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ABSOLUTE CONTINUITY OF THE SPECTRUM OF A

LANDAU HAMILTONIAN PERTURBED BY A GENERIC

PERIODIC POTENTIAL

FRÉDÉRIC KLOPP

Abstract. Consider Γ, a non-degenerate lattice in R2 and a constant
magnetic field B with a flux though a cell of Γ that is a rational multiple
of 2π. We prove that for a generic Γ-periodic potential V , the spectrum
of the Landau Hamiltonian with magnetic field B and periodic potential
V is purely absolutely continuous.

Résumé. On considère Γ, un réseau non-dégénéré dans R2 et un champ
magnétique constant B dont le flux à travers une cellule du réseau est
un multiple rationnel de 2π. On démontre que, pour un potentiel Γ-
périodique V continu générique, le spectre du hamiltonien de Landau
de champ magnétique constant B perturbé par le potentiel périodique
V est purement absolument continu.

Written in the Coulomb gauge, on L2(R2), the Landau Hamiltonian is
defined by

(1) H = (−i∇−A)2, where A(x1, x2) =
B

2
(−x2, x1),

Let Γ = ⊕2
i=1Zei be a non-degenerate lattice such that

(2) B e1 ∧ e2 ∈ 2πQ.

Define the set of real valued, continuous, Γ-periodic functions

(3) CΓ = {V ∈ C(R2,R); ∀x ∈ R2, ∀γ ∈ Γ, V (x+ γ) = V (x)}.

The space CΓ is endowed with the uniform topology, the associated norm
being denoted by ‖ · ‖.
Our main result is

Theorem 1. There exists a Gδ-dense subset of CΓ such that, for V in this

set, the spectrum of H(V ) := H + V is purely absolutely continuous.

The absence of singular continuous spectrum can be obtained from the sole
analytic direct integral representation of H(V ) that we use below ([2]).
Our result is optimal in the sense that there are examples of periodic V
for which the spectrum of H contains eigenvalues such as V constant. Of
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course, it is a natural question to wonder whether the constant potential is
the only periodic one for which the spectrum exhibits eigenvalues.

The proof of Theorem 1 consists in several steps. We first reduce the
problem via magnetic Floquet theory. Therefore, we introduce the magnetic
translations [5]. For the two-dimensional, constant, transverse magnetic
field problem, they are defined as follows. For any field strength B ∈ R, any
vector α ∈ R2, and f ∈ C∞

0 (R2), we define the magnetic translation by α to
be

(4) UB
α f(x) := e

iB
2

x∧αf(x+ α) = e
iB
2

(x1α2−x2α1)f(x+ α).

For (α, β) ∈ (R2)2, we have the commutation relations

(5) UB
α U

B
β = eiB α∧β UB

β U
B
α .

In a standard way, the family {UB
α ; α ∈ R2} extends to a projective unitary

representation of R2 on L2(R2). We note that

(6) [UB
α ,H] = 0 and [UB

α , V ] = 0.

Let (e1, e2) be a “fundamental basis” of the lattice Γ i.e. Γ = ⊕2
i=1Zei. For

j ∈ {1, 2}, we define the unitary UB
j := UB

ej
by (4). By assumption (2), one

has

(7) Be1 ∧ e2 = 2πp/q, for (p, q) ∈ Z × N, p ∧ q = 1.

It follows from (2) and (5) that the unitary operators {(UB
1 )q, UB

2 } satisfy
the commutation relation

(UB
1 )qUB

2 = eiqBe1∧e2UB
2 (UB

1 )q = ei2πpUB
2 (UB

1 )q = UB
2 (UB

1 )q,

so the pair generates an Abelian group.
One checks that

(8) [(UB
1 )q,H(V )] = 0 = [UB

2 ,H(V )]

Consider Γ′, the sublattice of Γ defined by Γ′ = qZe1 ⊕Ze2. Its dual lattice
(Γ′)∗ is given by

(Γ′)∗ = {γ∗ ∈ R2; ∀γ′ ∈ Γ′, γ∗ · γ′ ∈ 2πZ}.

For any γ′ = qγ′1e1 + γ′2e2 ∈ Γ′, define the phase Θq(γ
′) by

(9) Θq(γ
′) = eiBe1∧e2qγ′

1
γ′

2
/2 = eiπpγ′

1
γ′

2 ∈ {−1,+1}.

This allows us to define a unitary representation of the sublattice Γ′ by

(10) WB
q,γ′ = Θq(γ

′)UB
γ′ .

It is easy to check that

WB
q,γW

B
q,γ′ = WB

q,γ+γ′ , ∀(γ, γ′) ∈ (Γ′)2.

We define the transformation TB on smooth functions by

(TBf)(x, θ) =
∑

γ′∈Γ′

eiθ·(x+γ)(WB
q,γ′f)(x), θ ∈ (R2)∗/(Γ′)∗.

Again, a simple calculation shows that

(WB
q,γ′TBf)(x, θ) = (TBf)(x, θ).
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We define a function space HB,p by

HB,p = {v ∈ L2
loc(R

2) |WB
q,γ′v = v; ∀γ′ ∈ Γ′}.

It then follows that TB extends to a unitary map

TB : L2(R2) → L2((R2)∗/(Γ′)∗),HB,p).

Given this structure, it is clear that the Hamiltonian H admits a direct
integral decomposition (see e.g. [4]) over (R2)∗/(Γ′)∗, so that

TBH(V )(TB)∗ =

∫ ⊕

(R2)∗/(Γ′)∗
H(θ, V ) dθ.

The operator H(θ, V ) is self-adjoint on the Sobolev space H2
B,p, the local

Sobolev space of order two of functions in HB,p and one computes

(11) H(θ, V ) = (i∇ +A− θ)2 + V.

This operator has a compact resolvent. Consequently, the spectrum is dis-
crete and consists of eigenvalues of finite multiplicity, say, (Ej(V, θ))j∈{1,2,...}

labeled in increasing order and repeated according to multiplicity. For n ≥ 1,
the function (θ, V ) ∈ (R2)∗/(Γ′)∗×CΓ 7→ En(V, θ) is locally uniformly Lips-
chitz continuous; this follows from the variational principle (see e.g. [4]) and
the fact that (i∇−A) is H-bounded with relative bound 0. We endow the
space (R2)∗/(Γ′)∗ × CΓ with the norm ‖(θ, V )‖ = |θ| + ‖V ‖.

It is well known (see [4, 7]) that Theorem 1 is a corollary of

Theorem 2. There exists a Gδ-dense subset of CΓ such that, for V in this

set, none of the functions θ 7→ En(V, θ), n ≥ 1, is constant.

Pick θ0 ∈ (R2)∗/(Γ′)∗ and V ∈ CΓ. Let n ≥ 1.

Definition 1. En(θ0, V0) is an analytically degenerate eigenvalue ofH(θ0, V0)
if and only if there exists δ > 0 and an orthonormal system of p func-
tions, say (θ, V ) 7→ ϕj(·, θ, V ), j ∈ {1, · · · , p}, defined and real analytic
on Uθ0,V0

:= {||(θ, V ) − (θ0, V0)‖ < δ} valued in H2
B,p such that, for all

(θ, V ) ∈ Uθ0,V0
,

• the functions (ϕj(·, θ, V ))1≤j≤p span the kernel ofH(θ, V )−En(θ, V ),
• one has

H(θ, V )ϕj(θ, V ) = En(θ, V )ϕj(θ, V ) for 1 ≤ j ≤ p.

Remark 1. As one can see from the proof of Lemma 2, to say that En(θ, V )
is analytically degenerate near (E0, V0) is equivalent to say that the multi-
plicity of En(θ, V ) is constant in some neighborhood of (E0, V0).

Theorem 2 is a consequence of the following two lemmas

Lemma 1. Pick θ0 ∈ (R2)∗/(Γ′)∗ and V0 ∈ CΓ such that V0 is not a con-

stant. Assume that En(θ0, V0) is an analytically degenerate eigenvalue of

H(θ0, V0). Then, for any ε > 0, there exists V ∈ {‖V − V0‖ < ε} such that

θ 7→ En(θ, V ) is not constant.

and
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Lemma 2. Pick θ0 ∈ (R2)∗/(Γ′)∗ and V0 ∈ CΓ. Fix n ≥ 1. Then, for

any ε > 0, there exists (θε, Vε) ∈ {‖(θ, V ) − (θ0, V0)‖ < ε} and δ > 0
such that En(θ, V ) is an analytically degenerate eigenvalue of H(θ, V ) for

(θ, V ) ∈ {‖(θ, V ) − (θε, Vε)‖ < δ}.

Remark 2. In general, in Lemma 2, the multiplicity of the eigenvalue is
one.

How to complete the proof of Theorem 2 using Lemmas 1 and 2 is straight-
forward. For any n ≥ 1, the set of V in CΓ such that θ 7→ En(θ, V ) is not
constant is open (as the Floquet eigenvalues are locally uniformly Lipschitz
continuous in (θ;V )). In view of Lemma 1 and 2, for any n ≥ 1, the set of V
in CΓ such that θ 7→ En(θ, V ) is not constant is dense. Hence, the set of V
where none of (θ 7→ En(θ, V ))n≥1 is constant is a countable intersection of
dense open sets i.e. a Gδ-dense set. This completes the proof of Theorem 2.

The proof of Lemma 2. Fix ε > 0. Pick V0 ∈ CΓ and θ0 ∈ (R2)∗/(Γ′)∗.
Then, En(V0, θ0) is an isolated eigenvalue of H(θ0, V0) of multiplicity say
N0 = N(θ0, V0). Let δ > 0 be such that En(V0, θ0) be the only eigenvalue of
H(θ0, V0) in D(En(V0, θ0), 2δ), the disk of center En(V0, θ0) and radius 2δ.
The projector onto the eigenspace associated to En(V0, θ0) and H(θ0, V0) is
given by Riesz’s formula

Π(θ0, V0) =
1

2iπ

∫

|z−En(V0,θ0)|=δ
(z −H(θ0, V0))

−1dz.

It is well known (see e.g. [4, 3]) that, there exists ε0 ∈ (0, ε) such that, for
‖(θ, V )− (θ0, V0)‖ < ε0, the projector onto the eigenspace associated to the
spectrum of H(θ, V ) in D(En(V0, θ0), δ) is given by

(12) Π(θ, V ) =
1

2iπ

∫

|z−En(V0,θ0)|=δ
(z −H(θ, V ))−1dz.

In particular, the rank of this projector is constant and equal to N0, the
multiplicity of En(V0, θ0) as an eigenvalue of H(θ0, V0).
Consider the operator M(θ, V ) = Π(θ, V )H(θ, V ). Its eigenvalues are the
eigenvalues of H(θ, V ) in D(En(θ0, V0), δ) and it has finite rank N0. Let
(ψj)1≤j≤N0

be an orthonormal basis of eigenvectors of H(θ0, V0) associated
to the eigenvalue En(θ0, V0). For j ∈ {1, · · · , N0}, set ψj(θ, V ) = Π(θ, V )ψj

and let G(θ, V ) be the Gram matrix of these vectors. Then,

G(θ, V ) − IdN0
= O(‖(θ, V ) − (θ0, V0)‖)

and the vectors
(

ϕ1(θ, V ) · · · ϕN0
(θ, V )

)

=
(

ψ1(θ, V ) · · · ψN0
(θ, V )

)
√

G−1(θ, V )

form an orthonormal basis of Π(θ, V )HB,p.
E is an eigenvalue of H(θ, V ) in D(En(V0, θ0), δ) if and only if

P (E; θ, V ) = Det (M̃(θ, V ) − E) = 0

where Det denotes the determinant and M̃(θ, V ), the matrix of M(θ, V ) in
the basis (ϕ1(θ, V ), · · · , ϕN0

(θ, V )).
Then, either of two things occur:
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(1) there exists ε > 0 and a function (θ, V ) 7→ E(θ, V ) such that, for
‖(θ, V ) − (θ0, V0)‖ < ε, one has

P (E(θ, V ), θ, V ) = ∂EP (E(θ, V ), θ, V ) = · · · = ∂N0−1
E P (E(θ, V ), θ, V ) = 0

in which case, one has

P (E, θ, V ) = (E − E(θ, V ))N0 .

So En(θ, V ) is the only eigenvalue of the matrix M̃(θ, V ). For θ and

V real, M̃ (θ, V ) is Hermitian hence it is equal to En(θ, V ) IdN0
.

Pick now V complex such that ‖(θ, V ) − (θ0, V0)‖ < ε/4. We can
write V = Vr + iVi with both Vr ∈ CΓ and Vi ∈ CΓ. For z ∈ D(0, 2),

‖(θ, Vr + zVi) − (θ0, V0)‖ < ε. Hence, z 7→ M̃(θ, Vr + zVi) and
z 7→ En(θ, Vr + zVi) are analytic. Above, we have proved that, for z
real, one has

M̃(θ, Vr + zVi) = En(θ, Vr + zVi)IdN0
.

By analytic continuation, this stays true for z in D(0, 2) in particular

for z = i i.e. M̃ (θ, V ) is Hermitian hence it is equal to En(θ, V ) times
the identity.
So, (θ, V ) 7→ E(θ, V ) in an analytically degenerate eigenvalue of
H(θ, V ) (of order N0).

Remark 3. Actually, using the normal Jordan form for matrices
instead of the Hermitian nature of the matrix, we only need to know
that M̃(θ0, V0) is reducible to conclude that if the multiplicity of
En(θ, V ) is constant then the eigenvalue is analytically degenerate.

(2) or, for any ε > 0, there exists N1 < N0 and (θ1, V1) such that
|(θ1, V1) − (θ0, V0)| < ε and

P (E(θ1, V1), θ1, V1) = ∂EP (E(θ1, V1), θ1, V1)

= · · · = ∂N1−1
E P (E(θ1, V1), θ1, V1) = 0

and
∂N1

E P (E(θ1, V1), θ1, V1) 6= 0.;

in this case, E(θ1, V1) is an eigenvalue of multiplicity N1 ≤ N0 − 1
of H(θ1, V1).

In the first case, Lemma 2 is proven. In the second case, we can then start
the process over again near (θ1, V1). After at mostN0 such reductions we will
have constructed the pair (θε, Vε) announced in Lemma 2. This completes
the proof of Lemma 2. �

We now turn to the proof of Lemma 1.

Proof of Lemma 1. Pick θ0 ∈ (R2)∗/(Γ′)∗ and V0 ∈ CΓ. Assume that
En(θ0, V0) is an analytically degenerate eigenvalue of H(θ0, V0). Let us write
E(θ, V ) := En(θ, V ). Assume that the conclusions of Lemma 1 is false.
Then, there exists ε > 0 such that for any V ∈ CΓ such that ‖V − V0‖ ≤ ε,
the function θ 7→ E(θ, V ) is constant. In particular, we can slightly change
V0 to assume that it is real analytic and the same conclusion still holds.
Pick U ∈ CΓ such that ‖U‖ = 1 and set Vt = V0 + tU , t complex small. As
E(θ0, V0) is an analytically degenerate eigenvalue of H(θ0, V0), there exists
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ε > 0 and ϕ(θ, t) real analytic in (θ, t) such that, for |t| ≤ ε and |θ− θ0| ≤ ε,
one has

(13) (H(θ, t) − E(θ, t))ϕ(θ, t) = 0, ‖ϕ(θ, t)‖ = 1.

Moreover (θ, t) 7→ E(θ, t) is real analytic.
Differentiating the eigenvalue equation (13) for ϕ in t yields

(14) (H(θ, t) − E(θ, t))∂tϕ(θ, t) = [∂tE(θ, t) − U ]ϕ(θ, t).

We note that, for γ′ ∈ Γ′,

WB
γ′ (∂tϕ(θ, t)) = ∂tW

B
γ′ (ϕ(θ, t)) = ∂tϕ(θ, t)

so ∂tϕ(θ, t) ∈ HB,p.
Using (13) and the self-adjointness of H(θ, t) on HB,p, one obtains

(15) ∂tE(θ, t) = 〈Uϕ(θ, t), ϕ(θ, t)〉.

We now assume that E(θ, t) does not depend on θ in some neighborhood of
θ0 and for t small i.e.

∇θE(θ, t) = 0.

So differentiating (15) with respect to θ, we obtain that

0 = ∂t∇θE(θ, t) = ∇θ∂tE(θ, t)

= 〈Uϕ(θ, t),∇θϕ(θ, t)〉 + 〈U∇θϕ(θ, t), ϕ(θ, t)〉

= 2Re [〈Uϕk(θ, t),∇θϕk(θ, t)〉]

Here, the real part is meant coordinate wise.
At t = 0, we then get that

0 = Re [〈Uϕ(θ, 0),∇θϕk(θ, 0)〉]

=

∫

R2/Γ
U(x)Re

(

∇θϕk(x; θ, 0)ϕk(x; θ, 0)
)

dx.
(16)

So, if for all U ∈ CΓ such ‖U‖ = 1 and for t small, we know that θ 7→ E(θ, t)
is constant in some neighborhood of θ0, we obtain that (16) holds for all
U ∈ CΓ such that ‖U‖ = 1. So, for θ near θ0, one has

(17) ∀x ∈ R2, 2Re(∇θϕ(x; θ, 0)ϕ(x; θ, 0)) = ∇θ

(

|ϕ(x; θ, 0)|2
)

≡ 0.

The operator (i∇−A−θ)2 +V0 being elliptic with real analytic coefficients,
it is analytically hypoelliptic (see, e.g. [6]); hence, x 7→ ϕ(x; θ, 0) is real
analytic on R2. For |θ − θ0| ≤ ε, let Oθ ⊂ R2 be the open set where the
function x 7→ ϕ(x; θ, 0) does not vanish. By (17), this set is independent of
θ; we denote it by O. As ϕ(θ, 0) ∈ HB,p, O is invariant by the translations
by a vector in Γ′. Define Z by Z := R2 \ O. Z is also Γ′-periodic. Let C
be the fundamental cell of the lattice Γ′. As Z is the set of zeros of the real
analytic function x 7→ ϕ(x; θ0, 0) and as Z ∩ C is compact, we know that
Z ∩C has the following finite decomposition (see e.g. [1])

(18) Z ∩ C =

p0
⋃

p=1

Ap

where the union is disjoint and, for 1 ≤ p ≤ p0, one has
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(1) the set Ap either is reduced to a single point or is a connected real-
analytic curve (i.e. a connected real analytic manifold of dimension
1);

(2) if p 6= p′ and Ap ∩Ap′ 6= ∅, then

• Ap ⊂ Ap′ ,
• Ap is reduced to a single point,
• Ap′ is a real-analytic curve;

(3) assume Ap = {x0} . Then, either x0 is isolated in Z ∩C or, for some
ε0 > 0 sufficiently small, one has

Z ∩ C ∩ Ḋ(x0, ε0) =
⋃

p′∈E

Ap′ ∩ Ḋ(x0, ε0)

where E is a non empty, finite set of indices such that, for p′ ∈ E,
the set Ap′ is a real analytic curve.

Here, Ḋ(x0, ε0) = {0 < |x− x0| ≤ ε0}.

Let Z0 = ∪#Ap=1Ap be the set of the points composing the point compo-
nents in the above decomposition.

Remark 4. As our Hamiltonian has no real symmetry i.e. the partial
differential operator does not have real coefficients and as we are working
in two space dimensions, it is reasonable to expect that the nodal set of an
eigenfunction, if it is no empty, is actually made of points.

We will use the following

Lemma 3. Let Z∇ be the set of points x0 in C such that ϕ(x0; θ, 0) = 0
and ∇ϕ(x0; θ, 0) = 0. Then, Z∇ consists of isolated points.

We postpone the proof of Lemma 3 to complete that of Lemma 1.
Consider a horizontal straight line Lx = x+ R×{0} that does not intersect
Z0 ∪ Z∇. As the other components of Z are real analytic curves, possibly
shifting this line, we can assume that it intersects these curves transversally
in finitely many points. For δ > 0, define the strip Sδ

x by

Sδ
x = x+ R × (−δ, δ).

Then, there exists δ > 0 such that

• Sδ
x ∩ (Z0 ∪ Z∇) = ∅,

• Sδ
x intersects Z in C at, at most, finitely many vertical curves,

and these curves partition the strip in a finite number of open do-
mains (see Fig. 1). Here, vertical means that the curves can be
parametrized by the coordinate x1.

Recall that Z is Γ′ periodic. Hence, we get that

Sδ
x \ Z =

⋃

γ′∈qZe1

s
⋃

k=1

γ′ +Dk and Z ∩ Sx =
⋃

γ′∈qZe1

s
⋃

k=1

γ′ + Ck

where, to fix ideas we assume that Ck is the left boundary of Dk.
We prove

Lemma 4. Let D be one of the domains γ′ +Dk for some 1 ≤ k ≤ s and

some γ′ ∈ qZe1.
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1D

1C 2C

2D

1D(1,0)+

2D(1,0)+

Sx
ε

C

Figure 1: The strip

For θ such that |θ − θ0| < ε, there exists two real continuous x ∈ D 7→
gD(x; θ) ∈ R and x ∈ D 7→ ψD(x) ∈ R+, such that

(19) ∀x ∈ D, ϕ(x; θ, 0) = eigD(x;θ)ψD(x).

and such that

• for any x0 ∈ D, (x, θ′) 7→ gD(x; θ′) is real analytic in a neighborhood

of (x0, θ),
• let D′ be another domain in the collection (γ′+Dk)γ′,k; if D∩D′ 6= ∅

and D′ is to the left of D, then, for x ∈ D ∩D′, one has

(20) gD(x; θ) = gD′(x; θ) + π.

Before turning to the proof of this result, let us complete the proof of
Lemma 1.
Recall that ϕ(θ, 0) ∈ HB,p i.e. that WB

q,γ′ϕ(θ, 0) = ϕ(θ, 0) for all γ′ ∈ Γ′.

By (10), the definition of WB
q,γ′ , the functions coming into the decomposition

given in Lemma 4 must satisfy, for γ′ ∈ qZe1 and x ∈ Dk

(21) gγ′+Dk
(x+ γ′, θ) = gDk

(x, θ) −
B

2
x ∧ γ′ − πγ′1γ

′
2

and
ψγ′+Dk

(x+ γ′) = ψDk
(x).

For D, one of the domains (γ′ + Dk)γ′,k, plug the representation (19) into
the eigenvalue equation (13) to obtain that, on D, one has

(i∇x −A− θ −∇xgD)2ψD + V0ψD = EψD

where E = E(θ, 0) as it does not depend on θ. As V0, ψ and g real valued,
we can take the complex conjugate of this equation to obtain that, on O,
one has

(i∇x +A+ θ + ∇xgD)2ψD + V0ψD = EψD.

Summing the last two equations, one finally obtains that, on D, one has

(A+ θ + ∇xgD)2ψD = (E − V0)ψD + ∆ψD

As A, ψD, E and V0 do not depend on θ, as ψD does not vanish on D, this
equation implies that, for x ∈ D, the function θ 7→ θ + ∇xgD(x, θ) does
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not depend on θ. Hence, there exists a function x ∈ D 7→ hD(x) that is
real analytic in D and a real analytic function θ 7→ cD(θ) such that, for
|θ − θ0| ≤ ε and x ∈ D, one has

(22) gD(x, θ) = −θ · x+ hD(x) + cD(θ).

We note that (20) in Lemma 4 tells us that, if D′ is to the left of D and
D′ ∩D 6= ∅, then we may choose

(23) cD(θ) = cD′(θ) + π.

We now plug the representation (22) into (21) and use (23) to obtain that,
for |θ − θ0| ≤ ε, γ′ = γ′1e1 ∈ pZe1 and x ∈ D,

θ · γ′ = hγ′+D(x) − hD(x) +
B

2
x ∧ γ′ + πγ′1γ

′
2 − sγ′1π.

This is absurd as the left hand side of this expression depends on θ and the
right does not.
This completes the proof of Lemma 1. �

We now turn to the proof of Lemmas 3 and 4.

Proof of Lemma 3. First, the set Z∇ ∩ C is real analytic so can be decom-
posed in the same way as Z ∩ C. If it does not consist of isolated points,
then it contains an analytic curve, say, c. Pick a point x0 in this curve. Near
x0 = (x0

1, x
0
2) assume, without restriction, that the curve is parametrized by

x2 = c(x1) where c is real analytic.
Define the functions u(x) = Re(ϕ(x; θ, 0)) and v(x) = Im(ϕ(x; θ, 0)). They
are real analytic, real valued and satisfy

• as ϕ(θ, 0) is a solution to the eigenvalue equation (13),

(24)
(−∆u) + (A− θ)2u+ 2A · ∇v = (E − V )u,

(−∆v) + (A− θ)2v − 2A · ∇u = (E − V )v;

here, we used divA = 0;
• on c, one has

(25) 0 = u = v = ∂1u = ∂1v = ∂2u = ∂2v

by the definition of Z∇.

Let us prove inductively that, for any α ∈ N2, ∂αu = ∂αv = 0 on c. Assume
that, for α1 + α2 ≤ N , one has ∂α1

1 ∂α2

2 u = ∂α1

1 ∂α2

2 v = 0. Let us prove that
it still holds for α1 + α2 = N + 1.
For α1 + α2 ≤ N + 1, differentiating α1 − 1 times equations (24) in x1 and
α2 − 1 times in x2 yields that, on c, one has

(26)

∂α1+1
1 ∂α2−1

2 u+ ∂α1−1
1 ∂α2+1

2 u =
∑

β1+β2≤N

aβ1β2
∂βu+ bβ1β2

∂βv = 0,

∂α1+1
1 ∂α2−1

2 v + ∂α1−1
1 ∂α2+1

2 v =
∑

β1+β2≤N

cβ1β2
∂βu+ dβ1β2

∂βv = 0.

Differentiating ∂α1

1 ∂α2

2 u = 0 along c, we get

(27)
(

∂α1+1
1 ∂α2

2 u
)

(x1, c(x1)) + c′(x1)
(

∂α1

1 ∂α2+1
2 u

)

(x1, c(x1)) = 0
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Using this for (α1, α2) = (N, 0) and (α1, α2) = (N − 1, 1) and the first
equation in (26) for (α1, α2) = (N, 1), we get the system











∂N+1
1 u+ c′∂N

1 ∂2u = 0

∂N
1 ∂2u+ c′∂N−1

1 ∂2
2u = 0

∂N+1
1 u+ c′∂N−1

1 ∂2
2u = 0

which implies that

∂N+1
1 u = ∂N

1 ∂2u = ∂N−1
1 ∂2

2u = 0.

Let us assume that c′(x1) 6= 0. Then, using (26) inductively, we get that

∂N+1−α
1 ∂α

2 u = 0 for all 0 ≤ α ≤ N + 1.
If c′ does not vanish on the whole curve, we just work near a point where it
does not vanish. If c′ vanishes on the whole curve, then the curve is a straight
horizontal line, say, x2 = 0 and we proceed as follows. By differentiation
of (25), we immediately get that, on c, one has

∂N+1
1 u = ∂N

1 ∂2u = ∂N+1
1 v = ∂N

1 ∂2v = 0

Then, (26) and the induction assumption yield, for 0 ≤ α ≤ N ,

0 = −∂N+1−α
1 ∂α

2 u = ∂N−α−1
1 ∂α+2

2 u,

0 = −∂N+1−α
1 ∂α

2 v = ∂N−α−1
1 ∂α+2

2 v.

Finally we proved that, if Z∇∩C contains a curve, the functions (∂α
x )ϕ(θ, 0)

vanish identically on this curve. As ϕ(θ, 0) is real analytic, this implies that
this function vanishes identically which contradicts the assumption that its
norm in HB,p is 1.
This completes the proof of Lemma 3. �

Proof of Lemma 4. Clearly, in the domains (Dk)≤k≤s and their translates,
the decomposition (19) is the decomposition into argument and modulus of
the complex number ϕ(x; θ, 0). As ϕ(x; θ, 0) does not vanish, its argument
and modulus are also real analytic. So we only need to study what happens
at the crossing of one of the curves (Ck)≤k≤s. So, we study x 7→ ϕ(x; θ, 0)
near x0 ∈ Ck.
As Sδ

x ∩ (Z0 ∪ Z∇) = ∅, we know that ∇ϕ(x0, θ, 0) 6= 0. Using the notation
of the proof of Lemma 3 i.e. u(x) = Re(ϕ(x; θ, 0) and v(x) = Im(ϕ(x; θ, 0),
we may assume that ∇u(x0) 6= 0. As the curve Ck is vertical, we know
that ∂1u(x

0) 6= 0. We can then find a real analytic change of variables that
maps a neighborhood of x0 into a neighborhood of 0 and that maps the
set {x; u(x) = 0} into the straight line {x1 = 0}. We perform this change
of variables on u and v and call the function thus obtained again u and v.
Then, in a neighborhood of 0, one has that

(28) u(x1, x2) = 0 ⇔ x1 = 0, ∂1u(0, 0) 6= 0, v(0, x2) = 0.

The functions u and v being real analytic, we can write them as

u(x1, x2) = w̃(x2) + x1w(x1, x2) and v(x1, x2) = t̃(x2) + x1t(x1, x2)

where all the functions are real analytic.
Then, (28) implies then that

w(0, 0) 6= 0, w̃(x2) = t̃(x2) = 0 identically.
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Hence, we obtain that

(u+ iv)(x1, x2) = x1(w + it)(x1, x2) where |(w + it)(0, 0)| 6= 0.

Changing back to the initial variables, if x1 7→ c(x1) is a parametrization of
the curve Ck near x0, we see that, in U , a neighborhood of x0, we can write

ϕ(x; θ, 0) = (x2 − c(x1))ψ(x) where ψ(x0) 6= 0.

Hence, for x ∈ Dk ∩ U , one has

eigDk
(x;θ)ψDk

(x) = (x2 − c(x1))ψ(x), x2 ≥ c(x1)

and for x ∈ Dk−1 ∩ U , one has

eigDk−1
(x;θ)ψDk−1

(x) = (x2 − c(x1))ψ(x) = −(c(x1) − x2)ψ(x), x2 ≤ c(x1).

This implies that we can continue gDk−1
and gDk

continuously up to the
boundary Ck and that they satisfy the relation (20) on Ck.
This completes the proof of Lemma 4. �
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[5] J. Sjöstrand. Microlocal analysis for periodic magnetic Schrödinger equation and re-

lated questions. In Microlocal analysis and applications, volume 1495 of Lecture Notes
in Mathematics, Berlin, 1991. Springer Verlag.
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