla q(x-\lambda \zeta)\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2} \cdot\left|\phi_{\gamma}(u)(x)\right|^{2} d x,
\end{aligned}
$$

where $\phi_{\gamma}(u)(x)=\int_{\mathbb{T}} e^{i \theta \cdot \gamma} \cdot e^{i \theta \cdot x} u(\theta) d \theta$.
Recall that 0 is the unique zero of ϖ on \mathbb{T}^{*} and it is non-degenerate.

Thus, the function $g(\theta, x)=\varpi(\theta)^{-1 / 2}\left(e^{i \theta \cdot x}-1\right)$ is defined on $\mathbb{T} \times \mathbb{R}^{d}$ and

$$
\sup _{(\theta, x) \in \mathbb{T}^{*} \times \mathbb{R}}(1+|x|)^{-1}|g(\theta, x)|<+\infty .
$$

For $\gamma \in \mathbb{Z}^{d}, u \in L^{2}\left(\mathbb{T}^{*}\right)$ and $x \in \mathbb{R}^{d}$, one has

$$
\psi_{\gamma}(u)(x)=\phi_{\gamma}(u)(x)-\hat{u}(\gamma)=\int_{\mathbb{T}^{*}} g(\theta, x) e^{i \gamma \cdot \theta} \sqrt{\varpi(\theta)} u(\theta) d \theta
$$

Note that

$$
\begin{align*}
\sum_{\gamma \in \mathbb{Z}^{d}}\left|\psi_{\gamma}(u)(x)\right|^{2} & =\int_{\mathbb{T}^{*}}|g(\theta, x)|^{2}|\sqrt{\varpi(\theta)} u(\theta)|^{2} d \theta \tag{3.11}\\
& \leq C(1+|x|)^{2}\langle\varpi u, u\rangle
\end{align*}
$$

Recall that $v(\lambda, \zeta)$ is defined by (2.3). We define

$$
\begin{gathered}
v_{1, \lambda, \tilde{\omega}}^{\prime}[u]=-\sum_{\gamma \in \mathbb{Z}^{d}} \tilde{\omega}_{\gamma} \cdot \int_{\mathbb{R}^{d}} \nabla q(x-\lambda \zeta)\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2}\left|\psi_{\gamma}(u)(x)\right|^{2} d x, \\
v_{1, \lambda, \tilde{\omega}}^{\prime \prime}[u]=\left\langle V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u), P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\rangle-\sum_{\gamma \in \mathbb{Z}^{d}} v(\lambda, \zeta) \cdot \tilde{\omega}_{\gamma}|\hat{u}(\gamma)|^{2}-v_{1, \lambda, \tilde{\omega}}^{\prime}[u] .
\end{gathered}
$$

As the random variables $\left(\tilde{\omega}_{\gamma}\right)_{\gamma \in \mathbb{Z}^{d}}$ are bounded, by (3.11), we compute

$$
\begin{aligned}
\left|v_{1, \lambda, \tilde{\omega}}^{\prime}[u]\right| & \leq C \int_{\mathbb{R}^{d}}\|\nabla q(x-\lambda \zeta)\|\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2} \sum_{\gamma \in \mathbb{Z}^{d}}\left|\psi_{\gamma}(u)(x)\right|^{2} d x \\
& \leq C\langle\varpi u, u\rangle \int_{\mathbb{R}^{d}}\|\nabla q(x-\lambda \zeta)\|\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2}(1+|x|)^{2} d x \\
& \leq C\langle\varpi u, u\rangle .
\end{aligned}
$$

By the Cauchy-Schwarz inequality, one has

$$
\begin{aligned}
\left|v_{1, \lambda, \tilde{\omega}}^{\prime \prime}[u]\right|=2 & \left|\operatorname{Re}\left(\sum_{\gamma \in \mathbb{Z}^{d}} \hat{u}(\gamma) \tilde{\omega}_{\gamma} \cdot \int_{\mathbb{R}^{d}} \nabla q(x-\lambda \zeta)\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2} \overline{\psi_{\gamma}(u)(x)} d x\right)\right| \\
\leq \alpha & {\left[\int_{\mathbb{R}^{d}}\|\nabla q(x-\lambda \zeta)\|\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2} d x\right] \sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2}|\hat{u}(\gamma)|^{2} } \\
& \quad+\frac{4}{\alpha} \sum_{\gamma \in \mathbb{Z}^{d}} \int_{\mathbb{R}^{d}}\|\nabla q(x-\lambda \zeta)\|\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2}\left|\psi_{\gamma}(u)(x)\right|^{2} d x .
\end{aligned}
$$

Using (3.11), we obtain that

$$
\left|v_{1, \lambda, \tilde{\omega}}^{\prime \prime}[u]\right| \leq C\left(\alpha \sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2} \cdot|\hat{u}(\gamma)|^{2}+\frac{4}{\alpha}\langle\varpi u, u\rangle\right) .
$$

Finally, adding this to the estimate for $\left|v_{1, \lambda, \tilde{\omega}}^{\prime}[u]\right|$, we get

$$
\begin{aligned}
& \left.\left|\left\langle V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u), P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\rangle-\sum_{\gamma \in \mathbb{Z}^{d}} v(\lambda, \zeta) \cdot \tilde{\omega}_{\gamma}\right| \hat{u}(\gamma)\right|^{2} \mid \\
& \quad \leq C\left(\alpha \sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2} \cdot|\hat{u}(\gamma)|^{2}+\left(1+\frac{4}{\alpha}\right)\langle\varpi u, u\rangle\right) .
\end{aligned}
$$

This completes the proof of (3.9).
The two terms in the left hand side of (3.10) are dealt with in the same way; so, we only give the details for $\left\|V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\|^{2}$. We compute

$$
\begin{aligned}
& \left\|V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\|^{2}=\int_{\mathbb{R}^{d}}\left|V_{1, \lambda, \tilde{\omega}}(x) \varphi_{0}(\lambda, \zeta, 0 ; x) \phi(u)(x)\right|^{2} d x \\
& \quad=\int_{\mathbb{R}^{d}}\left|\sum_{\gamma \in \mathbb{Z}^{d}} \nabla q(x-\lambda \zeta-\gamma) \cdot \tilde{\omega}_{\gamma}\right|^{2}\left|\varphi_{0}(\lambda, \zeta, 0 ; x) \phi(u)(x)\right|^{2} d x \\
& \quad \leq C \sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2} \int_{\mathbb{R}^{d}}\|\nabla q(x-\lambda \zeta)\|^{2}\left|\varphi_{0}(\lambda, \zeta, 0 ; x) \phi_{\gamma}(u)(x)\right|^{2} d x
\end{aligned}
$$

where, in the last step, as q is compactly supported, the number of non vanishing terms of the sum inside the integral is bounded uniformly. Now, by the definition of ϕ_{γ} and ψ_{γ}, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|\nabla q(x-\lambda \zeta)|^{2}\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2}\left|\phi_{\gamma}(u)(x)\right|^{2} d x \\
& \leq 2 \int_{\mathbb{R}^{d}}|\nabla q(x-\lambda \zeta)|^{2}\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2}\left(|\hat{u}(\gamma)|^{2}+\left|\psi_{\gamma}(u)(x)\right|^{2}\right) d x \\
& \leq C|\hat{u}(\gamma)|^{2}+C \int_{\mathbb{R}^{d}}|\nabla q(x-\lambda \zeta)|^{2}\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2}\left|\psi_{\gamma}(u)(x)\right|^{2} d x d x
\end{aligned}
$$

We plug this into the estimate for $\left\|V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\|^{2}$ and (3.11) yields

$$
\begin{aligned}
& \left\|V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\|^{2} \\
& \leq C \int_{\mathbb{R}^{d}}|\nabla q(x-\lambda \zeta)|^{2}\left|\varphi_{0}(\lambda, \zeta, 0 ; x)\right|^{2} \cdot \sum_{\gamma \in \mathbb{Z}^{d}}\left|\phi_{\gamma}(u)(x)\right|^{2} d x \\
& \quad+C \sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2}|\hat{u}(\gamma)|^{2} \\
& \leq C\left\|\tilde{\omega}_{\gamma}\right\|^{2}|\hat{u}(\gamma)|^{2}+C\langle\varpi u, u\rangle .
\end{aligned}
$$

The computation for $\left\|V_{2, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\|^{2}$ is the same as

$$
V_{2, \lambda, \tilde{\omega}}=\sum_{\gamma \in \mathbb{Z}^{d}} q\left(x-\gamma, \zeta, \tilde{\omega}_{\gamma}\right)
$$

where, denoting the Hessian of q at x by Q, we have

$$
q\left(x, \zeta, \tilde{\omega}_{\gamma}\right)=\int_{0}^{1}\left\langle Q\left(x-\lambda\left(\zeta+t \tilde{\omega}_{\gamma}\right)\right) \tilde{\omega}_{\gamma}, \tilde{\omega}_{\gamma}\right\rangle(1-t) d t
$$

So (3.10) is proved and the proof of Lemma 3.1 is complete.
Proof of Proposition 3.1. Using (3.4) and (3.6), we write

$$
\begin{aligned}
\left\langle v_{1, \lambda, \tilde{\omega}, \zeta} u, u\right\rangle=\langle & \left.V_{1, \lambda, \tilde{\omega}} P_{\rho_{\varphi_{0, \lambda, \zeta}}}(\sqrt{\varpi} u), P_{\delta \varphi_{0, \lambda, \zeta}}(\sqrt{\varpi} u)\right\rangle \\
& +\left\langle V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u), P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\rangle \\
& +2 \operatorname{Re}\left(\left\langle V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u), P_{\delta \varphi_{0, \lambda, \zeta}}(\sqrt{\varpi} u)\right\rangle\right) .
\end{aligned}
$$

Hence, as $V_{1, \lambda, \tilde{\omega}}$ is bounded,

$$
\begin{align*}
& \left.\left|\left\langle v_{1, \lambda, \tilde{\omega}} u, u\right\rangle-\sum_{\gamma \in \mathbb{Z}^{d}} v(\lambda, \zeta) \cdot \tilde{\omega}_{\gamma}\right| \hat{u}(\gamma)\right|^{2} \mid \\
& \leq\left.\left|\left\langle V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u), P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\rangle-\sum_{\gamma \in \mathbb{Z}^{d}} v(\lambda, \zeta) \cdot \tilde{\omega}_{\gamma}\right| \hat{u}(\gamma)\right|^{2} \mid \tag{3.12}\\
& \quad+2\left|\left\langle V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u), P_{\delta \varphi_{0, \lambda, \zeta}}(\sqrt{\varpi} u)\right\rangle\right|+\left\|P_{\delta \varphi_{0, \lambda, \zeta}}(\sqrt{\varpi} u)\right\|^{2} .
\end{align*}
$$

The Cauchy-Schwarz inequality then yields

$$
\begin{aligned}
\mid\left\langle V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u), P_{\delta \varphi_{0, \lambda, \zeta}}\right. & (\sqrt{\varpi} u)\rangle \mid \\
& \leq \alpha\left\|V_{1, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\|^{2}+\frac{4}{\alpha}\left\|P_{\delta \varphi_{0, \lambda, \zeta}}(\sqrt{\varpi} u)\right\|^{2} .
\end{aligned}
$$

Combining this with (3.12), (3.10) and (3.9), we obtain

$$
\begin{aligned}
& \left.\left|\left\langle v_{1, \lambda, \tilde{\omega}} u, u\right\rangle-\sum_{\gamma \in \mathbb{Z}^{d}}\left[v(\lambda, \zeta) \cdot \tilde{\omega}_{\gamma}\right] \cdot\right| \hat{u}(\gamma)\right|^{2} \mid \\
& \quad \leq C\left(\alpha \sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2} \cdot|\hat{u}(\gamma)|^{2}+\left(1+\frac{1}{\alpha}\right)\langle\varpi u, u\rangle\right) .
\end{aligned}
$$

This completes the proof of (3.7).
Using (3.6) and the expansion done above for $\left\langle v_{1, \lambda, \tilde{\omega}} u, u\right\rangle$, we compute

$$
\left|\left\langle v_{2, \lambda, \tilde{\omega}} u, u\right\rangle\right| \leq 2\left\|V_{2, \lambda, \tilde{\omega}} P_{\tilde{\varphi}_{0, \lambda, \zeta}}(u)\right\|^{2}+2\left\|P_{\delta \varphi_{0, \lambda, \zeta}}(\sqrt{\varpi} u)\right\|^{2} .
$$

Combining this with (3.10), we get

$$
\left|\left\langle v_{2, \lambda, \tilde{\omega}} u, u\right\rangle\right| \leq C\left(\sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2} \cdot|u(\gamma)|^{2}+\langle\varpi u, u\rangle\right) .
$$

The estiumates for $\left\|V_{1, \lambda, \tilde{\omega}} P_{\varphi_{0, \lambda, \zeta}}(u)\right\|^{2}$ and $\left\|V_{2, \lambda, \tilde{\omega}} P_{\varphi_{0, \lambda, \zeta}}(u)\right\|^{2}$ are obtained in the same way. This completes the proof of (3.8), hence, of Proposition 3.1.
3.3. The lower and upper bounds on $\Pi_{\lambda, \zeta,+} H_{\lambda, \tilde{\omega}} \Pi_{\lambda, \zeta,+}$. By the definition of $\Pi_{\lambda, \zeta,+}$, there exists $\eta>0$ such that, for λ sufficiently small,

$$
(E(\lambda, \zeta)+\eta) \Pi_{\lambda, \zeta,+} \leq \Pi_{\lambda, \zeta,+} H_{\lambda, \bar{\zeta}} \Pi_{\lambda, \zeta,+} .
$$

Let $\tilde{H}_{\lambda, \bar{\zeta},+}=H_{\lambda, \bar{\zeta},+}-E(\lambda, \zeta)$ and $\tilde{H}_{\lambda, \tilde{\omega},+}=H_{\lambda, \tilde{\omega},+}-E(\lambda, \zeta)$. As $\left|V_{1, \lambda, \tilde{\omega}}\right|$ and $\left|V_{1, \lambda, \tilde{\omega}}\right|$ are bounded, for λ sufficiently small, one has

$$
\begin{equation*}
\frac{\eta}{2} \Pi_{\lambda, \zeta,+} \leq \frac{1}{2} \tilde{H}_{\lambda, \bar{\zeta},+} \leq \tilde{H}_{\lambda, \tilde{\omega},+} \leq 2 \tilde{H}_{\lambda, \bar{\zeta},+} \tag{3.13}
\end{equation*}
$$

Proof of Theorem 2.1. For $\varphi=\varphi_{0}+\varphi_{+} \in \mathcal{E}_{\lambda, \zeta, 0} \stackrel{\perp}{\oplus} \mathcal{E}_{\lambda, \zeta,+}$, by (3.3), one has

$$
\begin{aligned}
\mid\left\langle\tilde{H}_{\lambda, \tilde{\omega}} \varphi, \varphi\right\rangle & -\left\langle\tilde{H}_{\lambda, \tilde{\omega}, 0} \varphi_{0}, \varphi_{0}\right\rangle-\left\langle\tilde{H}_{\lambda, \tilde{\omega},+} \varphi_{+}, \varphi_{+}\right\rangle \mid \\
& \leq 2 \lambda\left|\left\langle V_{1, \lambda, \tilde{\omega}} \varphi_{+}, \varphi_{0}\right\rangle\right|+2 \lambda^{2}\left|\left\langle V_{2, \lambda, \tilde{\omega}} \varphi_{+}, \varphi_{0}\right\rangle\right| .
\end{aligned}
$$

Using the Cauchy-Schwartz inequality, we get
$\left|\left\langle V_{1, \lambda, \tilde{\omega}} \varphi_{+}, \varphi_{0}\right\rangle\right|+\left|\left\langle V_{2, \lambda, \tilde{\omega}} \varphi_{+}, \varphi_{0}\right\rangle\right| \leq 2\left\|V_{1, \lambda, \tilde{\omega}} \varphi_{0}\right\|^{2}+2\left\|V_{2, \lambda, \tilde{\omega}} \varphi_{0}\right\|^{2}+4\left\|\varphi_{+}\right\|^{2}$.
Then, the decomposition (3.3) and (3.13) give

$$
\begin{gather*}
\frac{1}{C}\left(\begin{array}{cc}
\tilde{H}_{\lambda, \tilde{\omega}, 0}-C \lambda K_{0} & 0 \\
0 & \tilde{H}_{\lambda, \tilde{\omega},+}-C \lambda \Pi_{\lambda, \zeta,+}
\end{array}\right) \leq \tilde{H}_{\lambda, \tilde{\omega}} \tag{3.14}\\
=\tilde{H}_{\lambda, \tilde{\omega}} \leq C\left(\begin{array}{cc}
\tilde{H}_{\lambda, \tilde{\omega}, 0}+C \lambda K_{0} & 0 \\
0 & \tilde{H}_{\lambda, \tilde{\omega},+}+C \lambda \Pi_{\lambda, \zeta,+}
\end{array}\right)
\end{gather*}
$$

where

$$
K_{0}=\Pi_{\lambda, \zeta, 0}\left(V_{1, \lambda, \tilde{\omega}}^{2}+V_{2, \lambda, \tilde{\omega}}^{2}\right) \Pi_{\lambda, \zeta, 0} .
$$

The estimate (3.10) of Proposition 3.1 implies that

$$
K_{0} \leq C P_{\lambda, \zeta}\left(\varpi+\sum_{\gamma \in \mathbb{Z}^{d}}\left\|\tilde{\omega}_{\gamma}\right\|^{2} \Pi_{\gamma}\right) P_{\lambda, \zeta}^{*} .
$$

On the other hand, (3.13) implies that, for λ sufficiently small

$$
\frac{1}{2} \tilde{H}_{\lambda, \tilde{\omega},+} \leq \tilde{H}_{\lambda, \tilde{\omega},+}-C \lambda \Pi_{\lambda, \zeta,+} \leq \tilde{H}_{\lambda, \tilde{\omega},+}+C \lambda \Pi_{\lambda, \zeta,+} \leq 2 \tilde{H}_{\lambda, \tilde{\omega},+} .
$$

Combining these two estimates with (3.14) and Proposition 3.2, we complete the proof of Theorem 2.1.

References

[1] D. Buschmann and G. Stolz. Two-parameter spectral averaging and localization for non-monotonic random Schrödinger operators Trans. Amer. Math. Soc. 353:835-653, 2001.
[2] J. Baker, M. Loss, and G. Stolz. Minimizing the ground state energy of an electron in a randomly deformed lattice. Comm. Math. Phys., 283(2):397-415, 2008.
[3] J. Baker, M. Loss, and G. Stolz. Low energy properties of the random displacement model, 2008. Preprint http://arxiv.org/abs/0808.0670.
[4] J. Combes, P. Hislop, and F. Klopp. An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators. Duke Math. J., 140(3):469-498, 2007.
[5] D. Damanik, R. Sims and G. Stolz, Localization for one-dimensional, continuum, Bernoulli-Anderson models, Duke Math. J. 114:59-100, 2002.
[6] F. Germinet and A. Klein. Bootstrap multiscale analysis and localization in random media. Comm. Math. Phys., 222(2):415-448, 2001.
[7] F. Ghribi, Internal Lifshits tails for random magnetic Schrödinger operators, Journal of functional Analysis, 248:387-427, 2007.
[8] P. Hislop and F. Klopp. The integrated density of states for some random operators with nonsign definite potentials. J. Funct. Anal., 195(1):12-47, 2002.
[9] L. Hörmander. Notions of convexity. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA, 2007. Reprint of the 1994 edition.
[10] W. Kirsch, Random Schrödinger oerators : A course in Schrödinger Operators (Sonderborg, 1989), ed. A. Jensen and H. Holden. Lecture notes in Phys. 345, Springer-Verlag. Berlin, 1989.
[11] W. Kirsch and B. Simon. Comparison theorems for the gap of Schrödinger operators. J. Funct. Anal., 75(2):396-410, 1987.
[12] F. Klopp. Weak disorder localization and Lifshitz tails. Comm. Math. Phys., 232(1):125-155, 2002.
[13] F. Klopp, Localization for semiclassical continuous random Schrödinger operators. II. The random displacement model, Hev. Phys. Acta 66:810-841, 1993.
[14] F. Klopp, Internal Lifshits tails for random perturbations of periodic Schrödinger operators, Duke Math. J., 98:335-396, 1999.
[15] F. Klopp and S. Nakamura. Lifshitz tails for generalized alloy type random Schrödinger operators. http://arxiv.org/abs/0903.2105.
[16] F. Klopp and S. Nakamura. Spectral extrema and Lifshitz tails for non monotonous alloy type models. Comm. Math. Phys. 287(1):1133-1143, 2009.
[17] J. Lott and G. Stolz, The spectral minimum for random displacement models, J. Comput. Appl. Math. 148:133-146, 2002.
[18] L. Pastur and A. Figotin. Spectra of random and almost-periodic operators, volume 297 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992.
[19] M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.
[20] M. Reed and B. Simon. Methods of modern mathematical physics. III. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1979. Scattering theory.
[21] P. Stollmann, Caught by disorder, bound states in random media, Birkhauser, Boston, MA, 2001.
(Fatma Ghribi) Département de Mathématiques, Faculté des Sciences de Monastir, Avenue de l'Environnement 5019 Monastir, Tunisie

E-mail address: Fatma.Ghribi@fsm.rnu.tn
(Frédéric Klopp) LAGA, Institut Galilée, U.R.A 7539 C.N.R.S, Université de Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France, et, Institut Universitaire de France

E-mail address: klopp@math.univ-paris13.fr

