
HAL Id: hal-00376640
https://hal.science/hal-00376640

Submitted on 19 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On FO2 quantifier alternation over words
Manfred Kufleitner, Pascal Weil

To cite this version:
Manfred Kufleitner, Pascal Weil. On FO2 quantifier alternation over words. Mathematical Founda-
tions of Computer Science 2009, Aug 2009, Slovakia. pp.513-524. �hal-00376640�

https://hal.science/hal-00376640
https://hal.archives-ouvertes.fr

On FO
2 quantifier alternation over words⋆

Manfred Kufleitner1 and Pascal Weil2,3

1 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany
2 LaBRI, Université de Bordeaux and CNRS, France

3 Department of Computer Science and Engineering, IIT Delhi, India
manfred.kufleitner@fmi.uni-stuttgart.de

pascal.weil@labri.fr

Abstract. We show that each level of the quantifier alternation hierar-
chy within FO

2[<] on words is a variety of languages. We use the notion
of condensed rankers, a refinement of the rankers defined by Weis and
Immerman, to produce a decidable hierarchy of varieties which is inter-
woven with the quantifier alternation hierarchy – and conjecturally equal
to it. It follows that the latter hierarchy is decidable within one unit, a
much more precise result than what is known about the quantifier al-
ternation hierarchy within FO[<], where no decidability result is known
beyond the very first levels.

First-order logic is an important object of study in connection with computer
science and language theory, not least because many important and natural
problems are first-order definable: our understanding of the expressive power of
this logic and the efficiency of the solution of related algorithmic problems are
of direct interest in such fields as verification. Here, by first-order logic, we mean
the first-order logic of the linear order, FO[<], interpreted on finite words.

In this context, there has been continued interest in fragments of first-order
logic, defined by the limitation of certain resources, e.g. the quantifier alterna-
tion hierarchy (which is closely related with the dot-depth hierarchy of star-free
languages). It is still an open problem whether each level of this hierarchy is de-
cidable.4 Another natural restriction concerns the number of variables used (and
re-used!) in a formula. It is interesting, notably because the trade-off between
formula size and number of variables is known to be related with the trade-off
between parallel time and number of processes, see [18, 5, 1, 4].

In this paper, we concentrate on FO2[<], the 2-variable fragment of FO[<].
It is well-known that every FO[<]-formula is logically equivalent with a formula
using only 3 variables, but that FO2[<] is properly less expressive than FO[<].
The expressive power of FO2[<] was characterized in many interesting fashions
(see [12, 14, 15, 3]), and in particular, we know how to decide whether an FO[<]-
formula is equivalent to one in FO2[<].

⋆ Both authors acknowledge support from the ANR project dots, the ESF program
AutoMathA and the Indo-French P2R project modiste-cover.

4 On the other hand, the quantifier alternation hierarchy collapses at level 2 for the
first-order logic of the successor FO[S] [16, 9].

A recent result of Weis and Immerman refined a result of Schwentick, Thérien
and Vollmer [12] to give a combinatorial description of the FO2

m[<]-definable
languages (those that can be defined by an FO

2[<]-formula with quantifier al-
ternation bounded above by m), using the notion of rankers. Rankers are finite
sequences of instructions of the form go to the next a-position to the right (resp.
left) of the current position.

Our first set of results shows that FO2
m (the FO2

m[<]-definable languages),
and the classes of languages defined by rankers having m alternations of direc-
tions (right vs. left), are varieties of languages. This means that membership of
a language L in these classes depends only on the syntactic monoid of L, which
justifies an algebraic approach of decidability.

Our investigation shows that rankers are actually better suited to charac-
terize a natural hierarchy within unary temporal logic, and we introduce the
new notion of a condensed ranker, that is more adapted to discuss the quantifier
alternation hierarchy within FO2[<]. There again, the alternation of directions
in rankers defines hierarchies of varieties of languages Rm and Lm, with partic-
ularly interesting properties. Indeed, we show that these varieties are decidable,
that they admit a neat characterization in terms of closure under deterministic
and co-deterministic products, and that Rm ∪ Lm ⊆ FO2

m ⊆ Rm+1 ∩ Lm+1.
The latter containments show that we can effectively compute, given a language
L ∈ FO2, an integer m such that L is in FO2

m+1, possibly in FO2
m, but not in

FO2
m−1. This is much more precise than the current level of knowledge on the

general quantifier alternation hierarchy in FO[<].5

1 An algebraic approach to study FO
2

m

If u ∈ A+ is a non-empty word, we denote by u[i] the letter of u in position i
(1 ≤ i ≤ |u|), and by u[i, j] be the factor u[i] · · ·u[j] of u (1 ≤ i ≤ j ≤ |u|). Then
we identify the word u with the logical structure ({1, . . . , |u|}, (a)a∈A), where a

denotes the set of integers i such that u[i] = a.
Let FO[<] (resp. FOk[<], k ≥ 0) denote the set of first-order formulas using

the unary predicates a (a ∈ A) and the binary predicate < (resp. and at most
k variable symbols). It is well-known that FO3[<] is as expressive as FO[<] and
that FO2[<] is properly less expressive.

In the sequel, we omit specifying the predicate < and we write simply FO or
FOk. The classes of FO- and FO2-definable languages have well-known beautiful
characterizations [12, 14, 15, 3]. Two are of particular interest in this paper.

- The algebraic characterization in terms of recognizing monoids: a language
is FO-definable if and only if it is recognized by a finite aperiodic monoid, i.e., one
in which xn = xn+1 for each element x and for all n large enough (Schützenberger
and McNaughton-Ladner, see [13]); and a language is FO2-definable if and only
if it is recognized by a finite monoid in DA (see [14]), a class of monoids with

5 Unfortunately, it does not help with the general problem since a language L is
FO

2[<]-definable if and only if L and its complement are Σ2-definable [11].

2

many interesting characterizations, which will be discussed later. These algebraic
characterizations prove the decidability of the corresponding classes of languages:
L is FO (resp. FO

2) definable if and only if the (effectively computable) syntactic
monoid of L is in the (decidable) class of aperiodic monoids (resp. in DA).

- The language-theoretic characterization: a language is in FO-definable if
and only if it is star-free, i.e., it can be obtained from singletons using Boolean
operations and concatenation products (Schützenberger, see [8]); a language is
FO2-definable if and only if it can be written as the disjoint union of unambiguous
products of the form B∗

0a1B
∗
1 · · · akB∗

k, where k ≥ 0, the ai are letters and
the Bi are subsets of the alphabet. Such a product is called unambiguous if
each word u ∈ B∗

0a1B
∗
1 · · ·akB∗

k admits a unique factorization in the form u =
u0a1u1 · · ·akuk such that ui ∈ B∗

i for each i.

We now concentrate on FO2-formulas and we define two important param-
eters concerning such formulas. To simplify matters, we consider only formulas
where negation is used only on atomic formulas so that, in particular, no quan-
tifier is negated. This is naturally possible up to logical equivalence. Now, with
each formula ϕ ∈ FO2, we associate in the natural way a parsing tree: each oc-
currence of a quantification, ∃x or ∀x, yields a unary node, each occurrence of
∨ or ∧ yields a binary node, and the leaves are labeled with atomic or negated
atomic formulas. Each path from root to leaf in this parsing tree has a quantifier
label, which is the sequence of quantifier node labels (∃ or ∀) encountered along
this path. A block in this quantifier label is a maximal factor consisting only of
∃ or only of ∀. The quantifier depth of ϕ is the maximum length of the quantifier
label of a path in the parsing tree of ϕ, and the number of blocks of ϕ is the
maximum number of blocks in the quantifier label of a path in its parsing tree.

We let FO2
m,n denote the set of first-order formulas with quantifier depth at

most n and with at most m blocks and let FO2
m denote the union of the FO2

m,n for

all n. We also denote by FO2 (FO2
m) the class of FO2 (FO2

m)-definable languages.
Weis and Immerman’s characterization of the expressive power of FO2

m,n[<] [18]
in terms of rankers, see Theorem 1.2 below, forms the basis of our own results.

1.1 Rankers and logic

A ranker [18] is a non-empty word on the alphabet {Xa, Ya | a ∈ A}.6 Rankers
may define positions in words: given a word u ∈ A+ and a letter a ∈ A, we
denote by Xa(u) (resp. Ya(u)) the least (resp. greatest) integer 1 ≤ i ≤ |u| such
that u[i] = a. If a does not occur in u, we say that Ya(u) and Xa(u) are not
defined. If in addition q is an integer such that 1 ≤ q ≤ |u|, we let

Xa(u, q) = Xa(u[q + 1, |u|])

Ya(u, q) = Ya(u[1, q − 1]).

6 Weis and Immerman write ⊲a and ⊳a instead of Xa and Ya. We rather follow the
notation in [3], where X and Y refer to the future and past operators of LTL.

3

These definitions are extended to all rankers: if r′ is a ranker, Z ∈ {Xa, Ya | a ∈
A} and r = r′Z, we let r(u, q) = Z(u, r′(u, q)) if r′(u, q) and Z(u, r′(u, q)) are
defined, and we say that r(u, q) is undefined otherwise.

Finally, if r starts with an X- (resp. Y-) letter, we say that r defines the
position r(u) = r(u, 0) (resp. r(u) = r(u, |u|+ 1)), or that it is undefined on u if
this position does not exist. Then L(r) is the language of all words on which r is
defined. We say that the words u and v agree on a class R of rankers if exactly
the same rankers from R are defined on u and v.

The depth of a ranker r is defined to be its length (as a word). A block in
r is a maximal factor in {Xa | a ∈ A}+ (an X-block) or in {Ya | a ∈ A}+ (a
Y-block). If n ≥ m, we denote by RX

m,n (resp. RY

m,n) the set of m-block, depth

n rankers, starting with an X -(resp. Y-) block, and we let Rm,n = RX

m,n ∪RY

m,n

and RX

m,n =
⋃

n′≤n RX

m,n′ ∪
⋃

m′<m,n′<n Rm′,n′ . We define RY

m,n dually and we

let RX

m =
⋃

n≥m RX

m,n, RY

m =
⋃

n≥m RY

m,n and Rm = RX

m ∪ RY

m.

Rankers and temporal logic Let us depart for a moment from the consider-
ation of FO2-formulas, to observe that rankers are naturally suited to describe
the different levels of a natural class of temporal logic. The symbols Xa and
Ya (a ∈ A) can be seen as modal (temporal) operators, with the future and
past semantics respectively. We denote the resulting temporal logic (known as
unary temporal logic) by TL: its only atomic formula is ⊤, the other formulas
are built using Boolean connectives and modal operators. Let u ∈ A+ and let
0 ≤ i ≤ |u| + 1. We say that ⊤ holds at every position i, (u, i) |= ⊤; Boolean
connectives are interpreted as usual; and (u, i) |= Xaϕ (resp. Yaϕ) if and only if
(u, j) |= ϕ, where j is the least a-position such that i < j (resp. the greatest a-
position such that j < i). We also say that u |= Xaϕ (resp. Yaϕ) if (u, 0) |= Xaϕ
(resp. (u, 1 + |u|) |= Yaϕ).

TL is a fragment of propositional temporal logic PTL; the latter is expressively
equivalent to FO and TL is expressively equivalent to FO2, see [14].

As in the case of FO2-formulas, one may consider the parsing tree of a TL-
formula and define inductively its depth and number of alternations (between
past and future operators). If n ≥ m, the fragment TLX

m,n (resp. TLY

m,n) consists
of the TL-formulas with depth n and with m alternations, in which every branch
(of the parsing tree) with exactly m alternations starts with future (resp. past)
operators. The fragments TLm,n, TLX

m,n, TLY

m,n, TLX

m, TLY

m and TLm are defined

according to the same pattern as in the definition of Rm,n, RX

m,n, RY

m,n, RX

m, RY

m

and Rm. We also denote by T LX

m,n (T LX

m, T Lm, etc) the class of TLX

m,n (TLX

m,

T LX

m, etc)-definable languages. The following result is elementary.

Proposition 1.1. Let 1 ≤ m ≤ n. Two words satisfy the same TLX

m,n formulas

if and only if they agree on rankers from RX
m,n. A language is in T LX

m,n if and

only if it is a Boolean combination of languages of the form L(r), r ∈ RX

m,n.

Similar statements hold for TLY

m,n, TLm,n, TLX

m,n, TLY

m,n, TLX

m, TLY

m and
TLm, relative to the corresponding classes of rankers.

4

Rankers and FO
2 The connection established by Weis and Immerman [18]

between rankers and formulas in FO2
m,n, Theorem 1.2 below, is deeper. If x, y

are integers, we let ord(x, y), the order type of x and y, be one of the symbols
<, > or =, depending on whether x < y, x > y or x = y.

Theorem 1.2. Let u, v ∈ A∗ and let 1 ≤ m ≤ n. Then u and v satisfy the same
formulas in FO2

m,n if and only if

(WI 1) u and v agree on rankers from Rm,n,
(WI 2) if the rankers r ∈ Rm,n and r′ ∈ Rm−1,n−1 are defined on u and v, then

ord(r(u), r′(u)) = ord(r(v), r′(v)).
(WI 3) if r ∈ Rm,n and r′ ∈ Rm,n−1 are defined on u and v and end with

different direction letters, then ord(r(u), r′(u)) = ord(r(v), r′(v)).

Corollary 1.3. For each n ≥ m ≥ 1, T Lm,n ⊆ FO2
m,n and T Lm ⊆ FO2

m.

FO
2

m
and TL

m
-definable languages form varieties Our first result is the

following. We refer the reader to [8] and to Section 1.2 below for background
and discussion on varieties of languages.

Proposition 1.4. For each n ≥ m ≥ 1, the classes T LX

m,n T LY

m,n, T LY

m, T LY

m,

T Lm,n, T Lm, FO2
m,n and FO2

m are varieties of languages.

Sketch of proof. Let ρm,n be the relation for two words to agree on TLX

m,n-
formulas. Using Proposition 1.1, one verifies that ρm,n is a finite index congru-

ence. Then a language is TLX

m,n-definable if and only if it is a union of ρm,n-
classes, if and only if it is recognized by the finite monoid A∗/ρm,n. It follows
that these languages are exactly those accepted by the monoids in the pseudova-
riety generated by the A∗/ρm,n, for all finite alphabets A, and hence they form
a variety of languages.

The proof for the other fragments of TL is similar. For the fragments of FO2,
we use Theorem 1.2 instead of Proposition 1.1. ⊓⊔

This result shows that, for a given regular language L, TLX

m- (resp. TLm-,
FO2

m-, etc) definability is characterized algebraically, that is, it depends only on
the syntactic monoid of L. This justifies using the algebraic path to tackle de-
cidability of these definability problems. Eilenberg’s theory of varieties provides
the mathematical framework.

1.2 A short survey on varieties and pseudovarieties

We summarize in this section the information on monoid and variety theory that
will be relevant for our purpose, see [8, 2, 14, 15] for more details.

A language L ⊆ A∗ is recognized by a monoid M if there exists a morphism
ϕ : A∗ → M such that L = ϕ−1(ϕ(L)). For instance, if u ∈ A∗ and B ⊆ A, let
alph(u) = {a ∈ A | u = vaw for some v, w ∈ A∗} and [B] = {u ∈ A∗ | alph(u) =

5

B}. Then [B] is recognized by the direct product of |B| copies of the 2-element
monoid {0, 1} (multiplicative).

A pseudovariety of monoids is a class of finite monoids closed under tak-
ing direct products, homomorphic images and submonoids. Pseudovarieties of
subsemigroups are defined similarly. A class of languages V is a collection V =
(V(A))A, indexed by all finite alphabets A, such that V(A) is a set of languages in
A∗. If V is a pseudovariety of monoids, we let V(A) be the set of languages of A∗

recognized by a monoid in V. The class V is closed under Boolean operations,
residuals and inverse homomorphic images. Classes of recognizable languages
with these properties are called varieties of languages, and Eilenberg’s theorem
(see [8]) states that the correspondence V 7→ V , from pseudovarieties of monoids
to varieties of languages, is one-to-one and onto. Moreover, the decidability of
membership in the pseudovariety V, implies the decidability of the variety V :
indeed, a language is in V if and only if its (effectively computable) syntactic
monoid is in V.

For every finite semigroup S and s ∈ S, we denote by sω the unique power
of s which is idempotent. The Green relations are another important concept
to describe monoids: if S is a monoid and s, t ∈ S, we say that s ≤J t (resp.
s ≤R t, s ≤L t) if s = utv (resp. s = tv, s = ut) for some u, v ∈ S. We also say
that s J t is s ≤J t and t ≤J s. The relations R and L are defined similarly.

Pseudovarieties that will be important in this paper are the following.
- J1, the pseudovariety of idempotent and commutative monoids, whose cor-

responding variety of languages consists of the Boolean combinations of lan-
guages of the form [B].

- R, L and J, the pseudovarieties of R-, L- and J -trivial monoids; a monoid
is, say, R-trivial if each of its R-classes is a singleton.

- DA, the pseudovariety of all monoids in which (xy)ωx(xy)ω = (xy)ω for
all x, y; DA has a great many characterizations in combinatorial, algebraic and
logical terms [2, 11, 12, 14, 15].

- K (resp. D, LI) is the pseudovariety of semigroups in which xωy = xω

(resp. yxω = xω , xωyxω = xω) for all x, y.
Finally, if V is a pseudovariety of semigroups and W is a pseudovariety of

monoids, we say that a finite monoid M lies in the Mal’cev product W ©m V if
there exists a finite monoid T and onto morphisms α : T → M and β : T → N
such that N ∈ W and β−1(e) ∈ V for each idempotent e of N . Then W©m V is
a pseudovariety of monoids and we have in particular [8, 2, 10]:

K©m J1 = K ©m J = R, D ©m J1 = D ©m J = L, LI ©m J1 = LI ©m J = DA.

We denote by TLX

m,n TLY

m,n, TLY

m, TLY

m, TLm,n, TLm, FO2
m,n and FO2

m the
pseudovarieties corresponding to the language varieties discovered in Proposi-
tion 1.4.

2 Main results

Our main tool to approach the decidability of FO2
m-definability lies in a variant

of rankers, which we borrow from a proof in Weis and Immerman’s paper [18]. As

6

in the turtle language of [12], a ranker can be seen as a sequence of instructions:
go to the next a to the right, go to the next b to the left, etc. We say that a
ranker r is condensed on u if it is defined on u, and if the sequence of positions
visited zooms in on r(u), never crossing over a position already visited. Formally,
r = Z1 · · ·Zn is condensed on u if there exists a chain of open intervals

(0, |u| + 1) = (i0, j0) ⊃ (i1, j1) ⊃ · · · ⊃ (in−1, jn−1) ∋ r(u)

such that for all 1 ≤ ℓ ≤ n − 1 the following properties are satisfied:

– If ZℓZℓ+1 = XaXb then (iℓ, jℓ) = (Xa(u, iℓ−1), jℓ−1).
– If ZℓZℓ+1 = YaYb then (iℓ, jℓ) = (iℓ−1, Ya(u, jℓ−1).
– If ZℓZℓ+1 = XaYb then (iℓ, jℓ) = (iℓ−1, Xa(u, iℓ−1)).
– If ZℓZℓ+1 = YaXb then (iℓ, jℓ) = (Ya(u, jℓ−1), jℓ−1).

For instance, the ranker XaYbXc is defined on the words bac and bca, but
it is condensed only on bca. Rankers in R1, or of the form XaYb1 · · ·Ybk

or
YaXb1 · · ·Xbk

, are condensed on all words on which they are defined. We denote
by Lc(r) the set of all words on which r is condensed.

Condensed rankers form a natural notion, which is equally well-suited to the
task of describing FO2

m-definability (see Theorem 2.4 below). With respect to
TL, for which Proposition 1.1 shows a perfect match with the notion of rankers,
they can be interpreted as adding a strong notion of unambiguity, see Section 3
below and the work of Lodaya, Pandya and Shah [7] on unambiguous interval
temporal logic.

2.1 Condensed rankers determine a hierarchy of pseudovarieties

Let us say that two words u and v agree on condensed rankers from a set R of
rankers, if the same rankers are condensed on u and v. We write u ⊲m,n v (resp.

u ⊳m,n v) if u and v agree on condensed rankers in RX

m,n (resp. RY

m,n).
These relations turn out to have a very nice recursive characterization. For

each word u ∈ A∗ and letter a occurring in u, the a-left (resp. a-right) fac-
torization of u is the factorization that isolates the leftmost (resp. rightmost)
occurrence of a in u; that is, the factorization u = u−au+ such that a does not
occur in u− (resp. u+). We say that the word a1 · · ·ar is a subword of u if u can
be factored as u = u0a1u1 · · · arur, with the ui ∈ A∗.

Proposition 2.1. The relations ⊲m,n and ⊳m,n (n ≥ m ≥ 1) are uniquely de-
termined by the following properties.

- u ⊲1,n v if and only if u ⊳1,n v, if and only if u and v have the same
subwords of length at most n.

- If m ≥ 1, then u ⊲m,n v if and only if alph(u) = alph(v), u ⊳m−1,n−1 v and
for each letter a ∈ alph(u), the a-left factorizations u = u−au+ and v = v−av+

satisfy u− ⊳m−1,n−1 v− and u+ ⊲m,n−1 v+.
- If m ≥ 1, then u ⊳m,n v if and only if alph(u) = alph(v), u ⊲m−1,n−1 v and

for each letter a ∈ alph(u), the a-right factorizations u = u−au+ and v = v−av+

satisfy u+ ⊲m−1,n−1 v+ and u− ⊳m,n−1 v−.

7

Corollary 2.2. The relations ⊲m,n and ⊳m,n are finite-index congruences.

For each m ≥ 1, let us denote by Rm (resp. Lm) the pseudovariety generated
by the quotients A∗/ ⊲m,n (resp. A∗/ ⊳m,n), where n ≥ m and A is a finite
alphabet. Corollary 2.2 shows that a language L is in the corresponding variety
Rm (resp. Lm) if and only if L is a Boolean combination of languages of the
form Lc(r), with r ∈ RX

m (resp. RY

m).
By definition, for all m ≥ 1, Rm and Lm are contained in both Rm+1 and

Lm+1. According to the first statement of Proposition 2.1, ⊲1,n=⊳1,n is the con-
gruence defining the piecewise n-testable languages studied by Simon in the early
1970s, and that, in consequence, R1 = L1 = J, the pseudovariety of J -trivial
monoids [8].

In addition, one can show that if a position in a word u is defined by a ranker
r ∈ RX

m,n (resp. RY

m,n), then the same position is defined by a ranker s ∈ RX

m,n

(resp. RY

m,n) which is condensed on u. This leads to the following result.

Proposition 2.3. Let n ≥ m ≥ 1. If the words u and v agree on condensed
rankers in RX

m,n (resp. RY

m,n), then they agree on rankers from the same class.

In particular, TLX

m ⊆ Rm and TLY

m ⊆ Lm

As indicated above, condensed rankers allow for a description of FO2
m-defin-

ability, as neat as with ordinary rankers: more precisely, we show that the state-
ment of Weis and Immerman’s theorem can be modified to used condensed
rankers instead.

Theorem 2.4. Let u, v ∈ A∗ and let 1 ≤ m ≤ n. Then u and v satisfy the same
formulas in FO2

m,n if and only if

(WI 1c) u and v agree on condensed rankers from Rm,n,
(WI 2c) if the rankers r ∈ Rm,n and r′ ∈ Rm−1,n−1 are condensed on u and v,

then ord(r(u), r′(u)) = ord(r(v), r′(v)).
(WI 3c) if r ∈ Rm,n and r′ ∈ Rm,n−1 are condensed on u and v and end with

different direction letters, then ord(r(u), r′(u)) = ord(r(v), r′(v)).

Thus there is a connection between FO2
m and the varieties Rm and Lm. But

much more can be said about the latter varieties.

2.2 Language hierarchies

Proposition 2.1 also leads to a description of the language varieties Rm and Lm

in terms of deterministic and co-deterministic products. Recall that a product of
languages L = L0a1L1 · · · akLk (k ≥ 1, ai ∈ A, Li ⊆ A∗) is said to be determin-
istic if, for 0 ≤ i ≤ k, each word u ∈ L has a unique prefix in L0a1L1 · · ·Li−1ai.
If for each i, the letter ai does not occur in Li−1, the product L0a1L1 · · ·akLk is
called visibly deterministic: this is obviously a particular case of a deterministic
product.

The definition of a co-deterministic or visibly co-deterministic product is
dual, in terms of suffixes instead of prefixes. If V is a class of languages and A is

8

a finite alphabet, let Vdet(A) (resp. Vvdet(A), Vcodet(A), Vvcodet(A)) be the set of
all Boolean combinations of languages of V(A) and of deterministic (resp. visibly
deterministic, co-deterministic, visibly co-deterministic) products of languages of
V(A). Schützenberger gave algebraic characterizations of the closure operations
V 7−→ Vdet and V 7−→ Vcodet, see [8]: if V is a variety of languages and if V is
the corresponding pseudovariety of monoids, then Vdet and Vcodet are varieties
of languages and the corresponding pseudovarieties are, respectively, K©m V and
D ©m V. Then we show the following.

Proposition 2.5. For each m ≥ 1, we have Rm+1 = Lvdet
m = Ldet

m , Rm+1 =
K©m Lm, Lm+1 = Rvcodet

m = Rcodet
m and Lm+1 = D©m Rm. In particular, R2 = R

and L2 = L.

Sketch of proof. Proposition 2.1 shows that Rm+1 ⊆ Lvdet
m , which is trivially

contained in Ldet
m . The last containment is proved algebraically, by showing that

if γ : A∗ → M is an onto morphism, and M ∈ K ©m Lm, then for some large
enough n, u ⊲m+1,n v implies γ(u) = γ(v): thus M is a quotient of A∗/ ⊲m+1,n

and hence, M ∈ Rm+1. This proof relies on a technical property of semigroups
in DA: if a ∈ A occurs in alph(v) and γ(u) R γ(uv), then γ(uva) gRγ(u). ⊓⊔

It turns out that the Rm and the Lm were studied in the semigroup-theoretic
literature (Kufleitner, Trotter and Weil, [17, 6]). In [6], it is defined as the hierar-
chy of pseudovarieties obtained from J by repeated applications of the operations
X 7→ K ©m X and X 7→ D ©m X. Proposition 2.5 shows that it is the same hier-
archy as that considered in this paper7. The following results are proved in [6,
Section 4].

Proposition 2.6. The hierarchies (Rm)m and (Lm)m are infinite chains of de-
cidable pseudovarieties, and their unions are equal to DA. Moreover, every m-
generated monoid in DA lies in Rm+1 ∩ Lm+1.

The decidability statement in Proposition 2.6 is in fact a consequence of a
more precise statement (see [17, 6]) which gives defining pseudoidentities for the
Rm and Lm. Let x1, x2, . . . be a sequence of variables. If u is a word on that
alphabet, we let ū be the mirror image of u, that is, the word obtained from
reading u from right to left. We let

G2 = x2x1, I2 = x2x1x2,

for n > 2, Gn = xnGn−1, In = GnxnIn−1,

ϕ(x1) = (xω
1 xω

2 xω
1)ω, ϕ(x2) = xω

2 ,

and, for n > 2, ϕ(xn) = (xω
nϕ(Gn−1Gn−1)

ωxω
n)ω .

Then we have [6]:

7 More precisely, the pseudovarieties Rm and Lm in [6] are pseudovarieties of semi-
groups, and the Rm and Lm considered in this paper are the classes of monoids in
these pseudovarieties.

9

Proposition 2.7. For each m ≥ 2, Rm = DA ∩ [[ϕ(Gm) = ϕ(Im)]] and Lm =
DA ∩ [[ϕ(Gm) = ϕ(Im)]].

Example 2.8. For R2, this yields the pseudo-identity xω
2 (xω

1 xω
2 xω

1)ω = xω
2 (xω

1 xω
2 xω

1)ωxω
2 .

One can verify that, together with the pseudo-identity defining DA, this is equiv-
alent to the usual pseudo-identity describing R = R2, namely (st)ωs = (st)ω.

For R3 = K©m L, no pseudo-identity was known in the literature. We get

ϕ(G3) = (xω
3 ((xω

1 xω
2 xω

1)ωxω
2 (xω

1 xω
2 xω

1)ω)ωxω
3)ω

ϕ(I3) = (xω
3 ((xω

1 xω
2 xω

1)ωxω
2 (xω

1 xω
2 xω

1)ω)ωxω
3)ω

(xω
3 ((xω

1 xω
2 xω

1)ωxω
2 (xω

1 xω
2 xω

1)ω)ωxω
3)ωxω

2 (xω
1 xω

2 xω
1)ωxω

2 .

2.3 Connection with the TLm and the FO2

m
hierarchies

Proposition 2.3 established a containment between the Rm (resp. Lm) and the
TLm hierarchies. A technical analysis allows us to prove a containment in the
other direction, but one that is not very tight – showing the difference between
the consideration of condensed rankers and that of ordinary rankers.

Proposition 2.9. R2 = TLX

2 and L2 ⊆ TLY

2 . If m ≥ 3 and if two words agree
on rankers in RX

⌊3m/2⌋ (resp. RY

⌊3m/2⌋), then they agree on condensed rankers in

RX

m (resp. RY

m). In particular Rm ⊆ TLX

⌊3m/2⌋ and Lm ⊆ TLY

⌊3m/2⌋.

Example 2.10. The language Lc(XaYbXc) is in R3 and not in T LX

3 .

The connection between the Rm, Lm and FO2
m hierarchies is tighter.

Theorem 2.11. Let m ≥ 1. Every language in Rm or Lm is FO2
m-definable,

and every FO2
m-definable language is in Rm+1 ∩ Lm+1. Equivalently, we have

Rm ∨ Lm ⊆ FO2
m ⊆ Rm+1 ∩ Lm+1,

where V ∨ W denotes the least pseudovariety containing V and W.

Sketch of proof. The containment Rm ∨ Lm ⊆ FO2
m follows directly from

Property (WI 1c) in Theorem 2.4. The proof of the converse containment also
relies on that theorem. We show that if u ⊲m+1,2n or u ⊳m+1,2n, then Properties
(WI 1c), (WI 2c) and (WI 3c) hold for m, n. This is done by a complex and
quite technical induction. ⊓⊔

If m = 1, we know that R2∩L2 = R∩L = J = R1∨L1: this reflects the ele-
mentary observation that FO2

1-definable languages, like FO1-definable languages,
are the piecewise testable languages. For m ≥ 2, we conjecture that Rm ∨Lm is
properly contained in Rm+1 ∩ Lm+1. The following shows it holds for m = 2.

10

Example 2.12. L = {b, c}∗ca{a, b}∗ is FO2
2-definable, by the following formula:

∃i (c(i) ∧ (∀j (j < i → ¬a(j))) ∧ (∀j (j > i → ¬c(j))))

∧ ∃i (a(i) ∧ (∀j (j < i → ¬a(j))) ∧ (∀j (j > i → ¬c(j))))

∧ ∀i (b(i) → (∃j (j < i ∧ a(j)) ∨ (∃j (j > i ∧ c(j)))).

The words un = (bc)n(ab)n are in L, while the words vn = (bc)nb(ca)n are not.
Almeida and Azevedo showed that R2 ∨ L2 is defined by the pseudo-identity
(bc)ω(ab)ω = (bc)ωb(ab)ω [2, Theorem 9.2.13 and Exercise 9.2.15]). In particular,
for each language K recognized by a monoid in R2 ∨ L2, the words un and vn

(for n large enough) are all in K, or all in the complement of K. Therefore L is
not recognized by such a monoid, which proves that R2∨L2 is strictly contained
in FO2

2, and hence also in R3∩L3. It also shows that T L2 is properly contained
in FO2

2.

Finally, we formulate the following conjecture.

Conjecture 2.13. For each m ≥ 1, FO2
m = Rm+1 ∩ Lm+1.

3 Consequences

The main consequence we draw of Theorem 2.11 and of the decidability of the
pseudovarieties Rm and Lm is summarized in the next statement.

Theorem 3.1. Given an FO2-definable language L, one can compute an integer
m such that L is FO2

m+1-definable but not FO2
m−1-definable. That is: we can

decide the quantifier alternation level of L within one unit.

Sketch of proof. If M ∈ DA, we can compute the largest m such that M 6∈
Rm ∩ Lm (Proposition 2.6). Then M 6∈ FO2

m+1 \ FO2
m−1 by Theorem 2.11. ⊓⊔

The fact that the Rm and Lm form strict hierarchies (Proposition 2.6), to-
gether with Theorem 2.11, proves that the FO2

m hierarchy is infinite. Weis and
Immerman had already proved this result by combinatorial means [18], whereas
our proof is algebraic. From that result on the FO2

m, it is also possible to recover
the strict hierarchy result on the Rm and Lm and the fact that their union is
equal to DA.

By the same token, Propositions 2.3 and 2.9 show that the T Lm (resp. TLm)
hierarchy is infinite and that its union is all of FO2 (resp. DA).

Similarly, the fact that an m-generated element of DA lies in Rm+1 ∩Lm+1

(Proposition 2.6), shows that an FO2-definable language in A∗ lies in R|A|+1 ∩

L|A|+1, and hence in FO2
m+1 – a fact that was already established by combina-

torial means by Weis and Immerman [18, Theorem 4.6]. It also shows that such
a language is in T L 3

2
(|A|+1) by Proposition 2.9.

Finally we note the following refinement on [6, Proposition 4.6]. It was men-
tioned in the introduction that the languages in FO2 are disjoint unions of
unambiguous products of the form B∗

0a1B
∗
1 · · ·akB∗

k, where each Bi is a subset
of A. Propositions 2.5 and 2.6 imply the following statement.

11

Proposition 3.2. The least variety of languages containing the languages of
the form B∗ (B ⊆ A) and closed under visibly deterministic and visibly co-
deterministic products, is FO2.

Every unambiguous product of languages of the form B∗
0a1B

∗
1 · · · akB∗

k (with
each Bi ⊆ A), can be expressed in terms of the B∗

i and the ai using only Boolean
operations and at most |A| + 1 applications of visibly deterministic and vis-
ibly co-deterministic products, starting with a visibly deterministic (resp. co-
deterministic) product.

The weaker statement with the word visibly deleted was proved by the au-
thors in [6], as well as by Lodaya, Pandya and Shah [7].

References

1. M. Adler, N. Immerman. An n! lower bound on formula size. ACM Trans. Com-
putational Logic, 4:296–314, 2003.

2. J. Almeida. Finite Semigroups and Universal Algebra. World Scientific, 1994.
3. V. Diekert, M, Kufleitner. On first-order fragments for words and Mazurkiewicz

traces: A survey. In T. Harju, J. Karhumäki, A. Lepistö, eds, Proc. DLT 2007,
Lect. Notes Computer Science 4588, 1–19. Springer, 2007.

4. M. Grohe, N. Schweikardt. The succinctness of first-order logic on linear orders.
Logical Methods in Computer Science, 1, 2005.

5. N. Immerman. Descriptive Complexity. Springer, 1999.
6. M. Kufleitner, P. Weil. On the lattice of sub-pseudovarieties of DA. To appear.
7. K. Lodaya, P.K. Pandya, S.S. Shah. Marking the chops: an unambiguous temporal

logic. In IFIP TCS 2008, 461–476, 2008.
8. J.-É. Pin. Varieties of Formal Languages. North Oxford Academic, 1986.
9. J.-É. Pin. Expressive power of existential first-order sentences of Büchi’s sequential

calculus. Discrete Maths, 291:155–174, 2005.
10. J.-É. Pin, P. Weil. Profinite semigroups, Mal’cev products and identities. J. Alge-

bra, 182:604–626, 1996.
11. J.-É. Pin, P. Weil. Polynomial closure and unambiguous product. Theory Comput.

Systems, 30:383–422, 1997.
12. T. Schwentick, D. Thérien, H. Vollmer. Partially-ordered two-way automata: A

new characterization of DA. In W. Kuich, G. Rozenberg, A. Salomaa, editors,
Proc. DLT 2001, Lect. Notes Computer Science 2295, 239–250. Springer, 2001.

13. H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,
1994.

14. P. Tesson, D. Thérien. Diamonds are forever: The variety DA. In G. Gomes, P.
Ventura, and J.-É. Pin, éds, Semigroups, Algorithms, Automata and Languages,
Coimbra (Portugal) 2001, page 475–500. World Scientific, 2002.

15. P. Tesson, D. Thérien. Logic meets algebra: the case of regular languages. Logical
Methods in Computer Science, 3:1–37, 2007.

16. W. Thomas. Classifying regular events in symbolic logic. J. Comput. Systems and
Science, 25:360–376, 1982.

17. P. Trotter, P. Weil. The lattice of pseudovarieties of idempotent semigroups and a
non-regular analogue. Algebra Universalis, 37:491–526, 1997.

18. Ph. Weis, N. Immerman. Structure theorem and strict alternation hierarchy for
FO2 on words. In J. Duparc, T.A. Henzinger, eds, Computer Science Logic 2007,
Lect. Notes Computer Science 4646, pages 343–357. Springer, 2007.

12

