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LOCALIZATION FOR THE RANDOM DISPLACEMENT
MODEL AT WEAK DISORDER

FATMA GHRIBI AND FRÉDÉRIC KLOPP

Abstract. This paper is devoted to the study of the random dis-
placement model on R

d. We prove that, in the weak displacement
regime, Anderson and dynamical localization holds near the bot-
tom of the spectrum under a generic assumption on the single site
potential and a fairly general assumption on the support of the
possible displacements. This result follows from the proof of the
existence of Lifshitz tail and of a Wegner estimate for the model
under scrutiny.

Résumé. Cet article est consacré à l’étude d’un modèle de pe-
tits déplacements aléatoires. Sous une hypothèse générique sur
le potentiel de simple site et des hypothèses assez générales sur
les déplacements autorisés, on démontre que le bas du spectre est
exponentiellement et dynamiquement localisé dans la limite des
petits déplacements. La preuve repose sur la preuve d’une estimée
de Lifshitz et d’une estimée de Wegner pour le modèle étudié.

0. Introduction

We consider the following random displacement model

(0.1) Hλ,ω = −∆ + p+ qλ,ω, where qλ,ω(x) =
∑

γ∈Zd

q(x− γ − λωγ),

acting on L2(Rd). We assume the following:

(H.0.0): The potential p is a real valued, Z
d-periodic function.

(H.0.1): The single site potential q is a twice continuously dif-
ferentiable, real valued function and compactly supported.

(H.0.2): ω := (ωγ)γ∈Zd is a collection of non trivial, independent,
identically distributed, bounded random variables; let K be the
support of their common distribution.

(H.0.3): λ is a small non negative coupling constant.

Under these assumptions, Hλ,ω is ergodic and, for all ω, Hλ,ω is self-
adjoint on H2(Rd). The theory of ergodic operators teaches us that the
spectrum of Hλ,ω is w-almost surely independent of ω (see e.g. [10, 18]);
we denote it by Σλ .
Our assumptions on qλ,ω imply that Σλ is lower semi-bounded. Define
Eλ := inf Σλ.
The goal of the present paper is to study the nature of the spectrum
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of Hλ,ω near Eλ. When studying its spectral properties, an important
feature of Hλ,ω is that it depends non monotonically (see e.g. [16])
on the random variables (ωγ)γ∈Zd , even if q is assumed to be sign-
definite. As each of the random variables (ωγ)γ∈Zd is multidimensional,
there cannot be a real monotonicity. Nevertheless, we exhibit a set of
assumptions on the single site potential q and on the random variables
(ωγ)γ∈Zd that guarantee that, for sufficiently small disorder λ,

• there exists a neighborhood of Eλ where Hλ,ω admits a Wegner
estimate,

• Hλ,ω exhibits a Lifshitz tails at Eλ.

It is well known that such result then entail Anderson and dynamical
localization near Eλ (see e.g. [6]).
Our assumptions are presumably not optimal; we show that they hold
for a small generic q. The assumptions on the random variables involve
a part on their regularity. As they are multi-dimensional, absolute con-
tinuity with respect to the d-dimensional Lebesgue measure is not nec-
essary; actually, they can be concentrated on subset of dimension one
(see section 1.2.3). As for the support of the single site random vari-
able, they can have a wide variety of shapes but need to satisfy a type
of strict convexity condition at certain points; we refer to section 1.3
for more details.

Due to the non monotonicity of Hλ,ω, few rigorous results are known
for the random displacement model in dimension larger than 1.
For the one-dimensional displacement model, localization at all ener-
gies was proven in [1] and, with different methods and, under more
general assumptions, in [5]. These proofs establish the Wegner esti-
mate using two-parameter spectral averaging and use lower bounds on
the Lyapunov exponent to replace the Lifshitz tails behavior.
For the multi-dimensional random displacement model, the only avail-
able result on localization prior to the present paper was [13] establish-
ing the existence of a localized region for the semi-classical operator
−h2∆ + p + qλ,ω when h is sufficiently small. The Wegner estimate
was established through a careful analysis of quantum tunneling. The
Lifshitz tails behavior was neither proved nor used as, in the energy
region under consideration, because of the semi-classical regime, the
model is in a large disorder regime.
It has been discovered recently that, for random displacement models,
Lifshitz tails need not hold (see [3, 15]).
Related to the study of the occurrence of the Lifshitz tails, an impor-
tant point is the study of the infimum of the almost sure spectrum and,
in particular of the finite volume configurations of the random parame-
ter, if any, that give rise to the same ground state energy. Such a study
for non monotonous models has been undertaken recently in [2, 16].
In the present paper, we give an analysis of those configuration in the
small displacement case.
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1. The main results

For n ≥ 0, let Λn = [−n − 1/2, n + 1/2]d. For (ωγ)γ∈Z, define the
differential expression

(1.1) Hλ,ω,n = −∆ + p+
∑

β∈(2n+1)Zd

∑

γ∈Zd/(2n+1)Zd

q(x− β − γ − λωγ).

Let HP
λ,ω,n be restriction of Hλ,ω,n to the cube Λn with periodic bound-

ary conditions. HP
λ,ω,n has only discrete spectrum and is bounded from

below. For E ∈ R, the integrated density of states is, as usual, defined
by

Nλ(E) = lim
n→+∞

1

(2n+ 1)d
#{eigenvalues of HP

λ,ω,n in (−∞, E]}.

We refer to [10, 18] for details on this function and the proofs of various
standard results.

1.1. The assumptions. We now state our assumptions on the random
potential. Therefore, we introduce the periodic operator obtained by
shifting all the single site potentials by exactly the same amount i.e.
for ζ ∈ K (see assumption (H.0.2)), let

(1.2) Hζ = Hλ,ζ = −∆ + p+
∑

γ∈Zd

q(x− γ − λζ).

Here and in the sequel, ζ denotes the constant vector with entries all
equal to ζ i.e. ζ = (ζ)γ∈Zd.
The spectrum of the Z

d-periodic operator Hζ is purely absolutely con-
tinuous; it is a union of intervals (see e.g. [19]). Let E(λ, ζ) be the
infimum of this spectrum. As E(ζ, λ) is the bottom of the spectrum of
the periodic operator Hζ , we know that it is a simple Floquet eigen-
value associated to the Floquet quasi-momentum θ = 0 (see section 2.1
for more details); hence, it is a twice continuously differentiable func-
tion of ζ .
We assume that

(H.1.1): there exits λ0 > 0 such that, for λ ∈ (0, λ0), there exists
a unique point ζ(λ) ∈ K so that

E(λ, ζ(λ)) = min
ζ∈K

E(λ, ζ);

(H.1.2): there exists α0 > 0 such that, for for λ ∈ (0, λ0) and
ζ ∈ K, one has

(1.3) ∇ζE(λ, ζ(λ)) · (ζ − ζ(λ)) ≥ α0 λ |ζ − ζ(λ)|2.
In section 1.3, we discuss concrete conditions on p, q and K that ensure
that assumption (H.1) is valid. We now turn to our main results.
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1.2. The results. We start with a description of the realizations of
the random potential where the infimum of the almost sure spectrum
is attained. Then, we state our results on Lifshitz tails, a Wegner
estimate and the result on localization.

1.2.1. The infimum of the almost sure spectrum. Of course, as Σλ is
the almost sure spectrum, almost all realization have its infimum as
the infimum of the spectrum. The realization we are interested in
are those that attain this infimum when restricted to a finite volume.
In the present paper, we construct these restrictions using periodic
boundary conditions, actually considering periodic realizations of the
random potential. In [2, 3, 16, 15], the restrictions were performed
using Neumann boundary conditions.
We define periodic configurations of the random potential. Fix n ≥
0 and, for (ωγ)γ∈Zd/(2n+1)Zd , consider the differential operator Hλ,ω,n

defined by (1.1) with domain H2(Rd). It is (2n + 1)Zd-periodic; let
En

0 (λω) be its ground state energy i.e. the infimum of its spectrum.
One has

Theorem 1.1. Under assumptions (H.0) and (H.1), there exists λ0 >

0 such that, for any n ≥ 0, for λ ∈ (0, λ0], on K(2n+1)d

, the function
ω 7→ En

0 (λω) reaches its infimum E(λ, ζ(λ)) at a single point, the point
ω = (ζ(λ))γ∈Zd/(2n+1)Zd .

So, when it comes to finding the “ground state” of our random system,
for small λ, the Hamiltonian behaves as if it were monotonous in the
random variables (ωγ)γ.
By the standard characterization of the almost sure spectrum in terms
of the spectra of the periodic approximations (see e.g. [18]), for λ suf-
ficiently small, one has that Eλ = inf Σλ = E(λ, ζ(λ)).

1.2.2. The Lifshitz tails. As a consequence of the determination of the
minimum, we obtain

Theorem 1.2. Under assumptions (H.0) and (H.1), there exists λ0 >
0 such that for all λ ∈]0, λ0],

lim
E→Eλ

log | log(Nλ(E) −Nλ(Eλ)|
log(E − Eλ)

≤ −d
2

Moreover, if the common distribution of the random variables (ωγ)γ is
such that, for all λ and δ positive sufficienlty small, one has

P({|ω0 − ζ(λ)| ≤ ε}) ≥ e−ε−δ

for ε positive sufficienlty small, then

lim
E→Eλ

log | log(Nλ(E) −Nλ(Eλ)|
log(E −Eλ)

= −d
2
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This behavior is well known for monotonous alloy type models. It
has also been discovered recently that, for general displacement or non
monotonous alloy type models, this behavior need not hold (see [3, 16,
15]).

1.2.3. The Wegner estimate. A Wegner estimate is an estimate on the
probability that a restriction of the random Hamiltonian to a cube
admits an eigenvalue in a fixed energy interval. Clearly, the estimate
should grow with the size of the cube and decrease with the length of
the interval in which one looks for eigenvalues.
The restrictions we choose are the periodic ones i.e those defined at the
beginning of section 1.2. We assume that

(H.2): There exists C > 0 such that, for λ sufficiently small, one
has Eλ ≤ E0 − λ/C.

Clearly, Theorem 1.1 show that this assumption is a consequence of
assumptions (H.0) and (H.1).
For the alloy type models, it is well known that a Wegner estimate
will hold only under a regularity assumption. We now turn to the
correesponding assumption for our displacement model. We keep the
notations of section 1.2.1. Consider the polar decomposition of the
random variable ω0, say ω0 = r(ω0)σ(ω0). For σ ∈ S

d−1, define rσ(ω0),
the random variable r(ω0) conditioned on σ(ω0) = σ.
We assume that

(H.3): for almost all σ ∈ S
d−1, the distribution of rσ(ω0) admits a

density with respect to the Lebesgue measure, say, hσ that itself
is absolutely continuous with respect to the Lebesgue measure;
moreover, one has

(1.4) ess-supσ∈Sd−1‖h′σ‖∞ < +∞.

We prove

Theorem 1.3. Under assumptions (H.0), (H.2) and (H.3), for any
ν ∈ (0, 1), there exists λ0 > O such that, for λ ∈ (0, λ0], there exists
Cλ > 0 such that, for all E ∈ [Eλ, Eλ + λ/C] and ε > 0 such that

(1.5) P(dist(σ(HP
λ,ω,n), E) ≤ ε) ≤ Cλε

νnd.

The result is essentially a quite simple consequence of Theorem 6.1
of [8]; the modifications are indicated in section 2.5.
In the case of monotonous random operators, under our smoothness
assumptions for the distribution of the random variables, the esti-
mate (1.5) can be improved in the sense that the power ν can be taken
equal to 1 (see [4]). It seems reasonable to think that the same holds
true for most non monotonous models; to our knowledge, no proof of
this fact exists.
A Wegner estimate of the type (1.5) implies a minimal regularity for
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Nλ, the integrated density of states of Hλ,ω in the low energy region.
Indeed, one proves

Corollary 1.1. Under the assumptions of Theorem 1.3, for any ν ∈
(0, 1), the integrated density of states Nλ is ν-Hölder continuous is the
region [Eλ, Eλ + λ/C] defined in Theorem 1.3.

1.2.4. Localization. Once Theorems 1.2 and 1.3 are proved, localization
follows by the now standard multiscale argument (see e.g. [6])

Theorem 1.4. Under assumptions (H.0), (H.1) and (H.3), there ex-
ists λ0 > 0 such that, for λ ∈]0, λ0], Anderson and strong dynami-
cal localization near the bottom of the spectrum. Namely, there exist
Eλ,1 > Eλ such that Hλ,ω has dense pure point spectrum on [Eλ, Eλ,1]
almost surely, and each eigenfunction associated to an energy in this
interval decays exponentially as |x| → ∞.

We omit the details of the proofs of this result. We only note that the
Combes-Thomas estimate and the decomposition of resolvents in the
multiscale argument work for the random displacement model in the
same way as for alloy type models.

1.3. The validity of assumption (H.1). Let us now describe some
concrete conditions on q and K that ensure that assumption (H.1) does
hold. Let H0 = Hλ,0 be defined by (1.2) for ζ = 0. The spectrum of
this operator is purely absolutely continuous; it is a union of intervals
(see e.g. [19]). Let E0 be the infimum of this spectrum and ϕ0 be the
solution to the following spectral problem

(1.6)

{

H0ϕ0 = E0ϕ0,

∀γ ∈ Z
d, ϕ0(x+ γ) = ϕ0(x).

This solution is unique up to a constant; it can be chosen positive and
normalized (see [11, 20]). We will then call it the ground state for H0.
Recall that K is the essential support of the random variables (ωγ)γ.
We prove

Proposition 1.1. Assume that K is a convex set with C2-boundary
such that all its principal curvatures are positive at all points and that

(1.7) v(q) := −
∫

Rd

∇q(x)|ϕ0(x)|2dx 6= 0,

Then, assumption (H.1) holds.

For a fixed periodic potential p that is not constant, by perturbation
theory, it is not difficult to see that condition (1.7) is satisfied for a
generic small q. Indeed, if ψ0 is the ground state for −∆ + p (in the
sense defined above), as ψ0 is positive, its modulus is constant if and
only if it is constant. In which case, the eigenvalue equation (1.6) tells
us that p is constant, identically equal to E0. So we may assume that ψ0
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is not constant, one can then find q smooth and compactly supported
such that (1.7) holds. Indeed, by integration by parts,

w(q) :=

∫

Rd

∂iq(x)ψ
2
0(x)dx = 2

∫

Rd

q(x)ψ0(x)∂iψ0(x)dx

which vanishes for all smooth compactly supported functions if and
only if ∂iψ0 vanishes identically. Hence, w(q) vanishes for all q small,
smooth and compactly supported if and only if ψ0 is a constant (as
q 7→ w(q) is linear).
As ϕ0 is the ground state for the operator −∆+p+

∑

γ q(·−γ) and this
ground state is a real analytic function of the potential q, the difference
ψ0 − ϕ0 is small for q small. So, if we pick q0 such that w(q0) 6= 0, for
ε small and q = εq0, we know that v(q) does not vanish i.e. (1.7) is
satisfied.

Let us now give another assumption on K under which (H.1) holds.
We prove

Proposition 1.2. Assume that (1.7) is satisfied and that the set K
satisfies that, there exists ε > 0 and ζ0 ∈ K, such that, for all ζ ∈ K
and |v − v(q)| < ε, one has

v · (ζ − ζ0) ≥ 0.

Then, assumption (H.1) holds. Moreover, for λ small, the minimum
ζ(λ) satisfies ζ(λ) = ζ0.

Before we proceed to the proofs of Propositions 1.1 and 1.2, let us
compare our setting to the one studied in [2, 3, 15]. In those studies,
assumption (1.7) but also assumption (H.1) are not fulfilled. Indeed,
there, p and q are assumed to be reflection symmetric with respect to
the coordinate planes i.e. for any σ = (σ1, . . . , σd) ∈ {0, 1}d and any
x = (x1, . . . , xd) ∈ R

d,

q(x1, . . . , xd) = q((−1)σ1x1, . . . , (−1)σdxd).

Hence, the potential p(·) +
∑

γ

q(· − γ) and the ground state ϕ0 satisfy

the same reflection symmetry. This implies that
∫

Rd

∇q(x)|ϕ0(x)|2dx = −
∫

Rd

∇q(x)|ϕ0(x)|2dx = 0.

The fact that, in the setting of [2, 3, 15], assumption (H.1.1) is not
satisfied is seen directly from those papers as the ground state of the
periodic operator Hζ reaches its minimum at 2d values as soon as K is
reflexion symmetric.

1.4. The proofs of Propositions 1.1 and 1.2. Consider the map-
ping ζ 7→ F (λ, ζ) = λ−1E(λ, ζ) on some large ball B containing K.
As E(λ, ζ) is a simple Floquet eigenvalue associated to the normalized
Floquet eigenvector ϕ0(λ, ζ, 0) (see section 2.1), we can compute the
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gradient of F in the ζ-variable using the Feynman-Hellmann formula
to obtain

∇ζF (λ, ζ) =

∫

Rd

∇q(x− λζ)|ϕ0(λ, ζ, 0; x)|2dx

Hence,

(1.8) sup
ζ∈B

|∇ζF (λ, ζ)− v(q)| →
λ→0

0

Proof of Proposition 1.1. Assumption (1.7) and equation (1.8) guaran-
tee that, for λ small, one can find a C2-diffeomorphism, say Ψλ, from
B to Ψλ(B) such that |Ψλ − Id|C2 → 0 when λ→ 0 and

∇ζ(F (λ,Ψλ(ζ))) = v(q).

Now, assume that K is a convex set with a C2-boundary having all
its principal curvatures positive at all points. Then, for λ small, the
set Kλ = Ψ−1

λ (K) also is convex with a C2-boundary having all its
principal curvatures positive at all points; moreover, the curvatures
are bounded away from 0 independently of λ for λ small.
On the convex set Kλ, the linear function G(ζ) := F (λ,Ψλ(ζ)) = v(q)·ζ
reaches its infimum at a single point, say ζ̃(λ) = Ψ−1

λ (ζ(λ)), ζ(λ) ∈ ∂K.
Hence, we have that, for ζ ∈ K, F (λ, ζ) ≥ F (λ, ζ(λ)). The convexity
of K and the positivity of the principal curvatures of ∂K then ensure
that, for ζ ∈ K \ {ζ(λ)}, one has

∇ζF (λ, ζ(λ)) · (ζ − ζ(λ)) > 0.

To show (1.3), it suffices to show that, for ζ ∈ K,

(1.9) ∇ζF (λ, ζ(λ)) · (ζ − ζ(λ)) ≥ 1

C0

|ζ − ζ(λ)|2.

Let Hλ be the hyperplane orthogonal to ∇ζF (λ, ζ(λ)) at ζ(λ). It in-
tersects K at ζ(λ) and K is contained in one of the half-spaces defined
by this hyperplane. Thus the hyperplane is tangent to K at ζ(λ) (see
e.g. [9]). Hence, there exists α0 > 0 such that, for ζ ∈ K, one has

(1.10) ∇ζF (λ, ζ(λ)) · (ζ − ζ(λ)) ≥ α0 d(ζ,Hλ)
2

where d(ζ,Hλ) denotes the distance from ζ to Hλ. The constant α0 can
be chosen independent of λ for λ small as the principal curvatures of ∂K
are uniformly positive. Now, if u = ‖∇ζF (λ, ζ(λ))‖−1∇ζF (λ, ζ(λ)), for
ζ ∈ K as K is compact, one has

∇ζF (λ, ζ(λ)) · (ζ − ζ(λ)) = ‖∇ζF (λ, ζ(λ))‖ [u · (ζ − ζ(λ))]

≥ α0 [u · (ζ − ζ(λ))]2
(1.11)

As |ζ − ζ(λ)|2 = d(ζ,Hλ)
2 + [u · (ζ − ζ(λ))]2, the lower bounds (1.10)

and (1.11) imply (1.9).
This completes the proof of Proposition 1.1. �
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Proof of Proposition 1.2. By assumption, for ζ ∈ K and |v−v(q)| < ε,
one has v · (ζ − ζ0) ≥ 0. Hence, as K is compact, there exists c > 0
such that, for all ζ ∈ K and |v − v(q)| < ε/2, one has

(1.12) v · (ζ − ζ0) ≥ c|ζ − ζ0|.
Let B be a closed ball centered in ζ0 such that K ⊂ B. By (1.8),

(1.12) implies that, for λ sufficiently small, for all ζ̃ ∈ B and ζ ∈ K,
one has

∇ζF (λ, ζ̃) · (ζ − ζ0) ≥ c|ζ − ζ0|.
Hence,

F (λ, ζ)− F (λ, ζ0) =

∫ 1

0

∇ζF (λ, ζ0 + t(ζ − ζ0)) · (ζ − ζ0)dt ≥ c|ζ − ζ0|.

So ζ0 is the unique minimum of ζ 7→ F (λ, ζ) in K i.e. for λ suffi-
ciently small, ζ(λ) = ζ0. Using again the boundedness of K, we get
the estimate (1.3) of assumption (H.1). This completes the proof of
Proposition 1.2. �

2. The reduction to a discrete model

In this section, we prove the results announced in section 1.2.1.
Therefore, we will use the Floquet decomposition for periodic oper-
ators to reduce our operator to some discrete model in the way it was
done in [14, 7].

2.1. Floquet theory. Pick ζ ∈ K and let Hζ be the Z
d-periodic op-

erator defined by (1.2). For θ ∈ T
∗ := R

d/(2πZ
d) and u ∈ S(Rd), the

Schwartz space of rapidly decaying functions, following [19], we define

(Uu)(θ, x) =
∑

γ∈Zd

eiγ·θu(x− γ)

which can be extended as a unitary isometry from L2(Rd) to H. Its
inverse is given by

for v ∈ H, (U∗v)(x) =
1

Vol(T∗)

∫

T∗

v(θ, x)dθ.

As Hλ,ζ is Z
d-periodic, Hλ,ζ admits the Floquet decomposition

UHλ,ζU
∗ =

∫ ⊕

T∗

Hλ,ζ(θ)dθ

whereHλ,ζ(θ) is the differential operatorHλ,ζ acting on Hθ with domain

H2
θ where

• K0 = {x ∈ R
d; ∀1 ≤ j ≤ d,−1

2
< xj ≤ 1

2
} is the fundamental

cell of Z
d.

• for v ∈ R
d, τv : L2(Rd) → L2(Rd) denotes the ”translation by

v” operator i.e for ϕ ∈ L2(Rd) and x ∈ R
d, (τvϕ)(x) = ϕ(x−v);
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• D′
θ is the space θ-quasi-periodic distribution in R

d i.e the space
of distributions u ∈ D′(Rd) such that, for any γ ∈ Z

d, we have
τγu = e−iγ·θu. Here θ ∈ T

∗;
• Hk

loc(R
d) is the space of distributions that locally belong to

Hk(Rd) and we define Hk
θ = Hk

loc(R
d) ∩ D′

θ;
• for k = 0, we define Hθ = H0

θ and identify it with L2(K0);
equipped with the L2-norm over K0, it is a Hilbert space; the
scalar product will be denoted by 〈·, ·〉θ.

We know thatHλ,ζ(θ) is self-adjoint and has a compact resolvent; hence
its spectrum is discrete. Its eigenvalues repeated according to multi-
plicity, called Floquet eigenvalues of Hλ,ζ, are denoted by

E0(λ, ζ, θ) ≤ E1(λ, ζ, θ) ≤ · · · ≤ En(λ, ζ, θ) → +∞.

The functions ((λ, ζ, θ) 7→ En(λ, ζ, θ))n∈N are Lipschitz-continuous in
the variable θ; they are even analytic in (λ, ζ, θ) when they are simple
eigenvalues.
Define ϕn(λ, ζ, θ) to be a normalized eigenvector associated to the
eigenvalue En(λ, ζ, θ). The family (ϕn(λ, ζ, θ))n≥0 is chosen so as to
be a Hilbert basis of Hθ. If En(λ0, ζ0, θ0) is a simple eigenvalue, the
function (λ, ζ, θ) 7→ ϕn(λ, ζ, θ) is analytic near (λ0, ζ0, θ0).
It is well known (see e.g. [11]) that, for given λ and ζ , the eigenvalue
E0(λ, ζ, θ) reaches its minimum at θ = 0, and that it is simple for θ
small.

2.2. The reduction procedure. Recall that the (ϕn(λ, ζ, θ))n≥0 are
the Floquet eigenvalues for Hλ,ζ. Let Πλ,ζ,0(θ) and Πλ,ζ,+(θ) respec-
tively denote the orthogonal projections in Hθ on the vector spaces re-
spectively spanned by ϕ0(λ, ζ, θ) and (ϕn(λ, ζ, θ))n≥1. Obviously, these
projectors are mutually orthogonal and their sum is the identity for
any θ ∈ T

∗.
Define Πλ,ζ,α = U∗Πλ,ζ,α(θ)U where α ∈ {0,+}. Πλ,ζ,α is an orthogonal
projector on L2(Rd) and, for γ ∈ Z

d, we have τ ∗γ Πλ,ζ,ατγ = Πλ,ζ,α. It is
clear that that Πλ,ζ,0+Πλ,ζ,+ = IdL2(Rd) and Πλ,ζ,0 and Πλ,ζ,+ are mutu-

ally orthogonal. For α ∈ {0,+}, we set Eλ,ζ,α = Πλ,ζ,α(L2(Rd)). These
spaces are translation-invariant and Eλ,ζ,0 is of finite energy (see [14]).
For u ∈ L2(T∗), we define

Pλ,ζ(u) = U∗(u(θ)ϕ0(λ, ζ, θ)).

The mapping Pλ,ζ : L2(T∗) → Eλ,ζ,0 defines a unitary equivalence
(see [14]); its inverse is given by

P ∗
λ,ζ(v) = 〈(Uv)(θ), ϕ0(λ, ζ, θ)〉, v ∈ Eλ,0.

One checks that Pλ,ζP
∗
λ,ζ = Πλ,ζ,0 and P ∗

λ,ζPλ,ζ = IdL2(T∗).
The main result of this section is

10



Theorem 2.1. Under assumptions (H.0) and (H.1), there exists C0 >
0 such that, for any α > 0, there exists λα > 0 such that, for λ ∈ (0, λ0),

for any ζ ∈ K and any ω = (ωγ)γ∈Zd ∈ KZd

, one has

1

C0

(

Pλ,ζh
−
λ,ω,ζP

∗
λ,ζ + Πλ,ζ,+

)

≤ Hλ,ω − E(λ, ζ)

≤ C0

(

Pλ,ζh
+
λ,ω,ζP

∗
λ,ζ + H̃λ,ζ,+

)

(2.1)

where

• H̃λ,ζ,+ = (Hλ,ζ − E(λ, ζ))Πλ,ζ,+.

• h±λ,ω,ζ is the random operator acting on L2(T∗) defined by

h+
λ,ω,ζ = C0̟(·) + λ

∑

γ∈Zd

[

v(λ, ζ) · (ωγ − ζ) + C0 α ‖ωγ − ζ‖2
]

Πγ

h−λ,ω,ζ =
1

C0

̟(·) + λ
∑

γ∈Zd

[

v(λ, ζ) · (ωγ − ζ) − C0 α ‖ωγ − ζ‖2
]

Πγ

• ̟ is the multiplication operator by the function

(2.2) ̟(θ) =
d

∑

j=1

(1 − cos(θj)),

• Πγ is the orthogonal projector on eiγθ,
• the vector v(λ, ζ) is given by

(2.3) v(λ, ζ) = −
∫

Rd

∇q(x− λζ)|ϕ0(λ, ζ, 0; x)|2dx =
1

λ
∇ζE(λ, ζ).

The proof of Theorem 2.1 is the content of section 3. We now use this
result to derive Theorem 1.1 and 1.2.

2.3. The characterization of the infimum of the almost sure
spectrum. We now prove Theorem 1.1. Using Theorem 2.1 for ζ =
ζ(λ), assumption (1.3) and (2.3), we see that, for λ sufficiently small,

for ω ∈ K(2n+1)d

, one has

(2.4) Hλ,ω,n − Eλ ≥ 1

C0

(

Pλ,ζh
−

λ,ω,ζ(λ),α,nP
∗
λ,ζ + Πλ,ζ,+

)

.

By (1.3), taking C0α ≤ α0/2, we get

h−λ,ω,ζ(λ),n ≥ ̟(·) +
λα0

2

∑

β∈(2n+1)Zd

∑

γ∈Zd/(2n+1)Zd

‖ωγ − ζ(λ)‖2Πγ .

As the spectrum of h−λ,ω,ζ(λ),n is non negative, the operator in the left

hand side of (2.4) is clearly non negative; recall that Pλ,ζP
∗
λ,ζ +Πλ,ζ,+ =

IdL2, Πλ,ζ,+ is an orthogonal projector and P ∗
λ,ζ is a partial unitary

equivalence.
11



To prove Theorem 1.1, we will show that, if ω 6= (ζ(λ))γ∈Zd/(2n+1)Zd ,

then, there exists c(ω) > 0 such that h−λ,ωζ(λ),n ≥ c(ω). Therefore, recall

that h−λ,ω,ζ(λ),n is a periodic operator so we can do its Floquet decompo-

sition in the same way as in section 2.1. In the present case, as we deal
with a discrete model, the fiber operators will be finite dimensional
matrices (see e.g. [12]); they can also be represented as the operator
h−λ,ω,ζ(λ),n acting on the finite dimensional space of linear combinations

of the Dirac masses (δ2πk/(2n+1)+θ)k∈Zd/(2n+1)Zd ; the Floquet parameter
θ belongs to (2n+ 1)−1

T
∗.

As ̟ ≥ 0 and h−λ,ω,ζ(λ),n − ̟ ≥ 0, 0 is in the spectrum of h−λ,ω,ζ(λ),n if

and only if there exists θ ∈ (2n + 1)−1
T
∗ and v, a linear combination

of the Dirac masses (δ2πk/(2n+1)+θ)k∈Zd/(2n+1)Zd (seen as distributions on

T
∗) such that ̟ · v = 0 and h−λ,ω,ζ(λ),nv = 0. Now, ̟ · v = 0 implies

that θ = 0 and v = cδ0. Hence, h−λ,ω,ζ(λ),nv = 0 implies that

∑

β∈(2n+1)Zd

∑

γ∈Zd/(2n+1)Zd

‖ωγ − ζ(λ)‖2 = 0

i.e. ω = (ζ(λ))γ∈Zd/(2n+1)Zd .
So we see that the function ω 7→ En

0 (λω) reaches its infimum only at the
point ω = (ζ(λ))γ∈Zd/(2n+1)Zd . This completes the proof of Theorem 1.1.

�

2.4. The Lifshitz tails. We now prove Theorem 1.2. Therefore, we
again use the reduction given by Theorem 2.1.
Fix ζ = ζ(λ). First, the operators h±λ,ω,ζ(λ) are both standard discrete

Anderson models and, as such, admit each integrated density of states
that we denote by N±

r . As we have seen in the previous section, there
spectra are contained in R

+.
The inequality (2.1) implies that, for λ sufficiently small and E ∈
[0, 1/C2

0 ] (C0 is the constant given in Theorem 2.1), one has

N+
r (E/C0) ≤ Nλ(Eλ + E) ≤ N−

r (C0E).

Now, Theorem 1.2 immediately follows from the existence of Lifshitz
tail for the Anderson models h±λ,ω,ζ(λ) (see e.g. [18]) which, in turn, fol-

lows from the facts that, for λ sufficiently small, under our assumptions,
if C0α ≤ α0/2, by (1.3), the random variables

ω±
γ = [v(λ, ζ(λ)) · (ωγ − ζ(λ))] ± C0α‖ωγ − ζ(λ)‖2

are i.i.d, non negative, non trivial and 0 belongs to their support (see
e.g. [18, 21]).
Now if the common distribution of the random variables (ωγ)γ is such
that, for all λ and δ positive sufficiently small, one has

P({|ω0 − ζ(λ)| ≤ ε}) ≥ e−ε−δ

12



for ε positive sufficiently small, then, by virtue of (1.3), for all λ and δ
positive sufficiently small, one has

P({ω±
0 ≥ ε}) ≥ e−ε−δ

for ε positive sufficiently small. It is well known that, under this as-
sumption, the Lifshitz exponent for the density of states of the discrete
Anderson model is equal to d/2 (see e.g. [18]).
This completes the proof of Theorem 1.2. �

2.5. The Wegner estimate. We now prove Theorem 1.3 using the
results of [8]. Let HP

λ,r,σ,n be the operator HP
λ,ω,n where the random

variables (ωγ)γ∈Zd are written in polar coordinates i.e. (ωγ)γ∈Zd =
(rγ(ω) σγ(ω))γγ∈Zd where r = (rγ(ω))γ∈Zd has only non negative com-

ponents and σ = (σγ(ω))γ∈Zd ∈ [Sd−1]Z
d

. Then, the basic observation
is that

(2.5) P(dist(σ(HP
λ,ω,n), E) ≤ ε) = Eσ

(

Pr(dist(σ(HP
λ,r,σ,n), E) ≤ ε| σ)

)

where Pr(·| σ) denotes the probability in the r-variable conditioned on
σ, and Eσ, the expectation in the σ-variable.
Now, fix σ ∈ [Sd−1]Z

d

. Using the notations of section 1.2.3, we write

(2.6) Hλ,ω = H0 + λ
∑

γ∈Zd

rσ(ωγ)vσγ (· − γ) + λ2V2,ω,λ

where

• vσγ = −σγ · ∇q,
• V2,ω,λ is a potential bounded uniformly in λ and ω.

As q is C2 with compact support, for any σ0 ∈ S
d−1, vσ0

is C1 with
compact support and does not vanish identically. Assumptions (H.0.2)
and (H.3) guarantee that the random variables (rγ(ω))γ∈Zd are inde-
pendent and nicely distributed.
Hence, the model (2.6) satisfies the assumptions considered in section
6 of [8] except for the fact that, in the present case, V2,ω,λ depends on
λ. This does not matter as it is bounded uniformly in λ. In particular,
Lemma 6.1 of [8] from asserts that there exists λ0 > 0 such that, for
λ ∈ (0, λ0], there exists Cλ > 0 such that, for all E ∈ [Eλ, Eλ + λ/C]
and ε > 0 such that

(2.7) P(dist(σ(HP
λ,ω,σ,n), E) ≤ ε| σ) ≤ Cλ

[

sup
γ∈Zd

‖h′σγ
‖∞

]

ενnd.

Actually, Lemma 6.1 does not give this form to the constant in the
right hand side of (2.7); the dependence on ‖h′σ‖∞ can be obtained by
examining the computations leading to the proof of Lemma 6.1 in [8].
The bound (1.4) then garantees that the sup in (2.7) is essentially
bounded as a function of σ. We then complete the proof of Theorem 1.3
by integrating (2.7) with respect to σ and using (2.5). �
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3. Proof of Theorem 2.1

We now turn to the proof of Theorem 2.1. The proof follows the
spirit of [14, 7].
For γ ∈ Z

d, define ω̃ = (ω̃γ)γ∈Zd = (ωγ − ζ)γ∈Zd. Write

(3.1) Vλ,ω = Vλ,ζ + λ δVλ,ω̃ = Vλ,ζ + λV1,λ,ω̃ + λ2V2,λ,ω̃

where

(3.2) V1,λ,ω̃ = −
∑

γ∈Zd

∇q(x− γ − λζ) · ω̃γ.

We decompose our random Hamiltonian Hλ,ω̃ := Hλ,ω on the transla-
tion-invariant subspaces Eλ,ζ,0 and Eλ,ζ,+ defined in the section 2.2.
Thus, we obtain the random operators

Hλ,ω̃,0 = Πλ,ζ,0Hλ,ω̃Πλ,ζ,0 and Hλ,ω̃,+ = Πλ,ζ,+Hλ,ω̃Πλ,ζ,+.

In the orthogonal decomposition of L2(Rd) = Eλ,ζ,0

⊥

⊕ Eλ,ζ,+, Hλ,ω̃ is
represented by the matrix

(3.3)

(

Hλ,ω̃,0 λΠλ,ζ,0 δVλ,ω̃ Πλ,ζ,+

λΠλ,ζ,+ δVλ,ω̃ Πλ,ζ,0 Hλ,ω̃,+.

)

In section 3.1, give lower and upper bounds on Hλ,ω̃,0 which we prove
in section 3.2. Theorem 2.1 then follows form the fact that the off-
diagonal terms in (3.3) are controlled by the diagonal ones; this is
explained in section 3.3.

3.1. The operator Πλ,ζ,0Hλ,ω̃Πλ,ζ,0. In this section, using the non-
degeneracy for the density of states of Hλ,ζ at E(λ, ζ), we give lower
and upper bounds on Hλ,ω̃,0.
As seen in section 2.2, the operator Πλ,ζ,0Hλ,ω̃Πλ,ζ,0 is unitarily equiv-
alent to the operator hλ,ω̃ acting on L2(T∗) and defined by

hλ,ω̃ = hλ + λv1,λ,ω̃ + λ2v2,λ,ω̃,

where

• hλ is the multiplication by E0(λ, ζ, θ),
• the operator v1,λ,ω̃ has the kernel

(3.4) v1,λ,ω̃(θ, θ′) = 〈V1,λ,ω̃ ϕ0(λ, ζ, θ, ·), ϕ0(λ, ζ, θ
′, ·)〉L2(K0),

• the operator v2,λ,ω̃ has the kernel

v2,λ,ω̃(θ, θ′) = 〈V2,λ,ω̃ ϕ0(λ, ζ, θ, ·), ϕ0(λ, ζ, θ
′, ·)〉L2(K0).

The potential V1,λ,ω̃ and V2,λ,ω̃ are defined in (3.1) and (3.2). They are
bounded uniformly in all parameters. This will be used freely without
a special mention.
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We now recall a number of facts and definitions taken from [14]. Let
t ∈ L2(T∗,Hθ). We define the operator Pt : L2(T∗) → L2(Rd) by

∀u ∈ L2(T∗), [Pt(u)](x) =

∫

T∗

t(θ, x)u(θ)dθ.

It satisfies

(3.5) ‖Pt‖L2(T∗)→L2(Rd) ≤ ‖t‖L2(T∗,Hθ).

As the Floquet eigenvalue E0(λ, ζ, θ) is simple in a neighborhood of 0,
the Floquet eigenvector ϕ0(λ, ζ, θ, ·) is analytic in this neighborhood.
Recall that ̟ is defined in (2.2). We define the functions ϕ0,λ,ζ, ϕ̃0,λ,ζ

and δϕ0,λ,ζ in L2(T∗,Hθ) by

ϕ0,λ,ζ(θ, x) = ϕ0(λ, ζ, θ; x), ϕ̃0,λ,ζ(θ, x) = ϕ0,λ,ζ(0, x)e
iθ·x

δϕ0,λ,ζ(θ, x) =
1

√

̟(θ)
(ϕ0(λ, .ζ, θ; x) − ϕ̃0,λ,ζ(θ, x)).

Furthermore, these functions are bounded in L2(T∗,Hθ) uniformly in
ζ and λ small.
Finally, we note that, for u ∈ L2(T∗),

(3.6) Pϕ0,λ,ζ
(u) = Pϕ̃0,λ,ζ

(u) + Pδϕ0,λ,ζ
(
√
̟u).

Remark 3.1. It is proved in [14] that, there exits C > 1 such that, as
operators on L2(T), one has

1

C
̟ ≤ hλ −E(λ, ζ) ≤ C ̟.

3.1.1. Lower and upper bounds on v1,λ,ω̃ and v2,λ,ω̃.

Proposition 3.1. Recall that v(λ, ζ) is defined in (2.3). There exists
C > 0 such that, for u ∈ L2(T∗) and α > 0, we have

(3.7)

∣

∣

∣

∣

∣

∣

〈v1,λ,ω̃u, u〉 −
∑

γ∈Zd

[v(λ, ζ) · ω̃γ] · |û(γ)|2
∣

∣

∣

∣

∣

∣

≤ C



α
∑

γ∈Zd

‖ω̃γ‖2 · |û(γ)|2 +

(

1 +
1

α

)

〈̟u, u〉





and

|〈v2,λ,ω̃u, u〉|+ ‖V1,λ,ω̃Pϕ0,λ,ζ
(u)‖2 + ‖V2,λ,ω̃Pϕ0,λ,ζ

(u)‖2

≤ C





∑

γ∈Zd

‖ω̃γ‖2 · |û(γ)|2 + 〈̟u, u〉



 .
(3.8)

Propositions 3.1 is proved in section 3.2. We now use these results to
give lower and upper bounds on hλ,ω̃.
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3.1.2. Lower and upper bounds for Hλ,ω̃,0 −E(λ, ζ). We prove

Proposition 3.2. Under assumptions (H.0) and (H.1), there exists
C0 > 0 such that, for α > 0, there exists λα > 0 and Cα > 0 such that,
for all λ ∈ [0, λ0], on Eλ,ζ,0, one has

1

C0

Pλ,ζh
−
λ,ω̃,ζP

∗
λ,ζ ≤ H̃λ,ω̃,0 := Hλ,ω̃,0 −E(λ, ζ) ≤ C0Pλ,ζh

+
λ,ω̃,ζP

∗
λ,ζ,

where h±λ,ω̃,ζ are the random operators defined in Theorem 2.1.

Proof of Proposition 3.2. For λ small, Proposition 3.1 and Remark 3.1
imply that, there exists C0 > 0 such that, for α > 0, there exists λα > 0
such that for all λ ∈ [0, λα],

1

C0
̟ + λ

∑

γ∈Zd

[v(λ, ζ) · ω̃γ − C0α‖ω̃γ‖2] · Πγ ≤ hλ,ω̃ −E(λ, ζ)

and

hλ,ω̃ − E(λ, ζ) ≤ C0̟ + λ
∑

γ∈Zd

[v(λ, ζ) · ω̃γ + C0α‖ω̃γ‖2] · Πγ .

As Hλ,ω̃,0 and hλ,ω̃ are unitarily equivalent, this completes the proof of
Proposition 3.2. �

3.2. The proof of Propositions 3.1. We first prove

Lemma 3.1. There exists a constant C > 0 such that, for all u ∈
L2(Td) and α > 0, one has

∣

∣

∣

∣

∣

∣

〈V1,λ,ω̃Pϕ̃0,λ,ζ
(u), Pϕ̃0,λ,ζ

(u)〉 −
∑

γ∈Zd

[v(λ, ζ) · ω̃γ] |û(γ)|2
∣

∣

∣

∣

∣

∣

≤ C



α
∑

γ∈Zd

‖ω̃γ‖2 · |û(γ)|2 +

(

1 +
4

α

)

〈̟u, u〉



 ,

(3.9)

‖V1,λ,ω̃Pϕ̃0,λ,ζ
(u)‖2 + ‖V2,λ,ω̃Pϕ̃0,λ,ζ

(u)‖2

≤ C



α
∑

γ∈Zd

‖ω̃γ‖2 · |û(γ)|2 +

(

1 +
4

α

)

〈̟u, u〉



 ,
(3.10)

Proof of Lemma 3.1. We compute

〈V1,λ,ω̃Pϕ̃0,λ,ζ
(u), Pϕ̃0,λ,ζ

(u)〉

= −
∑

γ∈Zd

ω̃γ ·
∫

Rd

∇q(x− λζ)|ϕ0(λ, ζ, 0; x)|2 · |φγ(u)(x)|2dx,

where φγ(u)(x) =
∫

T
eiθ·γ · eiθ·xu(θ)dθ.

Recall that 0 is the unique zero of ̟ on T
∗ and it is non-degenerate.
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Thus, the function g(θ, x) = ̟(θ)−1/2(eiθ·x − 1) is defined on T × R
d

and

sup
(θ,x)∈T∗×R

(1 + |x|)−1|g(θ, x)| < +∞.

For γ ∈ Z
d, u ∈ L2(T∗) and x ∈ R

d, one has

ψγ(u)(x) = φγ(u)(x) − û(γ) =

∫

T∗

g(θ, x)eiγ·θ
√

̟(θ)u(θ)dθ.

Note that
∑

γ∈Zd

|ψγ(u)(x)|2 =

∫

T∗

|g(θ, x)|2|
√

̟(θ)u(θ)|2dθ

≤ C(1 + |x|)2〈̟u, u〉
(3.11)

Recall that v(λ, ζ) is defined by (2.3). We define

v′1,λ,ω̃[u] = −
∑

γ∈Zd

ω̃γ ·
∫

Rd

∇q(x− λζ)|ϕ0(λ, ζ, 0; x)|2|ψγ(u)(x)|2dx,

v′′1,λ,ω̃[u] = 〈V1,λ,ω̃Pϕ̃0,λ,ζ
(u), Pϕ̃0,λ,ζ

(u)〉 −
∑

γ∈Zd

v(λ, ζ) · ω̃γ|û(γ)|2 − v′1,λ,ω̃[u].

As the random variables (ω̃γ)γ∈Zd are bounded, by (3.11), we compute

|v′1,λ,ω̃[u]| ≤ C

∫

Rd

‖∇q(x− λζ)‖|ϕ0(λ, ζ, 0; x)|2
∑

γ∈Zd

|ψγ(u)(x)|2dx

≤ C〈̟u, u〉
∫

Rd

‖∇q(x− λζ)‖|ϕ0(λ, ζ, 0; x)|2(1 + |x|)2dx

≤ C〈̟u, u〉.

By the Cauchy-Schwarz inequality, one has

|v′′1,λ,ω̃[u]| = 2

∣

∣

∣

∣

∣

∣

Re





∑

γ∈Zd

û(γ)ω̃γ ·
∫

Rd

∇q(x− λζ)|ϕ0(λ, ζ, 0; x)|2ψγ(u)(x)dx





∣

∣

∣

∣

∣

∣

≤ α

[∫

Rd

‖∇q(x− λζ)‖ |ϕ0(λ, ζ, 0; x)|2dx
]

∑

γ∈Zd

‖ω̃γ‖2 |û(γ)|2

+
4

α

∑

γ∈Zd

∫

Rd

‖∇q(x− λζ)‖ |ϕ0(λ, ζ, 0; x)|2|ψγ(u)(x)|2dx.

Using (3.11), we obtain that

|v′′1,λ,ω̃[u]| ≤ C



α
∑

γ∈Zd

‖ω̃γ‖2 · |û(γ)|2 +
4

α
〈̟u, u〉



 .
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Finally, adding this to the estimate for |v′1,λ,ω̃[u]|, we get

∣

∣

∣

∣

∣

∣

〈V1,λ,ω̃Pϕ̃0,λ,ζ
(u), Pϕ̃0,λ,ζ

(u)〉 −
∑

γ∈Zd

v(λ, ζ) · ω̃γ|û(γ)|2
∣

∣

∣

∣

∣

∣

≤ C



α
∑

γ∈Zd

‖ω̃γ‖2 · |û(γ)|2 +

(

1 +
4

α

)

〈̟u, u〉



 .

This completes the proof of (3.9).
The two terms in the left hand side of (3.10) are dealt with in the same
way; so, we only give the details for ‖V1,λ,ω̃Pϕ̃0,λ,ζ

(u)‖2. We compute

‖V1,λ,ω̃Pϕ̃0,λ,ζ
(u)‖2 =

∫

Rd

|V1,λ,ω̃(x)ϕ0(λ, ζ, 0; x)φ(u)(x)|2 dx

=

∫

Rd

∣

∣

∣

∣

∣

∣

∑

γ∈Zd

∇q(x− λζ − γ) · ω̃γ

∣

∣

∣

∣

∣

∣

2

|ϕ0(λ, ζ, 0; x)φ(u)(x)|2dx

≤ C
∑

γ∈Zd

‖ω̃γ‖2

∫

Rd

‖∇q(x− λζ)‖2 |ϕ0(λ, ζ, 0; x)φγ(u)(x)|2dx

where, in the last step, as q is compactly supported, the number of non
vanishing terms of the sum inside the integral is bounded uniformly.
Now, by the definition of φγ and ψγ , we have
∫

Rd

|∇q(x− λζ)|2|ϕ0(λ, ζ, 0; x)|2|φγ(u)(x)|2dx

≤ 2

∫

Rd

|∇q(x− λζ)|2|ϕ0(λ, ζ, 0; x)|2
(

|û(γ)|2 + |ψγ(u)(x)|2
)

dx

≤ C|û(γ)|2 + C

∫

Rd

|∇q(x− λζ)|2|ϕ0(λ, ζ, 0; x)|2|ψγ(u)(x)|2dxdx

We plug this into the estimate for ‖V1,λ,ω̃Pϕ̃0,λ,ζ
(u)‖2 and (3.11) yields

‖V1,λ,ω̃Pϕ̃0,λ,ζ
(u)‖2

≤ C

∫

Rd

|∇q(x− λζ)|2|ϕ0(λ, ζ, 0; x)|2 ·
∑

γ∈Zd

|φγ(u)(x)|2dx

+ C
∑

γ∈Zd

‖ω̃γ‖2|û(γ)|2

≤ C‖ω̃γ‖2|û(γ)|2 + C〈̟u, u〉.
The computation for ‖V2,λ,ω̃Pϕ̃0,λ,ζ

(u)‖2 is the same as

V2,λ,ω̃ =
∑

γ∈Zd

q(x− γ, ζ, ω̃γ)
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where, denoting the Hessian of q at x by Q, we have

q(x, ζ, ω̃γ) =

∫ 1

0

〈Q(x− λ(ζ + tω̃γ))ω̃γ, ω̃γ〉(1 − t)dt

So (3.10) is proved and the proof of Lemma 3.1 is complete. �

Proof of Proposition 3.1. Using (3.4) and (3.6), we write

〈v1,λ,ω̃,ζu, u〉 = 〈V1,λ,ω̃Pδϕ0,λ,ζ
(
√
̟u), Pδϕ0,λ,ζ

(
√
̟u)〉

+ 〈V1,λ,ω̃Pϕ̃0,λ,ζ
(u), Pϕ̃0,λ,ζ

(u)〉
+ 2Re(〈V1,λ,ω̃Pϕ̃0,λ,ζ

(u), Pδϕ0,λ,ζ
(
√
̟u)〉).

Hence, as V1,λ,ω̃ is bounded,
∣

∣

∣

∣

∣

∣

〈v1,λ,ω̃u, u〉 −
∑

γ∈Zd

v(λ, ζ) · ω̃γ|û(γ)|2
∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

〈V1,λ,ω̃Pϕ̃0,λ,ζ
(u), Pϕ̃0,λ,ζ

(u)〉 −
∑

γ∈Zd

v(λ, ζ) · ω̃γ|û(γ)|2
∣

∣

∣

∣

∣

∣

+ 2
∣

∣〈V1,λ,ω̃Pϕ̃0,λ,ζ
(u), Pδϕ0,λ,ζ

(
√
̟u)〉

∣

∣ +
∥

∥Pδϕ0,λ,ζ
(
√
̟u)

∥

∥

2
.

(3.12)

The Cauchy-Schwarz inequality then yields

|〈V1,λ,ω̃Pϕ̃0,λ,ζ
(u), Pδϕ0,λ,ζ

(
√
̟u)〉|

≤ α‖V1,λ,ω̃Pϕ̃0,λ,ζ
(u)‖2 +

4

α
‖Pδϕ0,λ,ζ

(
√
̟u)‖2.

Combining this with (3.12), (3.10) and (3.9), we obtain
∣

∣

∣

∣

∣

∣

〈v1,λ,ω̃u, u〉 −
∑

γ∈Zd

[v(λ, ζ) · ω̃γ] · |û(γ)|2
∣

∣

∣

∣

∣

∣

≤ C



α
∑

γ∈Zd

‖ω̃γ‖2 · |û(γ)|2 +

(

1 +
1

α

)

〈̟u, u〉



 .

This completes the proof of (3.7).
Using (3.6) and the expansion done above for 〈v1,λ,ω̃u, u〉 , we compute

|〈v2,λ,ω̃u, u〉| ≤ 2‖V2,λ,ω̃Pϕ̃0,λ,ζ
(u)‖2 + 2‖Pδϕ0,λ,ζ

(
√
̟u)‖2.

Combining this with (3.10), we get

|〈v2,λ,ω̃u, u〉| ≤ C





∑

γ∈Zd

‖ω̃γ‖2 · |u(γ)|2 + 〈̟u, u〉



 .

The estiumates for ‖V1,λ,ω̃Pϕ0,λ,ζ
(u)‖2 and ‖V2,λ,ω̃Pϕ0,λ,ζ

(u)‖2 are ob-
tained in the same way. This completes the proof of (3.8), hence, of
Proposition 3.1. �
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3.3. The lower and upper bounds on Πλ,ζ,+Hλ,ω̃Πλ,ζ,+. By the
definition of Πλ,ζ,+, there exists η > 0 such that, for λ sufficiently
small,

(E(λ, ζ) + η)Πλ,ζ,+ ≤ Πλ,ζ,+Hλ,ζΠλ,ζ,+.

Let H̃λ,ζ,+ = Hλ,ζ,+−E(λ, ζ) and H̃λ,ω̃,+ = Hλ,ω̃,+−E(λ, ζ). As |V1,λ,ω̃|
and |V1,λ,ω̃| are bounded, for λ sufficiently small, one has

(3.13)
η

2
Πλ,ζ,+ ≤ 1

2
H̃λ,ζ,+ ≤ H̃λ,ω̃,+ ≤ 2H̃λ,ζ,+.

Proof of Theorem 2.1. For ϕ = ϕ0 + ϕ+ ∈ Eλ,ζ,0

⊥

⊕ Eλ,ζ,+, by (3.3), one
has

∣

∣

∣
〈H̃λ,ω̃ϕ, ϕ〉 − 〈H̃λ,ω̃,0ϕ0, ϕ0〉 − 〈H̃λ,ω̃,+ϕ+, ϕ+〉

∣

∣

∣

≤ 2λ|〈V1,λ,ω̃ϕ+, ϕ0〉| + 2λ2|〈V2,λ,ω̃ϕ+, ϕ0〉|.
Using the Cauchy-Schwartz inequality, we get

|〈V1,λ,ω̃ϕ+, ϕ0〉|+|〈V2,λ,ω̃ϕ+, ϕ0〉| ≤ 2‖V1,λ,ω̃ϕ0‖2+2‖V2,λ,ω̃ϕ0‖2+4‖ϕ+‖2.

Then, the decomposition (3.3) and (3.13) give

(3.14)
1

C

(

H̃λ,ω̃,0 − CλK0 0

0 H̃λ,ω̃,+ − CλΠλ,ζ,+

)

≤ H̃λ,ω̃

= H̃λ,ω̃ ≤ C

(

H̃λ,ω̃,0 + CλK0 0

0 H̃λ,ω̃,+ + CλΠλ,ζ,+

)

where

K0 = Πλ,ζ,0(V
2
1,λ,ω̃ + V 2

2,λ,ω̃)Πλ,ζ,0.

The estimate (3.10) of Proposition 3.1 implies that

K0 ≤ CPλ,ζ



̟ +
∑

γ∈Zd

‖ω̃γ‖2Πγ



P ∗
λ,ζ .

On the other hand, (3.13) implies that, for λ sufficiently small

1

2
H̃λ,ω̃,+ ≤ H̃λ,ω̃,+ − CλΠλ,ζ,+ ≤ H̃λ,ω̃,+ + CλΠλ,ζ,+ ≤ 2H̃λ,ω̃,+.

Combining these two estimates with (3.14) and Proposition 3.2, we
complete the proof of Theorem 2.1. �

References

[1] D. Buschmann and G. Stolz. Two-parameter spectral averaging and localiza-
tion for non-monotonic random Schrödinger operators Trans. Amer. Math.
Soc. 353:835-653, 2001.

[2] J. Baker, M. Loss, and G. Stolz. Minimizing the ground state energy of an
electron in a randomly deformed lattice. Comm. Math. Phys., 283(2):397–415,
2008.

20



[3] J. Baker, M. Loss, and G. Stolz. Low energy properties of the random dis-
placement model, 2008. Preprint http://arxiv.org/abs/0808.0670.

[4] J. Combes, P. Hislop, and F. Klopp. An optimal Wegner estimate and its ap-
plication to the global continuity of the integrated density of states for random
Schrödinger operators. Duke Math. J., 140(3):469–498, 2007.

[5] D. Damanik, R. Sims and G. Stolz, Localization for one-dimensional, contin-
uum, Bernoulli-Anderson models, Duke Math. J. 114:59-100, 2002.

[6] F. Germinet and A. Klein. Bootstrap multiscale analysis and localization in
random media. Comm. Math. Phys., 222(2):415–448, 2001.

[7] F. Ghribi, Internal Lifshits tails for random magnetic Schrödinger operators,
Journal of functional Analysis, 248:387-427, 2007.

[8] P. Hislop and F. Klopp. The integrated density of states for some random
operators with nonsign definite potentials. J. Funct. Anal., 195(1):12–47, 2002.
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