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ON THE LATTICE OF SUB-PSEUDOVARIETIES OF DA

MANFRED KUFLEITNER AND PASCAL WEIL

Abstract. The wealth of information that is available on the lattice
of varieties of bands, is used to illuminate the structure of the lattice
of sub-pseudovarieties of DA, a natural generalization of bands which
plays an important role in language theory and in logic. The main result
describes a hierarchy of decidable sub-pseudovarieties of DA in terms
of iterated Mal’cev products with the pseudovarieties of definite and
reverse definite semigroups.

The complete elucidation of the structure of the lattice LB of band vari-
eties is one of the jewels of semigroup theory: this lattice turns out to be
countable, with a simple structure (Birjukov [2], Fennemore [3], Gerhard
[5], see Section 2.2 below for the main features of this structure). Moreover,
each of its elements can be defined by a small number of identities (at most
3), and we can efficiently solve the membership problem in each variety of
bands, as well as the word problem in its free object [6].

As bands are locally finite, the lattice L(B) of pseudovarieties of finite
bands is isomorphic to LB: a class of finite bands is a pseudovariety if and
only if it is the class of finite elements of a variety.

In this paper, we discuss the structure of the lattice of sub-pseudovarieties
of DA, which is a natural generalization of the pseudovariety B of bands.
Indeed, DA is the maximum pseudovariety in which all regular elements are
bands. This pseudovariety actually has several other interesting algebraic
characterizations, and also many other characterizations in terms of formal
languages and logic, see the survey by Tesson and Thérien [16]. This only
adds to the motivation to better understand the lattice L(DA) of its sub-
pseudovarieties.

In fact the authors’ initial motivation regards one of the logical charac-
terizations of DA by means of the 2-variable fragment of first-order theory
of the linear order [18], and the main result of this paper finds an applica-
tion in a paper on the language-theoretic characterizations of the quantifier
alternation hierarchy within that logic [10]. The characterization in [10] can
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pascal.weil@labri.fr Université de Bordeaux, CNRS and IIT Delhi
LaBRI, 351 cours de la Libération, 33405 Talence Cedex, France.

1



2 MANFRED KUFLEITNER AND PASCAL WEIL

be viewed as an algebraic counterpart of recent results of Weis and Immer-
man’s description on the 2-variable fragment of first-order logic [22], and
the main result of the present paper gives a purely algebraic foundation to
the results in [22] and [10].

Trotter and Weil [19] initiated the study of the structure of L(DA) by
considering the map V 7→ V∩B, from L(DA) to L(B). They showed that,
for each pseudovariety of bands Y, the inverse image of Y is an interval in
L(DA), with minimum elementY itself. They also showed how to effectively
turn the identities definingY as a band pseudovariety, into pseudo-identities
defining Y↑, the maximal element of that interval. This result uncovers the
interesting role played by the lattice of decidable pseudovarieties given by
the Y↑, Y ∈ L(B).

The missing element was an understanding of the fashion in which one
can climb in that lattice. The beautiful results on L(B) include a description
of the different levels of the hierarchy it forms, in terms of Mal’cev products
with the pseudovarieties RZ and LZ of right zero and left zero bands. In
this paper, we elucidate the structure of the sublattice of L(DA) formed
by the Y↑ (Y ∈ L(B)), in terms of Mal’cev products as well, with definite
and reverse definite semigroups. This helps establish that the Y↑ form an
infinite hierarchy, whose union is all of DA. It follows in particular that
DA is the least pseudovariety containing semilattices, which is closed under
Mal’cev product with definite and reverse definite semigroups, – a fact with
an interesting interpretation in formal language theory.

Interestingly, this last result was recently proved, independently and by
completely different means (logical and language theoretical) by Lodaya,
Pandya and Shah [11].

The paper is organized as follows: Section 1 summarizes what the reader
needs to know (for the purpose of this paper!) about pseudovarieties and
Mal’cev products. Section 2 discusses the known results on bands, DA and
their respective lattice of sub-pseudovarieties, and Section 3 gives our main
result. Its consequences are discussed in Section 4, in semigroup- and in
language-theoretic terms.

1. Preliminaries on pseudovarieties

1.1. Pseudovarieties. Recall that a pseudovariety of semigroups (resp.
monoids) is a class of finite semigroups (resp. monoids) closed under taking
quotients, finite direct products and subsemigroups (resp. submonoids). If
V is a pseudovariety of semigroups, we denote by VM the pseudovariety of
monoids which consists of the monoids in V. The pseudovariety V is called
monoidal if it is generated by the monoids it contains.

If W is a pseudovariety of monoids, we denote by LW the class of semi-
groups S such that, for each idempotent e, the monoid eSe ∈ W: LW forms
a pseudovariety, the largest one such that (LW)M ⊆ W.
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There is a vast literature on pseudovarieties, and on their definition by
pseudo-identities, see [1, 21]. For our purpose, it is enough to consider so-
called ω-pseudo-identities of the form u = v, where u and v are obtained
from a countable alphabet of symbolsX using the operation of concatenation
and formal (ω − 1)-power. For instance, we will consider in the sequel
identities like (xy)ωx(xy)ω = (xy)ω – where zω stands for zω−1z. A finite
semigroup S satisfies the ω-pseudo-identity u = v if, for every map ϕ : X →
S, we have ϕ̂(u) = ϕ̂(v), where ϕ̂ extends ϕ to a monoid morphism such that
ϕ̂(tω) is the (unique) idempotent power of ϕ̂(t) and ϕ̂(tω−1) is the inverse of
the element ϕ̂(tω)ϕ̂(t) in the minimal ideal of the subsemigroup generated
by ϕ̂(t), which is a group [1, 12]. By a common abuse of notation, we also
denote by sω (s ∈ S) the idempotent power of s, and by sω−1 the inverse of
sωs in the minimal ideal of the subsemigroup generated by s.

If (ui = vi)i∈I is a family of ω-pseudo-identities, we denote by [[(ui =
vi)i∈I ]] the class of finite semigroups which satisfy each ω-pseudo-identity
ui = vi. Such a class is always a pseudovariety1.

1.2. Mal’cev products. Let V be a pseudovariety of semigroups, W a
pseudovariety of semigroups (resp. monoids) and M a finite semigroup
(resp. monoid). We say that M ∈ V ©m W (the Mal’cev product of V and
W) if there exists a finite monoid T and onto morphisms α : T → M and
β : T → N such that N ∈ W and, for each idempotent e of N , β−1(e) ∈ V

(we say that β is a V-morphism). Then V ©m W is a pseudovariety of
semigroups (resp. monoids), see [12, 1, 13].

In the sequel, we will consider Mal’cev products where the first component
is one of the pseudovarieties Nil, LZ, RZ, K, D and LI, which are defined
as follows:

K = [[xωy = xω]], D = [[yxω = xω]],

Nil = K ∩D = [[xωy = yxω = zω]],

LI = K ∨D = [[xωyxω = xω]],

LZ = K ∩ [[x2 = x]] = [[xy = x, x2 = x]],

RZ = D ∩ [[x2 = x]] = [[yx = x, x2 = x]]

We will use the following fact, due to Krohn, Rhodes and Tilson [9], see [7,
Corollary 4.3]. The J -quasi-order on M is defined as follows: x ≤J y if and
only if x = uyv for some u, v ∈ M ∪ {1}. We write x <J y if x ≤J y but
not y ≤J x; that is, if the 2-sided ideal of M generated by x is properly
contained in the 2-sided ideal generated by y.

1Not all pseudovarieties are obtained this way; for a more rigorous discussion of pseu-
didentities, and in particular for a converse statement (involving a much larger set of
pseudo-identities), see [1, 21].
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Proposition 1.1. Let M be a finite semigroup and let ∼K and ∼D be the
equivalence relations ∼K and ∼D on M given, for s, t ∈M , by

s ∼K t if and only if, for all e ∈ E(M), es, et <J e or es = et

s ∼D t if and only if, for all e ∈ E(M), se, te <J e or es = et.

These two relations are congruences and M/∼K (resp. M/∼D) is the least
quotient of M such that the projection is a K- (resp. a D-) morphism.

If V is a pseudovariety of semigroups (resp. monoids) and M is a finite
semigroup (resp. monoid), then M ∈ K ©m V (resp. M ∈ D ©m V) if and
only if M/∼K∈ V (resp. M/∼D∈ V).

In particular, if V is decidable, then so are K©m V and D©m V.

2. Preliminaries on bands and DA

2.1. Bands and DA. A band is a semigroup in which every element is
idempotent. We denote by B the pseudovariety of bands, that is, B =
[[x2 = x]] = [[xω = x]].

Let DA = [[(xy)ωx(xy)ω = (xy)ω]]. The following result combines several
known results: we refer the reader to [16] for a synthesis on DA (see also
[15, 4, 20]).

Proposition 2.1. If M is a finite semigroup, the following are equivalent.

(1) M ∈ DA,
(2) every regular element of M is idempotent,
(3) for every idempotent e ∈ E(M), we have eMee = e, where Me is the

sub-semigroup of M generated the elements x ≥J e,
(4) M ∈ LI©m SL, where SL = [[x2 = x, xy = yx]] is the pseudovariety

of idempotent and commutative semigroups.

Corollary 2.2. DA (resp. DAM) is the maximum pseudovariety of semi-
groups (resp. monoids), in which every regular semigroup (resp. monoid) is
a band.

Proof. If M ∈ DA and a regular semigroup, then M is a band by Propo-
sition 2.1 (2).

Let now V be a pseudovariety of semigroups in which every regular el-
ement is a band. Recall that an element s ∈ M is regular if there exists
t ∈ M such that sts = s. In particular, the regular elements of M are
exactly the elements of the form (st)ωs (s, t ∈ M). Therefore V satisfies
the ω-pseudo-identity (xy)ωx(xy)ωx = (xy)ωx, and by right multiplication
by y(xy)ω−1, we find that V satisfies (xy)ωx(xy)ω = (xy)ω, that is, V is
contained in DA. ⊓⊔

Many more characterizations of DA can be found in the literature, see
[16, 17]. In this paper, we will encounter one more, in Section 4.2 below, in
relation with formal language theory.
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2.2. The lattice L(B). Since the free band over a finite alphabet is finite
(see [8]), the lattice L(B) of sub-pseudovarieties of B is isomorphic with the
lattice LB of all band varieties. The structure of that lattice was elucidated
around 1970 (Birjukov [2], Fennemore [3], Gerhard [5]). The lattice L(B)
turns out to be countable, with a simple structure. We summarize below
the main results concerning this lattice that will be useful to us.

We define the pseudovarieties BRm, BR′
m+1, BLm and BL′

m+1 (m ≥ 1)

by letting2

BR1 = BL1 = SL,

BRm+1 = LZ©m BLm, BLm+1 = RZ©m BRm,

BR′
2 = [[xyz = xzy, x2 = x]], BL′

2 = [[xyz = yxz, x2 = x]],

BR′
m+2 = LZ©m BL′

m+1, BL′
m+2 = RZ©m BR′

m+1.

The following statement describes the structure of the lattice L(B), as dis-
cussed by Gerhard and Petrich [6] (the last item is due to Wismath [23]).

Theorem 2.3. (1) The lattice L(B) consists of the trivial pseudovariety
I, the pseudovariety B, the BRm, BR′

m+1, BLm, BL′
m+1 (m ≥ 1)

and their intersections. It is depicted in Figure 1 (omitting its top
element B).

(2) The monoidal band pseudovarieties are the trivial pseudovariety I,
B, and the BRm, BLm and BRm ∩BLm (m ≥ 1).

(3) For each m ≥ 1, we have BRm ∨BLm = BRm+1 ∩BLm+1.
(4) For each m ≥ 2, BR′

m+1 = LBRm ∩B and BL′
m+1 = LBLm ∩B.

(5) For each m ≥ 2, the m-generated free band lies in BR′
m ∨ BL′

m =
BR′

m+1 ∩BL′
m+1.

(6) L(BM) is isomorphic to the lattice of monoidal band pseudovarieties,
with the isomorphism given by V 7→ VM (V ∈ L(B), monoidal).

Gerhard and Petrich [6] also give identities defining the band pseudova-
rieties. Let x1, x2, . . . be a sequence of variables. If u is a word on that
alphabet, we let ū be the mirror image of u, that is, the word obtained from
reading u from right to left. We let

G2 = x2x1, I2 = x2x1x2

and for m ≥ 2 Gm+1 = xm+1Gm, Im+1 = Gm+1xm+1Im.

Theorem 2.4. For each m ≥ 2, we have BRm = [[x2 = x,Gm = Im]] and
BLm = [[x2 = x,Gm = Im]].

Note that Theorems 2.3 and 2.4 allow the computation of defining iden-
tities for each band pseudovariety, and indeed to show that each can be
defined by a set of at most three identities.

2In the traditional terminology of bands, the elements of BR
′

2 and BL
′

2 are called right
normal and left normal bands respectively.
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I

LZ RZSL

BR′
2 BL′

2

BR2 BL2

BR′
3 BL′

3

BR3 BL3

BR′
4 BL′

4

Figure 1. The lattice L(B); solid lines and bullets denote
the monoidal pseudovarieties

2.3. The map V 7→ V∩B. The map V 7→ V∩B from L(DA) to L(B) can
be used to derive information on L(DA) from the information available on
L(B). The following statement was proved by Trotter and Weil [19] (and,
independently, by Reilly and Zhang [14] for the first item).

Theorem 2.5. (1) The map V 7→ V ∩ B from L(DA) to L(B) is a
complete lattice morphism, and the inverse image of a band pseu-
dovariety Y is an interval of the form [Y,Y↑].

(2) For each Y ∈ L(B), we have Y↑ = (LZ©m Y)↑ ∩ (RZ©m Y)↑.
(3) The mapping V 7→ V ∩ BM from L(DAM) to L(BM) shares the

properties from statement (1). Moreover, if Y is a monoidal band
pseudovariety, then (YM)↑ = (Y↑)M.
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(4) If Y is a monoidal pseudovariety of bands, then (LYM ∩ B)↑ =

L(Y↑
M
) ∩DA.

(5) For each m ≥ 2, BR↑
m = DA ∩ [[ϕ(Gm) = ϕ(Im)]] and BL↑

m =
DA ∩ [[ϕ(Gm) = ϕ(Im)]], where ϕ is given by

ϕ(x1) = (xω1 x
ω
2x

ω
1 )

ω, ϕ(x2) = xω2

and, for m ≥ 2, ϕ(xm+1) = (xωm+1ϕ(GmGm)ωxωm+1)
ω.

(6) Let m ≥ 1. Every m-generated semigroup in DA is in SL↑ if m = 1,

in BR
↑
3 ∩BL

↑
3 if m = 2, and in L(BR↑

m ∩BL↑
m) if m ≥ 3. In every

case, such a semigroup is in BR
↑
m+1 ∩BL

↑
m+1

It is elementary to verify [19] that I↑ = Nil, LZ↑ = K, RZ↑ = D and

SL↑ = J, and that BR
↑
2 and BL

↑
2 are equal, respectively, to the pseudova-

rieties R and L, of R-trivial and L-trivial semigroups.
Then Theorem 2.5 suffices to compute defining pseudo-identities for all

the Y↑ (Y ∈ L(B)) – and hence to prove the decidability of each of these
pseudovarieties.

Example 2.6. Theorem 2.5 shows that (BR′
2 ∨ BL′

2)
↑ = LJ ∩ DA since

BR′
2 ∨BL′

2 = BR′
3 ∩BL′

3 = L(BR2 ∩BL2) ∩B = LSL ∩B and SL↑ = J.

It also shows that BR′
2

↑
= R ∩ LJ, since BR′

2 = BR2 ∩ (BR′
2 ∨BL′

2).

For R = BR
↑
2, Theorem 2.5 yields the pseudo-identity xω2 (x

ω
1x

ω
2 x

ω
1 )

ω =
xω2 (x

ω
1 x

ω
2x

ω
1 )

ωxω2 . One can verify that, together with the pseudo-identity
defining DA, this is equivalent to the usual pseudo-identity describing R,
namely (xy)ω = (xy)ωx.

The pseudo-identities for the BR↑
m, m ≥ 3, are naturally more compli-

cated. For instance, for m = 3, we get

ϕ(G3) = (xω3 ((x
ω
1 x

ω
2x

ω
1 )

ωxω2 (x
ω
1x

ω
2 x

ω
1 )

ω)ωxω3 )
ω

ϕ(I3) = (xω3 ((x
ω
1 x

ω
2x

ω
1 )

ωxω2 (x
ω
1x

ω
2 x

ω
1 )

ω)ωxω3 )
ω

(xω3 ((x
ω
1 x

ω
2 x

ω
1 )

ωxω2 (x
ω
1 x

ω
2x

ω
1 )

ω)ωxω3 )
ωxω2 (x

ω
1x

ω
2 x

ω
1 )

ωxω2 .

♦

3. Main result

Let m ≥ 1. It is not difficult to deduce from Theorems 2.3 and 2.5 that
K©m BL↑

m ⊆ BR
↑
m+1 (and it is done explicitly in the proof of Theorem 3.1

below). We prove that the equality actually holds, showing that one can
climb in the lattice L(DA) in a way that directly mimics the steps in the
countable lattice L(B).

Theorem 3.1. For each m ≥ 1, BR
↑
m+1 = K ©m BL↑

m and BL
↑
m+1 =

D©m BR↑
m



8 MANFRED KUFLEITNER AND PASCAL WEIL

Proof. If m = 1, the announced equalities are classical results, namely the
facts that R = K©m J and L = D©m J [12]. Let us now assume that m ≥ 2.

If M is a band in K©m BL↑
m, then Proposition 1.1 shows that M/∼K∈

BL↑
m. Since M/∼K is a band as well, we have M/∼K∈ BLm. Moreover,

each ∼K-class is a band, and a semigroup in K. Therefore the projection
M → M/∼K is an LZ-morphism, and M ∈ LZ©m BLm = BRm+1. Thus

(K©m BL↑
m) ∩B ⊆ BRm+1, and hence K©m BL↑

m ⊆ BR
↑
m+1.

Conversely, let us assume that M ∈ BR
↑
m+1. By Theorem 2.5 (and with

the notation in that statement), M satisfies the pseudo-identity ϕ(Gm+1) =
ϕ(Im+1). We want to show that M/ ∼K∈ BL↑

m, that is, M/ ∼K satisfies
ϕ(Gm) = ϕ(Im).

It is easily verified by induction that the variables which occur in Gm are
the same that occur in Im, namely x1, . . . , xm. We need to verify that, for
each morphism ψ : {x1, . . . , xm}∗ →M , we have ψ(ϕ(Gm)) ∼K ψ(ϕ(Im)).

Let e ∈M be an idempotent such that e ψ(ϕ(Gm)) J e. Then each ψ(xi)
(1 ≤ i ≤ m) is in Me, the subsemigroup of M generated by the elements
that are J -greater than or equal to e.

Let us extend ψ to {x1, . . . , xm+1}
∗ by letting ψ(xm+1) = e. Since

ϕ(xm+1) = (xωm+1ϕ(GmGm)ωxωm+1)
ω and eMee = e (Proposition 2.1), we

find that ψ(ϕ(xm+1)) = e. It follows:

e ψ(ϕ(Gm)) = ψ(ϕ(xm+1Gm))

= ψ(ϕ(Gm+1))

= ψ(ϕ(Im+1)) since M satisfies ϕ(Gm+1) = ϕ(Im+1),

= ψ(ϕ(xm+1Gmxm+1Im))

= e ψ(ϕ(Gm)) e ψ(ϕ(Im)) since ψ(ϕ(xm+1)) = e,

= e ψ(ϕ(Im)) since eMee = e.

By symmetry, this shows that ψ(ϕ(Gm)) ∼K ψ(ϕ(Im)), which concludes the
proof. ⊓⊔

Consequences of this result are explored in the next section.

4. Applications

4.1. Semigroup-theoretic consequences. An immediate consequence of
Theorem 3.1 we want to point out is that we now have explicit pseudo-
identities for a number of natural pseudovarieties. For instance, no pseudo-

identity was known in the literature for K ©m L = BR
↑
3 (even though [13]

gives general tools to compute this type of pseudo-identities). We get

K©m L = [[ϕ(G3) = ϕ(I3), (xy)
ωx(xy)ω = (xy)ω]],

where ϕ(G3) and ϕ(I3) were computed in Example 2.6.



ON THE LATTICE OF SUB-PSEUDOVARIETIES OF DA 9

For convenience, in the rest of this paper, we write Rm and Lm for BR↑
m

and BL↑
m respectively. As indicated in Section 2.3, R1 = L1 is the pseudova-

riety of J -trivial semigroups, R2 is the pseudovariety ofR-trivial semigroups
and L2 is the pseudovariety of L-trivial semigroups.

We note the following elementary remark (where the case m = 2 is well-
known, see [12]).

Proposition 4.1. For each m ≥ 2, Rm ∩ Lm = Nil©m (Rm ∩ Lm).

Proof. Observe that the operation V 7→ K©m V is idempotent. In partic-
ular, K©m (Rm ∩Lm) ⊆ K©m Rm = Rm. Similarly, D©m (Rm ∩Lm) ⊆ Lm,
and hence

(

K©m (Rm ∩ Lm)
)

∩
(

D©m (Rm ∩ Lm)
)

⊆ Rm ∩ Lm.

The result follows because (K©m V)∩(D©m V) = (K∩D)©m V [13, Corollary
3.2], and K ∩D = Nil. ⊓⊔

We now consider the sequences of pseudovarieties (Rm)m and (Lm)m. It
is clear from Theorem 3.1 that Rm ⊆ Rm+2, but we have a stronger result.

Proposition 4.2. For each m ≥ 1, we have Rm ⊆ Rm+1 and Lm ⊆ Lm+1.
Moreover, both these hierarchies are infinite.

Proof. By Theorem 2.3, we have

Rm ∩B = BRm ⊆ BRm ∨BLm = BRm+1 ∩BLm+1 ⊆ BRm+1

and hence Rm ⊆ BR
↑
m+1 = Rm+1. The dual inclusion, namely Lm ⊆ Lm+1

is proved in the same way.
The infinity of either hierarchy is verified by considering the sequences

(Rm ∩B)m = (BRm)m and (Lm ∩B)m = (BLm)m: both these hierarchies
are known to be infinite. ⊓⊔

Remark 4.3. With the same reasoning, one can show that, if V is a pseu-
dovariety containing SL and not containing all of B, then the sequence
of pseudovarieties starting at V and obtained by applying alternately the
operations X 7→ K©m X and X 7→ D©m X are infinite.

Proposition 4.4. We have
⋃

m
Rm =

⋃

Lm = DA. In particular, DA is
the least pseudovariety of semigroups containing SL and closed under the
operations X 7→ K©m X and X 7→ D©m X. In addition, if M ∈ DA is m-
generated (m ≥ 2), then M is in the pseudovariety obtained from SL by m
alternated applications of these operations, starting with a Mal’cev product
with K (resp. D).

Proof. It is immediate that each Rm and each Lm is contained in DA.
Conversely, let M ∈ DA and let m ≥ 1 be such that M is m-generated. By
Theorem 2.5 (6), M ∈ Rm+1 ∩ Lm+1. This concludes the proof. ⊓⊔
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Remark 4.5. Thérien’s and Wilke’s work [18] implicitly contains a version
of the part of the statement concerning m-generated elements of DA, as
their proof of the equivalence between DA-recognizability and the 2-variable
fragment of first-order logic relies on an induction on the cardinality of the
alphabet.

Remark 4.6. It is well known that DA = LI ©m SL [15, 12, 1], and that
LI = K ∨ D. So Proposition 4.4 states the natural-sounding fact that the
closure of SL under the repeated application of the (idempotent) operations
X 7→ K©mX andX 7→ D©mX is the same as its closure under the (idempotent
as well) operation X 7→ LI©m X. Yet our proof is very specific for DA. It
is an interesting question whether this result is in fact more general. We
suspect that if V ⊆ DS and V = K©m V = D©m V, then V = LI©m V, but
that DS is the maximal pseudovariety in which this holds.

4.2. Language-theoretic consequences. The language-theoretic corol-
lary we want to record is a simple translation of Proposition 4.4, but one
worth noting.

Recall that if A is an alphabet (a finite, non-empty set), we denote by A∗

the free monoid over A. A language L ⊆ A∗ is recognized by a monoid M if
there exists a morphism ϕ : A∗ → M such that L = ϕ−1(ϕ(L)). A class of
languages V is a collection V = (V(A))A, indexed by all finite alphabets A,
such that V(A) is a set of languages in A∗. IfV is a pseudovariety of monoids,
we let V(A) be the set of all languages of A∗ which are recognized by a
monoid in V. The class V has important closure properties: each V(A) is
closed under Boolean operations and under taking residuals (if L ∈ V(A) and
u ∈ A∗, then Lu−1 and u−1L are in V(A)); and if ϕ : A∗ → B∗ is a morphism
and L ∈ V(B), then ϕ−1(L) ∈ V(A). Classes of recognizable languages with
these properties are called varieties of languages, and Eilenberg’s theorem
(see [12]) states that the correspondence V 7→ V, from pseudovarieties of
monoids to varieties of recognizable languages, is a lattice isomorphism.
Moreover, the decidability of membership in the pseudovariety V, implies
the decidability of the variety V: indeed, a language is in V if and only if its
(effectively computable) syntactic monoid is in V.

Let K,L be languages in A∗ and let a ∈ A. The product KaL is said
to be deterministic if each word u ∈ KaL has a unique prefix in Ka. If
k ≥ 1, L0, . . . , Lk are languages in A∗ and a1, . . . , ak ∈ A, the product
L0a1L1 · · · akLk is said to be deterministic if the products Li−1ai(Li · · · anLn)
are deterministic, for 1 ≤ i ≤ n.

Dually, the product KaL is said to be co-deterministic if each word u ∈
KaL has a unique suffix in aL. The product L0a1L1 · · · akLk is said to be
co-deterministic if the products (L0a1 · · ·Li−1)aiLi are co-deterministic, for
1 ≤ i ≤ n.

Finally, the product L0a1L1 · · · akLk is said to be unambiguous if every
word u in this language admits a unique decomposition in the form u =
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u0a1u1 · · · anun with each ui ∈ Li. It is easily verified that a deterministic
or co-deterministic product is a particular case of an unambiguous product.

These operations are extended to classes of languages: If V is a class of
languages, let Vdet (resp. Vcodet) denote the class of languages such that, for
each alphabet A, Vdet(A) (resp. Vcodet(A)) is the set of all Boolean combi-
nations of languages of V(A) and of deterministic (resp. co-deterministic)
products of languages of V(A). Let also Vunamb be the class of languages
such that, for each alphabet A, Vunamb(A) is the set of all finite unions of
unambiguous products of languages of V(A).

Schützenberger [15, 12] gave algebraic characterizations of the closure
operations V 7−→ Vdet, V 7−→ Vcodet and V 7−→ Vunamb for varieties of
languages: he showed that Vdet, Vcodet and Vunamb are varieties of languages,
and the the corresponding pseudovarieties are K©m V, D©m V and LI©m V,
respectively.

Proposition 4.4 now easily translates to the following statement.

Proposition 4.7. The least variety of languages containing the languages
of the form B∗ (B ⊆ A) and closed under deterministic and co-deterministic
product, is the variety corresponding to DAM.

More precisely, every unambiguous product of languages B∗
1a1B

∗
2 · · · akB

∗
k+1

where the Bi are subsets of alphabet A, can be expressed in terms of the B∗
i

and the ai using only Boolean operations and at most |A| alternated appli-
cations of the deterministic and co-deterministic products – starting with a
deterministic (resp. co-deterministic) product.

Remark 4.8. As in Remark 4.6, it is interesting to note that, while this re-
sult (that unambiguous products can be expressed by iterated deterministic
and co-deterministic products) sounds natural, its proof is very specific for
SL and DA: does it hold in general?
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