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On FO 2 quantifier alternation over words ⋆

We show that each level of the quantifier alternation hierarchy within FO 2 [<] on words is a variety of languages. We use the notion of condensed rankers, a refinement of the rankers defined by Weis and Immerman, to produce a decidable hierarchy of varieties which is interwoven with the quantifier alternation hierarchy -and conjecturally equal to it. It follows that the latter hierarchy is decidable within one unit, a much more precise result than what is known about the quantifier alternation hierarchy within FO [<], where no decidability result is known beyond the very first levels.
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First-order logic is an important object of study in connection with computer science and language theory, not least because many important and natural problems are first-order definable: our understanding of the expressive power of this logic and the efficiency of the solution of related algorithmic problems are of direct interest in such fields as verification. Here, by first-order logic, we mean the first-order logic of the linear order, FO[<], interpreted on finite words.

In this context, there has been continued interest in fragments of first-order logic, defined by the limitation of certain resources, e.g. the quantifier alternation hierarchy (which is closely related with the dot-depth hierarchy of star-free languages). It is still an open problem whether each level of this hierarchy is decidable. 4 Another natural restriction concerns the number of variables used (and re-used!) in a formula. It is interesting, notably because the trade-off between formula size and number of variables is known to be related with the trade-off between parallel time and number of processes, see [START_REF] Ph | Structure theorem and strict alternation hierarchy for FO 2 on words[END_REF][START_REF] Immerman | Descriptive Complexity[END_REF][START_REF] Adler | An n! lower bound on formula size[END_REF][START_REF] Grohe | The succinctness of first-order logic on linear orders[END_REF].

In this paper, we concentrate on FO 2 [<], the 2-variable fragment of FO[<]. It is well-known that every FO[<]-formula is logically equivalent with a formula using only 3 variables, but that FO 2 [<] is properly less expressive than FO[<]. The expressive power of FO 2 [<] was characterized in many interesting fashions (see [START_REF] Schwentick | Partially-ordered two-way automata: A new characterization of DA[END_REF][START_REF] Tesson | Diamonds are forever: The variety DA[END_REF][START_REF] Tesson | Logic meets algebra: the case of regular languages[END_REF][START_REF] Diekert | On first-order fragments for words and Mazurkiewicz traces: A survey[END_REF]), and in particular, we know how to decide whether an FO[<]formula is equivalent to one in FO 2 [<].

A recent result of Weis and Immerman refined a result of Schwentick, Thérien and Vollmer [START_REF] Schwentick | Partially-ordered two-way automata: A new characterization of DA[END_REF] to give a combinatorial description of the FO 2 m [<]-definable languages (those that can be defined by an FO 2 [<]-formula with quantifier alternation bounded above by m), using the notion of rankers. Rankers are finite sequences of instructions of the form go to the next a-position to the right (resp. left ) of the current position.

Our first set of results shows that F O 2 m (the FO 2 m [<]-definable languages), and the classes of languages defined by rankers having m alternations of directions (right vs. left), are varieties of languages. This means that membership of a language L in these classes depends only on the syntactic monoid of L, which justifies an algebraic approach of decidability.

Our investigation shows that rankers are actually better suited to characterize a natural hierarchy within unary temporal logic, and we introduce the new notion of a condensed ranker, that is more adapted to discuss the quantifier alternation hierarchy within FO 2 [<]. There again, the alternation of directions in rankers defines hierarchies of varieties of languages R m and L m , with particularly interesting properties. Indeed, we show that these varieties are decidable, that they admit a neat characterization in terms of closure under deterministic and co-deterministic products, and that

R m ∪ L m ⊆ F O 2 m ⊆ R m+1 ∩ L m+1 .
The latter containments show that we can effectively compute, given a language

L ∈ F O 2 , an integer m such that L is in F O 2 m+1 , possibly in F O 2 m , but not in F O 2 m-1
. This is much more precise than the current level of knowledge on the general quantifier alternation hierarchy in FO[<]. 51 An algebraic approach to study FO 2 m If u ∈ A + is a non-empty word, we denote by u[i] the letter of u in position i (1 ≤ i ≤ |u|), and by u[i, j] be the factor u

[i] • • • u[j] of u (1 ≤ i ≤ j ≤ |u|).
Then we identify the word u with the logical structure ({1, . . . , |u|}, (a) a∈A ), where a denotes the set of integers i such that u[i] = a.

Let FO[<] (resp. FO k [<], k ≥ 0) denote the set of first-order formulas using the unary predicates a (a ∈ A) and the binary predicate < (resp. and at most k variable symbols). It is well-known that FO 3 [<] is as expressive as FO[<] and that FO 2 [<] is properly less expressive.

In the sequel, we omit specifying the predicate < and we write simply FO or FO k . The classes of FO-and FO 2 -definable languages have well-known beautiful characterizations [START_REF] Schwentick | Partially-ordered two-way automata: A new characterization of DA[END_REF][START_REF] Tesson | Diamonds are forever: The variety DA[END_REF][START_REF] Tesson | Logic meets algebra: the case of regular languages[END_REF][START_REF] Diekert | On first-order fragments for words and Mazurkiewicz traces: A survey[END_REF]. Two are of particular interest in this paper.

-The algebraic characterization in terms of recognizing monoids: a language is FO-definable if and only if it is recognized by a finite aperiodic monoid, i.e., one in which x n = x n+1 for each element x and for all n large enough (Schützenberger and McNaughton-Ladner, see [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]); and a language is FO 2 -definable if and only if it is recognized by a finite monoid in DA (see [START_REF] Tesson | Diamonds are forever: The variety DA[END_REF]), a class of monoids with many interesting characterizations, which will be discussed later. These algebraic characterizations prove the decidability of the corresponding classes of languages: L is FO (resp. FO 2 ) definable if and only if the (effectively computable) syntactic monoid of L is in the (decidable) class of aperiodic monoids (resp. in DA).

-The language-theoretic characterization: a language is in FO-definable if and only if it is star-free, i.e., it can be obtained from singletons using Boolean operations and concatenation products (Schützenberger, see [START_REF] Pin | Varieties of Formal Languages[END_REF]); a language is FO 2 -definable if and only if it can be written as the disjoint union of unambiguous products of the form

B * 0 a 1 B * 1 • • • a k B * k ,
where k ≥ 0, the a i are letters and the B i are subsets of the alphabet. Such a product is called

unambiguous if each word u ∈ B * 0 a 1 B * 1 • • • a k B * k admits a unique factorization in the form u = u 0 a 1 u 1 • • • a k u k such that u i ∈ B *
i for each i. We now concentrate on FO 2 -formulas and we define two important parameters concerning such formulas. To simplify matters, we consider only formulas where negation is used only on atomic formulas so that, in particular, no quantifier is negated. This is naturally possible up to logical equivalence. Now, with each formula ϕ ∈ FO 2 , we associate in the natural way a parsing tree: each occurrence of a quantification, ∃x or ∀x, yields a unary node, each occurrence of ∨ or ∧ yields a binary node, and the leaves are labeled with atomic or negated atomic formulas. Each path from root to leaf in this parsing tree has a quantifier label, which is the sequence of quantifier node labels (∃ or ∀) encountered along this path. A block in this quantifier label is a maximal factor consisting only of ∃ or only of ∀. The quantifier depth of ϕ is the maximum length of the quantifier label of a path in the parsing tree of ϕ, and the number of blocks of ϕ is the maximum number of blocks in the quantifier label of a path in its parsing tree.

We let FO 2 m,n denote the set of first-order formulas with quantifier depth at most n and with at most m blocks and let FO 2 m denote the union of the FO 2 m,n for all n. We also denote by F O 2 (F O 2 m ) the class of FO 2 (FO 2 m )-definable languages. Weis and Immerman's characterization of the expressive power of FO 2 m,n [<] [START_REF] Ph | Structure theorem and strict alternation hierarchy for FO 2 on words[END_REF] in terms of rankers, see Theorem 1.2 below, forms the basis of our own results.

Rankers and logic

A ranker [START_REF] Ph | Structure theorem and strict alternation hierarchy for FO 2 on words[END_REF] is a non-empty word on the alphabet {X a , Y a | a ∈ A}. 6 Rankers may define positions in words: given a word u ∈ A + and a letter a ∈ A, we denote by X a (u) (resp. Y a (u)) the least (resp. greatest) integer 1 ≤ i ≤ |u| such that u[i] = a. If a does not occur in u, we say that Y a (u) and X a (u) are not defined. If in addition q is an integer such that 1 ≤ q ≤ |u|, we let

X a (u, q) = X a (u[q + 1, |u|]) Y a (u, q) = Y a (u[1, q -1]).
These definitions are extended to all rankers: if r ′ is a ranker, Z ∈ {X a , Y a | a ∈ A} and r = r ′ Z, we let r(u, q) = Z(u, r ′ (u, q)) if r ′ (u, q) and Z(u, r ′ (u, q)) are defined, and we say that r(u, q) is undefined otherwise.

Finally, if r starts with an X-(resp. Y-) letter, we say that r defines the position r(u) = r(u, 0) (resp. r(u) = r(u, |u| + 1)), or that it is undefined on u if this position does not exist. Then L(r) is the language of all words on which r is defined. We say that the words u and v agree on a class R of rankers if exactly the same rankers from R are defined on u and v.

The depth of a ranker r is defined to be its length (as a word

). A block in r is a maximal factor in {X a | a ∈ A} + (an X-block) or in {Y a | a ∈ A} + (a Y-block). If n ≥ m, we denote by R X m,n (resp. R Y m,n ) the set of m-block, depth n rankers, starting with an X -(resp. Y-) block, and we let R m,n = R X m,n ∪ R Y m,n and R X m,n = n ′ ≤n R X m,n ′ ∪ m ′ <m,n ′ <n R m ′ ,n ′ . We define R Y m,n dually and we let R X m = n≥m R X m,n , R Y m = n≥m R Y m,n and R m = R X m ∪ R Y m .
Rankers and temporal logic Let us depart for a moment from the consideration of FO 2 -formulas, to observe that rankers are naturally suited to describe the different levels of a natural class of temporal logic. The symbols X a and Y a (a ∈ A) can be seen as modal (temporal) operators, with the future and past semantics respectively. We denote the resulting temporal logic (known as unary temporal logic) by TL: its only atomic formula is ⊤, the other formulas are built using Boolean connectives and modal operators. Let u ∈ A + and let 0 ≤ i ≤ |u| + 1. We say that ⊤ holds at every position i, (u, i) |= ⊤; Boolean connectives are interpreted as usual; and (u, i) |= X a ϕ (resp. Y a ϕ) if and only if (u, j) |= ϕ, where j is the least a-position such that i < j (resp. the greatest aposition such that j < i). We also say that u |= X a ϕ (resp.

Y a ϕ) if (u, 0) |= X a ϕ (resp. (u, 1 + |u|) |= Y a ϕ).
TL is a fragment of propositional temporal logic PTL; the latter is expressively equivalent to FO and TL is expressively equivalent to FO 2 , see [START_REF] Tesson | Diamonds are forever: The variety DA[END_REF].

As in the case of FO 2 -formulas, one may consider the parsing tree of a TLformula and define inductively its depth and number of alternations (between past and future operators). If n ≥ m, the fragment TL X m,n (resp. TL Y m,n ) consists of the TL-formulas with depth n and with m alternations, in which every branch (of the parsing tree) with exactly m alternations starts with future (resp. past) operators. The fragments TL m,n , TL X m,n , TL Y m,n , TL X m , TL Y m and TL m are defined according to the same pattern as in the definition of Rankers and FO 2 The connection established by Weis and Immerman [START_REF] Ph | Structure theorem and strict alternation hierarchy for FO 2 on words[END_REF] between rankers and formulas in FO 2 m,n , Theorem 1.2 below, is deeper. If x, y are integers, we let ord(x, y), the order type of x and y, be one of the symbols <, > or =, depending on whether x < y, x > y or x = y. 

R m,n , R X m,n , R Y m,n , R X m , R Y m and R m . We also denote by T L X m,n (T L X m , T L m , etc) the class of TL X m,n (TL X m , T L X m ,
(u)) = ord(r(v), r ′ (v)). Corollary 1.3. For each n ≥ m ≥ 1, T L m,n ⊆ F O 2 m,n and T L m ⊆ F O 2 m .
FO 2 m and TL m -definable languages form varieties Our first result is the following. We refer the reader to [START_REF] Pin | Varieties of Formal Languages[END_REF] and to Section 1.2 below for background and discussion on varieties of languages.

Proposition 1.4. For each n ≥ m ≥ 1, the classes T L X m,n T L Y m,n , T L Y m , T L Y m , T L m,n , T L m , F O 2 m,n and F O 2 m are varieties of languages.
Sketch of proof. Let ρ m,n be the relation for two words to agree on TL X m,nformulas. Using Proposition 1.1, one verifies that ρ m,n is a finite index congruence. Then a language is TL X m,n -definable if and only if it is a union of ρ m,nclasses, if and only if it is recognized by the finite monoid A * /ρ m,n . It follows that these languages are exactly those accepted by the monoids in the pseudovariety generated by the A * /ρ m,n , for all finite alphabets A, and hence they form a variety of languages.

The proof for the other fragments of TL is similar. For the fragments of FO 2 , we use Theorem 1.2 instead of Proposition 1.1.

⊓ ⊔

This result shows that, for a given regular language L, TL X m -(resp. TL m -, FO 2 m -, etc) definability is characterized algebraically, that is, it depends only on the syntactic monoid of L. This justifies using the algebraic path to tackle decidability of these definability problems. Eilenberg's theory of varieties provides the mathematical framework.

A short survey on varieties and pseudovarieties

We summarize in this section the information on monoid and variety theory that will be relevant for our purpose, see [START_REF] Pin | Varieties of Formal Languages[END_REF][START_REF] Almeida | Finite Semigroups and Universal Algebra[END_REF][START_REF] Tesson | Diamonds are forever: The variety DA[END_REF][START_REF] Tesson | Logic meets algebra: the case of regular languages[END_REF] for more details.

A language L ⊆ A * is recognized by a monoid M if there exists a morphism ϕ :

A * → M such that L = ϕ -1 (ϕ(L)). For instance, if u ∈ A * and B ⊆ A, let alph(u) = {a ∈ A | u = vaw for some v, w ∈ A * } and [B] = {u ∈ A * | alph(u) = B}. Then [B] is recognized by the direct product of |B| copies of the 2-element monoid {0, 1} (multiplicative).
A pseudovariety of monoids is a class of finite monoids closed under taking direct products, homomorphic images and submonoids. Pseudovarieties of subsemigroups are defined similarly. A class of languages V is a collection V = (V(A)) A , indexed by all finite alphabets A, such that V(A) is a set of languages in A * . If V is a pseudovariety of monoids, we let V(A) be the set of languages of A * recognized by a monoid in V. The class V is closed under Boolean operations, residuals and inverse homomorphic images. Classes of recognizable languages with these properties are called varieties of languages, and Eilenberg's theorem (see [START_REF] Pin | Varieties of Formal Languages[END_REF]) states that the correspondence V → V, from pseudovarieties of monoids to varieties of languages, is one-to-one and onto. Moreover, the decidability of membership in the pseudovariety V, implies the decidability of the variety V: indeed, a language is in V if and only if its (effectively computable) syntactic monoid is in V.

For every finite semigroup S and s ∈ S, we denote by s ω the unique power of s which is idempotent. The Green relations are another important concept to describe monoids: if S is a monoid and s, t ∈ S, we say that s ≤ J t (resp. s ≤ R t, s ≤ L t) if s = utv (resp. s = tv, s = ut) for some u, v ∈ S. We also say that s J t is s ≤ J t and t ≤ J s. The relations R and L are defined similarly.

Pseudovarieties that will be important in this paper are the following.

-J 1 , the pseudovariety of idempotent and commutative monoids, whose corresponding variety of languages consists of the Boolean combinations of languages of the form [B].

-R, L and J, the pseudovarieties of R-, Land J -trivial monoids; a monoid is, say, R-trivial if each of its R-classes is a singleton.

-DA, the pseudovariety of all monoids in which (xy) ω x(xy) ω = (xy) ω for all x, y; DA has a great many characterizations in combinatorial, algebraic and logical terms [START_REF] Almeida | Finite Semigroups and Universal Algebra[END_REF][START_REF] Pin | Polynomial closure and unambiguous product[END_REF][START_REF] Schwentick | Partially-ordered two-way automata: A new characterization of DA[END_REF][START_REF] Tesson | Diamonds are forever: The variety DA[END_REF][START_REF] Tesson | Logic meets algebra: the case of regular languages[END_REF].

-K (resp. D, LI) is the pseudovariety of semigroups in which x ω y = x ω (resp. yx ω = x ω , x ω yx ω = x ω ) for all x, y.

Finally, if V is a pseudovariety of semigroups and W is a pseudovariety of monoids, we say that a finite monoid M lies in the Mal'cev product W m V if there exists a finite monoid T and onto morphisms α : T → M and β : T → N such that N ∈ W and β -1 (e) ∈ V for each idempotent e of N . Then W m V is a pseudovariety of monoids and we have in particular [START_REF] Pin | Varieties of Formal Languages[END_REF][START_REF] Almeida | Finite Semigroups and Universal Algebra[END_REF][START_REF] Pin | Profinite semigroups, Mal'cev products and identities[END_REF]:

K m J 1 = K m J = R, D m J 1 = D m J = L, LI m J 1 = LI m J = DA. We denote by TL X m,n TL Y m,n , TL Y m , TL Y m , TL m,n , TL m , FO 2 
m,n and FO 2 m the pseudovarieties corresponding to the language varieties discovered in Proposition 1.4.

Main results

Our main tool to approach the decidability of FO 2 m -definability lies in a variant of rankers, which we borrow from a proof in Weis and Immerman's paper [START_REF] Ph | Structure theorem and strict alternation hierarchy for FO 2 on words[END_REF]. As in the turtle language of [START_REF] Schwentick | Partially-ordered two-way automata: A new characterization of DA[END_REF], a ranker can be seen as a sequence of instructions: go to the next a to the right, go to the next b to the left, etc. We say that a ranker r is condensed on u if it is defined on u, and if the sequence of positions visited zooms in on r(u), never crossing over a position already visited. Formally,

r = Z 1 • • • Z n is condensed on u if there exists a chain of open intervals (0, |u| + 1) = (i 0 , j 0 ) ⊃ (i 1 , j 1 ) ⊃ • • • ⊃ (i n-1 , j n-1 ) ∋ r(u)
such that for all 1 ≤ ℓ ≤ n -1 the following properties are satisfied:

-If Z ℓ Z ℓ+1 = X a X b then (i ℓ , j ℓ ) = (X a (u, i ℓ-1 ), j ℓ-1 ). -If Z ℓ Z ℓ+1 = Y a Y b then (i ℓ , j ℓ ) = (i ℓ-1 , Y a (u, j ℓ-1 ). -If Z ℓ Z ℓ+1 = X a Y b then (i ℓ , j ℓ ) = (i ℓ-1 , X a (u, i ℓ-1 )). -If Z ℓ Z ℓ+1 = Y a X b then (i ℓ , j ℓ ) = (Y a (u, j ℓ-1 ), j ℓ-1 ).
For instance, the ranker X a Y b X c is defined on the words bac and bca, but it is condensed only on bca.

Rankers in R 1 , or of the form X a Y b1 • • • Y b k or Y a X b1 • • • X b k , are
condensed on all words on which they are defined. We denote by L c (r) the set of all words on which r is condensed.

Condensed rankers form a natural notion, which is equally well-suited to the task of describing FO 2 m -definability (see Theorem 2.4 below). With respect to TL, for which Proposition 1.1 shows a perfect match with the notion of rankers, they can be interpreted as adding a strong notion of unambiguity, see Section 3 below and the work of Lodaya, Pandya and Shah [7] on unambiguous interval temporal logic.

Condensed rankers determine a hierarchy of pseudovarieties

Let us say that two words u and v agree on condensed rankers from a set R of rankers, if the same rankers are condensed on u and v. We write u ⊲ m,n v (resp. u ⊳ m,n v) if u and v agree on condensed rankers in R X m,n (resp. R Y m,n ). These relations turn out to have a very nice recursive characterization. For each word u ∈ A * and letter a occurring in u, the a-left (resp. a-right ) factorization of u is the factorization that isolates the leftmost (resp. rightmost) occurrence of a in u; that is, the factorization u = u -au + such that a does not occur in u -(resp. u + ). We say that the word

a 1 • • • a r is a subword of u if u can be factored as u = u 0 a 1 u 1 • • • a r u r , with the u i ∈ A * .
Proposition 2.1. The relations ⊲ m,n and ⊳ m,n (n ≥ m ≥ 1) are uniquely determined by the following properties.

u ⊲ 1,n v if and only if u ⊳ 1,n v, if and only if u and v have the same subwords of length at most n.

-

If m ≥ 1, then u ⊲ m,n v if and only if alph(u) = alph(v), u ⊳ m-1,n-1 v and for each letter a ∈ alph(u), the a-left factorizations u = u -au + and v = v -av + satisfy u -⊳ m-1,n-1 v -and u + ⊲ m,n-1 v + . -If m ≥ 1, then u ⊳ m,n v if and only if alph(u) = alph(v), u ⊲ m-1,n-1 v and for each letter a ∈ alph(u), the a-right factorizations u = u -au + and v = v -av + satisfy u + ⊲ m-1,n-1 v + and u -⊳ m,n-1 v -.
Corollary 2.2. The relations ⊲ m,n and ⊳ m,n are finite-index congruences.

For each m ≥ 1, let us denote by R m (resp. L m ) the pseudovariety generated by the quotients A * / ⊲ m,n (resp. A * / ⊳ m,n ), where n ≥ m and A is a finite alphabet. Corollary 2.2 shows that a language L is in the corresponding variety R m (resp. L m ) if and only if L is a Boolean combination of languages of the form L c (r), with r ∈ R X m (resp. R Y m ). By definition, for all m ≥ 1, R m and L m are contained in both R m+1 and L m+1 . According to the first statement of Proposition 2.1, ⊲ 1,n =⊳ 1,n is the congruence defining the piecewise n-testable languages studied by Simon in the early 1970s, and that, in consequence, R 1 = L 1 = J, the pseudovariety of J -trivial monoids [START_REF] Pin | Varieties of Formal Languages[END_REF].

In addition, one can show that if a position in a word u is defined by a ranker

r ∈ R X m,n (resp. R Y m,n ), then the same position is defined by a ranker s ∈ R X m,n (resp. R Y m,n
) which is condensed on u. This leads to the following result.

Proposition 2.3. Let n ≥ m ≥ 1.
If the words u and v agree on condensed rankers in R X m,n (resp. R Y m,n ), then they agree on rankers from the same class. In particular,

TL X m ⊆ R m and TL Y m ⊆ L m
As indicated above, condensed rankers allow for a description of FO 2 m -definability, as neat as with ordinary rankers: more precisely, we show that the statement of Weis and Immerman's theorem can be modified to used condensed rankers instead. Thus there is a connection between F O 2 m and the varieties R m and L m . But much more can be said about the latter varieties.

Language hierarchies

Proposition 2.1 also leads to a description of the language varieties R m and L m in terms of deterministic and co-deterministic products. Recall that a product of languages

L = L 0 a 1 L 1 • • • a k L k (k ≥ 1, a i ∈ A, L i ⊆ A * ) is said to be determin- istic if, for 0 ≤ i ≤ k, each word u ∈ L has a unique prefix in L 0 a 1 L 1 • • • L i-1 a i . If for each i, the letter a i does not occur in L i-1 , the product L 0 a 1 L 1 • • • a k L k is called visibly deterministic:
this is obviously a particular case of a deterministic product.

The definition of a co-deterministic or visibly co-deterministic product is dual, in terms of suffixes instead of prefixes. If V is a class of languages and A is a finite alphabet, let V det (A) (resp. V vdet (A), V codet (A), V vcodet (A)) be the set of all Boolean combinations of languages of V(A) and of deterministic (resp. visibly deterministic, co-deterministic, visibly co-deterministic) products of languages of V(A). Schützenberger gave algebraic characterizations of the closure operations V -→ V det and V -→ V codet , see [START_REF] Pin | Varieties of Formal Languages[END_REF]: if V is a variety of languages and if V is the corresponding pseudovariety of monoids, then V det and V codet are varieties of languages and the corresponding pseudovarieties are, respectively, K m V and D m V. Then we show the following. Proposition 2.5. For each m ≥ 1, we have

R m+1 = L vdet m = L det m , R m+1 = K m L m , L m+1 = R vcodet m = R codet m and L m+1 = D m R m . In particular, R 2 = R and L 2 = L. Sketch of proof. Proposition 2.1 shows that R m+1 ⊆ L vdet m , which is trivially contained in L det m .
The last containment is proved algebraically, by showing that if γ : A * → M is an onto morphism, and M ∈ K m L m , then for some large enough n, u ⊲ m+1,n v implies γ(u) = γ(v): thus M is a quotient of A * / ⊲ m+1,n and hence, M ∈ R m+1 . This proof relies on a technical property of semigroups in DA: if a ∈ A occurs in alph(v) and γ(u) R γ(uv), then γ(uva) gRγ(u).

⊓ ⊔

It turns out that the R m and the L m were studied in the semigroup-theoretic literature (Kufleitner,Trotter and Weil,[START_REF] Trotter | The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue[END_REF][START_REF] Kufleitner | Marking the chops: an unambiguous temporal logic[END_REF]). In [START_REF] Kufleitner | Marking the chops: an unambiguous temporal logic[END_REF], it is defined as the hierarchy of pseudovarieties obtained from J by repeated applications of the operations X → K m X and X → D m X. Proposition 2.5 shows that it is the same hierarchy as that considered in this paper7 . The following results are proved in [6, Section 4].

Proposition 2.6. The hierarchies (R m ) m and (L m ) m are infinite chains of decidable pseudovarieties, and their unions are equal to DA. Moreover, every mgenerated monoid in DA lies in R m+1 ∩ L m+1 .

The decidability statement in Proposition 2.6 is in fact a consequence of a more precise statement (see [START_REF] Trotter | The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue[END_REF][START_REF] Kufleitner | Marking the chops: an unambiguous temporal logic[END_REF]) which gives defining pseudoidentities for the R m and L m . Let x 1 , x 2 , . . . be a sequence of variables. If u is a word on that alphabet, we let ū be the mirror image of u, that is, the word obtained from reading u from right to left. We let

G 2 = x 2 x 1 , I 2 = x 2 x 1 x 2 , for n > 2, G n = x n G n-1 , I n = G n x n I n-1 , ϕ(x 1 ) = (x ω 1 x ω 2 x ω 1 ) ω , ϕ(x 2 ) = x ω 2 , and, for n > 2, ϕ(x n ) = (x ω n ϕ(G n-1 G n-1 ) ω x ω n ) ω .
Then we have [START_REF] Kufleitner | Marking the chops: an unambiguous temporal logic[END_REF]:

Example 2.12. L = {b, c} * ca{a, b} * is FO 2 2 -definable, by the following formula: ∃i (c(i) ∧ (∀j (j < i → ¬a(j))) ∧ (∀j (j > i → ¬c(j)))) ∧ ∃i (a(i) ∧ (∀j (j < i → ¬a(j))) ∧ (∀j (j > i → ¬c(j)))) ∧ ∀i (b(i) → (∃j (j < i ∧ a(j)) ∨ (∃j (j > i ∧ c(j)))).

The words u n = (bc) n (ab) n are in L, while the words v n = (bc) n b(ca) n are not. Almeida and Azevedo showed that R 2 ∨ L 2 is defined by the pseudo-identity (bc) ω (ab) ω = (bc) ω b(ab) ω [2, Theorem 9.2.13 and Exercise 9.2.15]). In particular, for each language K recognized by a monoid in R 2 ∨ L 2 , the words u n and v n (for n large enough) are all in K, or all in the complement of K. Therefore L is not recognized by such a monoid, which proves that R 2 ∨ L 2 is strictly contained in FO 2 2 , and hence also in R 3 ∩ L 3 . It also shows that T L 2 is properly contained in F O 2 2 . Finally, we formulate the following conjecture. 

Consequences

The main consequence we draw of Theorem 2.11 and of the decidability of the pseudovarieties R m and L m is summarized in the next statement. The fact that the R m and L m form strict hierarchies (Proposition 2.6), together with Theorem 2.11, proves that the F O 2 m hierarchy is infinite. Weis and Immerman had already proved this result by combinatorial means [START_REF] Ph | Structure theorem and strict alternation hierarchy for FO 2 on words[END_REF], whereas our proof is algebraic. From that result on the F O 2 m , it is also possible to recover the strict hierarchy result on the R m and L m and the fact that their union is equal to DA.

By the same token, Propositions 2.3 and 2.9 show that the T L m (resp. TL m ) hierarchy is infinite and that its union is all of F O 2 (resp. DA).

Similarly, the fact that an m-generated element of DA lies in R m+1 ∩ L m+1 (Proposition 2.6), shows that an FO 2 -definable language in A * lies in R |A|+1 ∩ L |A|+1 , and hence in F O 2 m+1 -a fact that was already established by combinatorial means by Weis and Immerman [START_REF] Ph | Structure theorem and strict alternation hierarchy for FO 2 on words[END_REF]Theorem 4.6]. It also shows that such a language is in T L 3 i and the a i using only Boolean operations and at most |A| + 1 applications of visibly deterministic and visibly co-deterministic products, starting with a visibly deterministic (resp. codeterministic) product.

The weaker statement with the word visibly deleted was proved by the authors in [START_REF] Kufleitner | Marking the chops: an unambiguous temporal logic[END_REF], as well as by Lodaya, Pandya and Shah [7].

Theorem 1 . 2 .

 12 Let u, v ∈ A * and let 1 ≤ m ≤ n. Then u and v satisfy the same formulas in FO 2 m,n if and only if (WI 1) u and v agree on rankers from R m,n , (WI 2) if the rankers r ∈ R m,n and r ′ ∈ R m-1,n-1 are defined on u and v, then ord(r(u), r ′ (u)) = ord(r(v), r ′ (v)). (WI 3) if r ∈ R m,n and r ′ ∈ R m,n-1 are defined on u and v and end with different direction letters, then ord(r(u), r ′

Theorem 2 . 4 .

 24 Let u, v ∈ A * and let 1 ≤ m ≤ n. Then u and v satisfy the same formulas in FO 2 m,n if and only if (WI 1c) u and v agree on condensed rankers from R m,n , (WI 2c) if the rankers r ∈ R m,n and r ′ ∈ R m-1,n-1 are condensed on u and v, then ord(r(u), r ′ (u)) = ord(r(v), r ′ (v)). (WI 3c) if r ∈ R m,n and r ′ ∈ R m,n-1 are condensed on u and v and end with different direction letters, then ord(r(u), r ′ (u)) = ord(r(v), r ′ (v)).

Conjecture 2 . 13 .

 213 For each m ≥ 1, FO 2 m = R m+1 ∩ L m+1 .

Theorem 3 . 1 .

 31 Given an FO 2 -definable language L, one can compute an integer m such that L is FO 2 m+1 -definable but not FO 2 m-1 -definable. That is: we can decide the quantifier alternation level of L within one unit. Sketch of proof. If M ∈ DA, we can compute the largest m such that M ∈ R m ∩ L m (Proposition 2.6). Then M ∈ FO 2 m+1 \ FO 2 m-1 by Theorem 2.11. ⊓ ⊔

2 (Proposition 3 . 2 .

 232 |A|+1) by Proposition 2.9. Finally we note the following refinement on[START_REF] Kufleitner | Marking the chops: an unambiguous temporal logic[END_REF] Proposition 4.6]. It was mentioned in the introduction that the languages in F O 2 are disjoint unions of unambiguous products of the formB * 0 a 1 B * 1 • • • a k B * k ,where each B i is a subset of A. Propositions 2.5 and 2.6 imply the following statement. The least variety of languages containing the languages of the form B * (B ⊆ A) and closed under visibly deterministic and visibly codeterministic products, is F O 2 . Every unambiguous product of languages of the form B * 0 a 1 B * 1 • • • a k B * k (with each B i ⊆ A), can be expressed in terms of the B *

Unfortunately, it does not help with the general problem since a language L is FO 2 [<]-definable if and only if L and its complement are Σ2-definable[START_REF] Pin | Polynomial closure and unambiguous product[END_REF].

Weis and Immerman write ⊲a and ⊳a instead of Xa and Ya. We rather follow the notation in[START_REF] Diekert | On first-order fragments for words and Mazurkiewicz traces: A survey[END_REF], where X and Y refer to the future and past operators of LTL.

More precisely, the pseudovarieties Rm and Lm in[START_REF] Kufleitner | Marking the chops: an unambiguous temporal logic[END_REF] are pseudovarieties of semigroups, and the Rm and Lm considered in this paper are the classes of monoids in these pseudovarieties.

ANR project dots, the ESF program

AutoMathA and the Indo-French P2R project modiste-cover.

Example 2.8. For R 2 , this yields the pseudo-identity x ω 2 (x ω 1 x ω 2 x ω 1 ) ω = x ω 2 (x ω 1 x ω 2 x ω 1 ) ω x ω 2 . One can verify that, together with the pseudo-identity defining DA, this is equivalent to the usual pseudo-identity describing R = R 2 , namely (st) ω s = (st) ω .

For R 3 = K m L, no pseudo-identity was known in the literature. We get 

Connection with the TL m and the FO

The connection between the R m , L m and FO 2 m hierarchies is tighter.

Theorem 2.11. Let m ≥ 1. Every language in R m or L m is FO 2 m -definable, and every FO 2 m -definable language is in R m+1 ∩ L m+1 . Equivalently, we have

where V ∨ W denotes the least pseudovariety containing V and W.

Sketch of proof. The containment R m ∨ L m ⊆ FO 2 m follows directly from Property (WI 1c) in Theorem 2.4. The proof of the converse containment also relies on that theorem. We show that if u ⊲ m+1,2n or u ⊳ m+1,2n , then Properties (WI 1c), (WI 2c) and (WI 3c) hold for m, n. This is done by a complex and quite technical induction.

⊓ ⊔

this reflects the elementary observation that FO 2 1 -definable languages, like FO 1 -definable languages, are the piecewise testable languages. For m ≥ 2, we conjecture that R m ∨ L m is properly contained in R m+1 ∩ L m+1 . The following shows it holds for m = 2.