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SIMPLE GRADED COMMUTATIVE ALGEBRAS

SOPHIE MORIER-GENOUD VALENTIN OVSIENKO

Abstract. We study the notion of Γ-graded commutative algebra for an ar-
bitrary abelian group Γ. The main examples are the Clifford algebras already
treated in [2]. We prove that the Clifford algebras are the only simple finite-
dimensional associative graded commutative algebras over R or C. Our ap-
proach also leads to non-associative graded commutative algebras extending
the Clifford algebras.

1. Introduction and the Main Theorems

Let (Γ, +) be an abelian group and 〈 , 〉 : Γ×Γ → Z2 a bilinear map. An algebra
A is called a Γ-graded commutative (or Γ-commutative for short) if A is Γ-graded
in the usual sense:

A =
⊕

γ∈Γ

Aγ

such that Aγ · Aγ′ ⊂ Aγ+γ′ and for all homogeneous elements a, b ∈ A one has

(1) a b = (−1)〈ā,b̄〉 b a.

where ā and b̄ are the corresponding degrees.
If Γ = Z2 and 〈 , 〉 is the standard product, then the above definition coincides

with that of “supercommutative algebra”. The main examples of associative su-
percommutative algebras are: the algebras of differential forms on manifolds or,
more generally, algebras of functions on supermanifolds. These algebras cannot be
simple (i.e., they always contain a non-trivial proper ideal).

Study of Γ-commutative algebras is a quite new subject. We cite here the pio-
neering work of Albuquerque and Majid, [1], where the classical algebra of quater-
nions H is understood as a Z2×Z2-commutative algebra. This result was generalized
for the Clifford algebras in [2]. In [4] a more general notion of β-commutative alge-
bra is considered and the structure of simple algebras is completely determined. An
application of graded commutative algebras to deformation quantization is recently
proposed in [8].

Ih this paper we also consider the quaternion algebra and the Clifford algebras as
graded commutative algebras. Our grading is slightly different from that of [1, 2].
This difference concerns essentially the parity of the elements.

The first example. The starting point of this work is the following observation,
see [13]. The quaternion algebra H is Z2 × Z2 × Z2-commutative in the following
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sense. Associate the “triple degree” to the standard basis elements of H:

(2)

ε̄ = (0, 0, 0),

ī = (0, 1, 1),

j̄ = (1, 0, 1),

k̄ = (1, 1, 0),

where ε denotes the unit. The usual product of quaternions then satisfies the
condition (1), where 〈 , 〉 is the usual scalar product of 3-vectors. Indeed, 〈̄i, j̄〉 = 1
and similarly for k, so that i, j and k anticommute with each other. But, 〈̄i, ī〉 = 0,
so that i, j, k commute with themselves.

In fact, the first two components in (2) contain the full information of the grading
of H. By “forgetting” the third component, one obtains a Z2 × Z2-grading on the
quaternions:

1̄ = (0, 0), ī = (0, 1), j̄ = (1, 0), k̄ = (1, 1)

which is nothing but the Albuquerque-Majid grading. However, the bilinear map 〈 , 〉
in no longer the scalar product. (It has to be replaced by the determinant of the
2× 2-matrix formed by the degrees of the elements.) The elements i and j are odd
in this grading while k is even. We think that it is more natural if these elements
have the same parity.

The classification. We are interested in simple Γ-commutative algebras. Recall
that an algebra is called simple if it has no proper (two-sided) ideal. In the usual
commutative associative case, a simple algebra (over R or C) is necessarily a division
algebra. The associative division algebras are classified by (a particular case of)
the classical Frobenius theorem. Classification of simple Γ-commutative algebras
can therefore be understood as an analog of the Frobenius theorem.

We obtain a classification of simple associative Γ-graded commutative algebras
over R and C. The following theorem is the main result of this paper.

Theorem 1. Every finite-dimensional simple associative Γ-commutative algebra
over C or over R is isomorphic to a Clifford algebra.

The well-known classification of simple Clifford algebras (cf. [15]) readily gives a
complete list:

(1) The algebras Cl2m(C) (∼= M2m(C)) are the only simple associative Γ-
commutative algebras over C.

(2) The real Clifford algebras Clp,q with p−q 6= 4k+1 and the algebras Cl2m(C)
viewed as algebras over R are the only real simple associative Γ-commuta-
tive algebras.

Note that the Clifford algebras Cl2m+1(C) and Clp,q with p − q = 4k + 1 are of
course not simple; however these algebras are graded-simple.

As a consequence of the above classification, we have a quite amazing statement.

Corollary 1.1. The associative algebra Mn of n× n-matrices over R or C, can be
realized as Γ-commutative algebra for some Γ, if and only if n = 2m.

Note that gradings on the algebras of matrices and more generally on associative
algebras, but without the commutativity assumption, is an important subject, see
[5, 6, 10] and references therein.
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Universality of (Z2)
n
-grading. It turns out that the (Z2)

n
-grading is the most

general, and 〈 , 〉 can always be reduced to the scalar product.

Theorem 2. (i) If the abelian group Γ is finitely generated, then for an arbitrary
Γ-commutative algebra A, there exists n such that A is (Z2)

n-commutative.
(ii) The bilinear map 〈 , 〉 can be chosen as the usual scalar product.

This theorem is proved in Section 3. This is the main tool for our classification of
simple associative Γ-commutative algebras.

Non-associative extensions of Clifford algebras. Similarly to the grading of
the quaternion algebra (2), all the elements of Clifford algebras in our grading

correspond only to the even elements of (Z2)
n+1. It is therefore interesting to ask

the following question. Given a Clifford algebra, is there a natural larger algebra
that contains this Clifford algebra as an even part?

We will show (see Corollary 2.4) that such an extension of a Clifford algebra

cannot be associative. In Section 5, we construct simple (Z2)
n+1-commutative non-

associative algebras A such that A0 = Cln. We require one additional condition:
existence of at least one odd derivation. This means, the even part A0 and the odd
part A1 are not separated and can be “mixed up”.

We have a complete classification only in the simplest case of Z2-commutative
algebras. We obtain exactly two 3-dimensional algebras. One of these algebras has
the basis {ε; a, b}, where ε̄ = 0 and ā = b̄ = 1, satisfying the relations

(3)

ε ε = ε

ε a = 1
2 a, ε b = 1

2 b,

a b = ε.

This algebra is called tiny Kaplansky superalgebra, see [11] and also [7] and de-
noted K3. It was rediscovered in [14] (under the name asl2) and further studied
in [12]. The corresponding algebra of derivations is the simple Lie superalgebra
osp(1|2). We believe that the natural extension of Clifford algebras with non-trivial
odd part are the algebras:

Cln ⊗C K3, Clp,q ⊗R K3

in the complex and in the real case, respectively.
We will however construct another series of extensions of Clifford algebras, that

have different properties. For instance, these algebras have the unit element.
We hope that some of the new algebras constructed in this paper may be of

interest for mathematical physics.

Acknowledgments. The main part of this work was done at the Mathematis-
ches Forschungsinstitut Oberwolfach (MFO) during a Research in Pairs stay from
April 5 to April 18 2009. We are grateful to MFO for hospitality. We are pleased
to thank Yu. Bahturin, A. Elduque and D. Leites for enlightening discussions.

2. Preliminary results

We start with simple results and observations.
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2.1. Clifford algebra is indeed commutative. A real Clifford algebra Clp,q is
an associative algebra with unit ε and n = p + q generators α1, . . . , αn subject to
the relations

αiαj = −αjαi, i 6= j. α2
i =

{
ε, 1 ≤ i ≤ p

−ε, p < i ≤ n.

The complex Clifford algebra Cln = Clp,q ⊗C can be defined by the same formulæ,
but one can always choose the generators in such a way that α2

i = ε for all i.

Let us show that n-generated Clifford algebras are (Z2)
n+1

-commutative. The
construction is the same in the real and complex cases. We assign the following
degree to every basis element.

(4)

α1 = (1, 0, 0, . . . , 0, 1),

α2 = (0, 1, 0, . . . , 0, 1),

· · ·

αn = (0, 0, 0 . . . , 1, 1).

One then has 〈αi, αj〉 = 1 so that the anticommuting generators αi and αj become

commuting in the (Z2)
n+1

-grading sense. Furthermore, two monomials αi1 · · ·αik

and αj1 · · ·αjℓ
commute if and only if either k or ℓ is even. It worth noticing that

every monomial is homogeneous and there is a one-to-one correspondence between
the monomial basis of the Clifford algebra and the even elements of (Z2)

n+1.
We notice that the degrees of elements in (4) are purely even. We will show in

Section 2.2 that this is not a coincidence.

Remark 2.1. A (Z2)
n-graded commutative structure of the Clifford algebras was

defined in [2]: the degree of a generator αi is the n-vector (0, . . . , 0, 1, 0, . . . , 0),
where 1 stays at the i-th position. As in the case of the quaternion algebra, our
(Z2)

n+1-grading is equivalent to that of Albuquerque-Majid. However, the sym-
metric bilinear map of [2] is different of ours, namely

β(γ, γ′) =
∑

i

γi γ′
i +

(∑

i

γi

)(∑

j

γ′
j

)
,

instead of the scalar product. We will show in the next section that an n-generated

Clifford algebra cannot be realized as (Z2)
k
-commutative algebra with k < n + 1,

provided the bilinear map 〈 , 〉 is the scalar product.
Let us also mention that the classical Z2-grading of the Clifford algebras, see [3]

can be obtained from our grading by projection to the last Z2-component in (Z2)
n+1.

Indeed, degree 1 is then assigned to every generator.

2.2. Commutativity, simplicity and zero divisors. Unless we specify the ground
field, the results of this section hold over C or R. A simple associative commutative
algebra is a division algebra. Indeed, for every a ∈ A, the set

(5) {b ∈ A | ab = 0}

is a (two-sided) ideal.
A simple Γ-commutative associative algebra can have zero divisors. Consider for

example the complexified quaternion algebra H ⊗ C ∼= M2(C). This is of course a

simple (Z2)
3
-commutative algebra. It has elements α such that α2 = ε. One then

obviously obtains: (ε + α) (ε − α) = 0.
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The following lemma shows however that there is a property of simple Γ-commu-
tative associative algebras similar to the usual commutative case.

Lemma 2.2. Every homogeneous element of a simple associative Γ-commutative
algebra is not a left or right zero divisor.

Proof. If a is a homogeneous element then for every c ∈ A, there exists c̃ ∈ A such
that ac = c̃a. Indeed, writing c as a sum of homogeneous terms one obtains:

c =
∑

γ∈Γ

cγ , c̃ =
∑

γ∈Γ

(−1)āγ̄ cγ .

It follows that the set (5) is again a two-sided ideal. By simplicity of A this ideal
has to be trivial. �

Definition 2.3. Let us introduce the parity function

(6) p(a) = 〈ā, ā〉 ,

where a, b ∈ A are homogeneous. A Γ-commutative algebra is then split as a vector
space into A = A0⊕A1, where A0 and A1 are generated by even and odd elements,
respectively.

One thus obtains a Z2-grading on A, that however, does not mean Z2-commuta-
tivity of A. In particular, the even subspace A0 is a subalgebra of A which is not
commutative in general.

Lemma 2.2 has several important corollaries.

Corollary 2.4. Every simple associative Γ-commutative algebra A is even, that is,
A = A0.

Indeed, an odd element a ∈ A1 anticommutes with itself, so that a2 = 0. But this
is impossible by Lemma 2.2. It follows that the odd part of A is trivial, that is,
A1 = {0}.

Denote by A0 the subalgebra of A consisting of homogeneous elements of de-
gree 0 ∈ Γ. Another corollary of Lemma 2.2 is as follows.

Corollary 2.5. Let A be a simple associative Γ-commutative algebra, then:
(i) In the complex case, one has A0 = C;
(ii) In the real case, A0 = R or C (viewed as an R-algebra).

Indeed, the space A0 is a commutative associative division algebra. By the classical
Frobenius theorem, A0 = R or C in the real case and A0 = C in the complex case.

A strengthened version of the above corollary in the complex case is as follows.

Corollary 2.6. If A is a simple complex associative (Z2)
n-commutative algebra

and Aγ is a non-zero homogeneous component of A, then dimAγ = 1. Furthermore,
there exists α ∈ Aγ such that α2 = ε.

Indeed, for every a, b ∈ Aγ , the product ab belongs to A0 since Γ = (Z2)
n. This

product is different from zero (Lemma 2.2). It follows that every homogeneous
component is at most one-dimensional.

As a first application of the above statements, we can now easily see that a com-

plex Clifford algebra with n generators cannot be realized as a (Z2)
k
-commutative

algebra with k < n + 1. Indeed, the dimension of the Clifford algebra is equal to

2n and there are exactly 2n even elements in (Z2)
n+1

. Our claim then follows from
Corollary 2.6.
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3. Reducing the abelian group

In this section we prove Theorem 2.

3.1. Universality of (Z2)
n
. Let Γ be a finitely generated abelian group. By the

fundamental theorem of finitely generated abelian groups, one can write Γ as a
direct product

Γ = Z
n × Zn1

× · · · × Znm
,

where ni = pki

i and where p1, . . . , pm are not necessarily distinct prime numbers.
Assume that there is a non-trivial bilinear map 〈 , 〉 : Γ × Γ → Z2.

In the case where Γ = Γ′ × Γ′′, if 〈y, x〉 = 0 for all x ∈ Γ′ and y ∈ Γ, then the
component Γ′ is not significative in the Γ-grading of A, i.e., A is Γ′′-commutative.

Let us choose one of the components, Γ′ = Z or Γ′ = Zni
. We can assume that

there exists an element x ∈ Γ, such that the map

ϕx : Γ′ → Z2,

defined on Γ′ by 〈 , x〉 defines a non-trivial group homomorphism.
In the case where Γ′ = Z, the only non-trivial homomorphism is defined by

ϕ(0) = 0 and ϕ(1) = 1. Therefore, one can replace the component Γ′ = Z of Γ by
Γ′ = Z2. The algebra A remains Γ-commutative.

In the case where Γ′ = Zni
, a non-trivial homomorphism exists if and only if ni

is even. We may then assume that ni = 2ki . However, in this case, again the only
non-trivial homomorphism is defined by ϕ(0) = 0 and ϕ(1) = 1 so that one replaces
the component Γ′ = Z2ki of Γ by Γ′ = Z2 without loss of Γ-commutativity.

The first part of Theorem 2 is proved.

3.2. Universality of the scalar product. Let us now prove the second part of
Theorem 2, namely that the standard scalar product is the only relevant bilinear
map from Γ to Z2.

Given an arbitrary bilinear symmetric form β : (Z2)
n × (Z2)

n → Z2, we will
show that there exists an integer N ≤ 2n and an abelian group homomorphism

σ : (Z2)
n
→ (Z2)

N

such that

〈σ(x), σ(y)〉 = β(x, y),

for all x, y ∈ (Z2)
n

and where 〈 , 〉 is the standard scalar product on (Z2)
N
×(Z2)

N
.

Consider the standard basic elements of Z
n
2 :

εi = (0, · · · , 0, 1, 0, · · · , 0),

where all the entries are zero except the i-th entry that is equal to one. The form β
is completely determined by the numbers

βi,j := β(εi, εj), 1 ≤ i, j ≤ n.

We first construct a family of vectors σi in (Z2)
n that have the following property

〈σi, σj〉 = βi,j , for all i 6= j.
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The explicit formula for σi is:

σ1 = ( 1 , 0 , 0 , · · · 0 )

σ2 = ( β12 , 1 , 0 , · · · 0 )

σ3 = ( β13 , β23 − β12β13 , 1 , · · · 0 )

...
...

...

σn = ( β1n , β2n − β12β1n , · · · , · · · 1 )

This construction does not guarantee that 〈σi, σi〉 = βi,i. However, by adding at
most n columns, we can obviously satisfy these identities as well.

Theorem 2 is proved.

Since now on, we will assume that Γ = (Z2)
n
; this is the only group relevant

for the notion of Γ-commutative algebra. We will also assume that the bilinear
map 〈 , 〉 is the usual scalar product.

4. Completing the classification

In this section we prove Theorem 1.

4.1. The complex case. Let A be a simple associative (Z2)
n
-commutative algebra

over C. We will be considering minimal sets of homogeneous generators of A. By
definition, two homogeneous elements α, β ∈ A either commute or anticommute.
We thus can organize the generators in two sets

{α1, · · · , αp} ∪ {β1, · · · , βq}

where the subset {α1, · · · , αp} is the biggest subset of pairwise anticommutative
generators: αiαj = −αjαi, while each generator βi commutes with at least one
generator αj . We can assume p ≥ 2 otherwise the algebra A is commutative and
so it is C itself (by Frobenius theorem).

Among the minimal sets of homogeneous generators we choose one with the
greatest p. If q = 0 then A is exactly Clp. Suppose that q > 0.

Lemma 4.1. The generators {β1, · · · , βq} can be chosen in such a way that every
βi commutes with exactly one element in {α1, · · · , αp}.

Proof. Suppose βi anticommutes with α1, · · · , αs and commutes with αs+1, · · · , αp.

Changing βi to β̃i := αs+1αs+2βi, one obtains a new generator that anticommutes
with α1, · · · , αs+2 and commutes with αs+3, · · · , αp. Repeating this procedure, we
can change βi to a new generator that commutes with at most one of the αj ’s.

By the assumption of maximality of p, the generator βi has to commute with at
least one of the αj ’s. �

Lemma 4.2. The generators {β1, · · · , βq} can be chosen commuting with each
other and with the same generator αp.

Proof. The construction of such a set of generators will be obtained by induction.
Consider β1 and β2. By Lemma 4.1, they both commutes with one of the α-
generators. Let β1 commutes with αp1

and β2 commutes with αp2
. There are four

cases:

(1) β1 commutes with β2 and αp1
= αp2

,
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(2) β1 anticommutes with β2 and αp1
= αp2

,
(3) β1 commutes with β2 and αp1

6= αp2
,

(4) β1 anticommutes with β2 and αp1
6= αp2

,

Let us show that we can always choose the generators in such a way that the
case (1) holds. Indeed, in the case (2), we get a bigger set

{α1, · · · , αp} \ {αp1
} ∪ {β1, β2}

of pairwise anticommutative generators. Therefore, case (2) is not possible.

In the case (3), we replace β2 by β̃2 := β1β2αp2
. The new generator β̃2 anticom-

mutes with all the αj ’s, where j 6= p1, commutes with αp1
and anticommutes with

β1. Thus, we got back to case (2), that is a contradiction.

In the case (4), we replace β1 by β̃2 := β1β2αp2
. The generator β̃2 anticommutes

with all the αk, k 6= p1, commutes with αp1
and commutes with β1.

Thus, we obtain a set of generators satisfying the case (1). This provides the
base of induction.

Suppose that ℓ generators {β1, · · · , βℓ} pairwise commute and commute with
the same generator αp. Consider an extra generator βℓ+1 that commutes with αp′ .

Replacing βℓ+1 by β̃ℓ+1 := αpαp′βℓ+1, one obtains a generator commuting with αp

and anticommuting with all the αj ’s, for j 6= p. If there is a βi, for i ≤ ℓ such

that βi and β̃ℓ+1 anticommute, then we get a bigger set of pairwise anticommuting
generators:

{α1, · · · , αp−1, βi, β̃ℓ+1}

that contradicts the maximality of p.
In conclusion, we have constructed a set {β1, · · · , βℓ+1} of pairwise commuting

elements that commute with the same element αp and anticommute with the rest
of αj ’s. �

We now choose a set of generators {α1, · · · , αp, β1, · · · , βq} as in Lemma 4.2. In
addition, we can normalize the generators by α2

i = β2
i = ε for all i. Indeed, by

Theorem 2 we assume Γ = (Z2)
n

and then use Corollary 2.6.

Lemma 4.3. If the number q of commuting generators is greater than zero, then
the algebra A cannot be simple.

Proof. First, the space (αp + β1)A is an ideal of A. Indeed, this space is clearly a
left ideal. It is also a right ideal because αp and β1 commute or anticommute with
any generator of A simultaneously. Therefore,

(αp + β1) c = c̃ (αp + β1) .

It remains to show that (αp + β1)A is a proper ideal. If A = (αp + β1)A then
we can write

ε = (αp + β1) a,

for some a ∈ A. Multiplying this equality by (αp − β1), we get

(αp − β1) = (αp − β1) (αp + β1) a.

But we have

(αp − β1)(αp + β1) = α2
p − β2

1 = ε − ε = 0

so we deduce αp − β1 = 0. This is not possible because the set of generators is
chosen minimal so that αp and β1 are different. �
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Combining Lemmas 4.1–4.3, we conclude that A is generated by homogeneous
anticommuting generators. Theorem 1 is proved in the complex case.

4.2. The real case. In the case of a real simple associative Γ-commutative algebra
A, the component of degree 0 ∈ Γ can be one- or two-dimensional:

A0 = R or C,

see Corollary 2.5.�Case A0 = R.

We proceed in a similar way as in the complex case. Lemma 4.2 still holds. The
proof of Lemma 4.3 is however false because we can not assume that α2

p = β2
1 = ε.

We can only assume α2
i = ±ε and β2

i = ±ε for all i (we again use Corollary 2.6).
Choose a system of homogeneous generators

{α1, · · · , αp} ∪ {β1, · · · , βq}

such that:

(1) The system is minimal;
(2) The generators {α1, · · · , αp} pairwise anticommute and the number p of

anticommuting generators is maximal (within the minimal sets of homoge-
neous generators);

(3) The elements {β1, · · · , βq} pairwise commute, they also commute with αp

and anticommute with α1, . . . , αp−1.

The existence of such a system of generators is guaranteed by Lemma 4.2.

Lemma 4.4. The number q of commuting generators is zero.

Proof. If α2
p = β2

1 then, as in the complex case, the element αp + β1 generates a
proper ideal. We will assume that

α2
p = −ε, β2

1 = ε.

If q ≥ 2 then among αp, β1, · · · , βq at least two elements have same square. The
sum of these two elements again generates a proper ideal. We therefore have the
last possibility: q = 1.

If p is even, then we replace β1 by

β̃1 = β1α1 · · ·αp−1.

It is then easy to check that β̃1 anticommutes with all the αi’s. Therefore we have

obtained a system of p + 1 pairwise anticommuting generators {α1, · · · , αp, β̃1}.
This is a contradiction with the maximality of p.

Finally, we assume that p is odd. Let us introduce the elements

α̃ = α1 · · ·αp,

β̃ = α1 · · ·αp−1β1.

It is easy to check that α̃ and β̃ both commute with all the generators αi’s and
with β1. Furthermore,

α̃2 = (α1 · · ·αp−1)
2 α2

p

β̃2 = (α1 · · ·αp−1)
2 β2

1 .
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Since we are in the case of α2
p 6= β2

1 , we have α̃2 6= β̃2. Assume without loss of

generality that α̃2 = ε. The space (ε + α̃)A is a (two-sided) ideal of A because ε
and α̃ commute with all the generators of A. In addition,

(ε − α̃)(ε + α̃) = ε − α̃2 = 0

implies that ε does not belong to (ε + α̃)A so that the ideal is proper. �

In conclusion, the existence of an element β1 leads to contradictions. Conse-
quently, the algebra A is generated by pairwise anticommutative generators. There-
fore, A is isomorphic to a real Clifford algebra. Theorem 1 is proved in the case
A0 = R.�Case A0 = C.

Since the zero component of A is two-dimensional, one has the following state-
ment.

Lemma 4.5. Every non-trivial homogeneous component Aγ is 2-dimensional and
contains elements α+ and α− such that

(α+)
2

= ε, (α−)
2

= −ε.

Proof. Denote the basis of A0 by {ε, i}. A non-zero component Aγ is at least two-
dimensional since for every α ∈ Aγ , the element i α is linearly independent with α.
Indeed, if λα + µ iα = 0, with λ, µ ∈ R, then (λ + µ i)α = 0, thus, by Lemma 2.2,
λ + µ i = 0, so that λ = µ = 0. Furthermore, combining α and i α, one easily finds
two elements α+, α− ∈ Aγ such that (α+)2 = ε and (α−)2 = −ε.

It remains to prove that dimAγ = 2. Suppose dimAγ ≥ 3. That there exists
β ∈ Aγ linearly independent with α and i α. Since αβ ∈ A0, there is a linear
combination λ ε + µ i + ν αβ = 0. Multiplying this equation by α (and assuming
without loss of generality α2 = ε), one has:

λα + µ i α + ν β = 0.

Hence a contradiction. �

The algebra A is therefore a C-algebra. The end of the proof of Theorem 1 in
the case where A0 = C is exactly the same as in the complex case.

Theorem 1 is now completely proved.

5. Non-associative extensions of the Clifford algebras

In this section, we construct simple (Z2)
n
-commutative algebras extending the

Clifford algebras. The algebras we construct contain the Clifford algebras as even
parts. According to Corollary 2.4, such algebras cannot be associative.

Recall that, if A is a Γ-commutative algebra, then the space End(A) is naturally
Γ-graded. A homogeneous linear map T ∈ End(A) is called a derivation of A if for
all homogeneous a, b ∈ A one has

(7) T (ab) = T (a) b + (−1)〈T,ā〉 a T (b) .

This formula then extends by linearity for arbitrary T and a, b. The space Der(A)
of all derivations of A is a Γ-graded Lie algebra.

We will restrict our considerations to the case of (Z2)
n
-commutative algebras

that have non-trivial odd derivations. This means we assume that there exists a
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derivation T exchanging A0 and A1. We think that this assumption is quite natural
since in this case the two parts of A are not separated from each other.

5.1. Classification in the Z2-graded case. Let us start with the simplest case
of Z2-commutative algebras. The following statement provides a classification of
such algebras.

Proposition 3. There exist exactly two simple Z2-commutative algebras A with
the following two properties:

• The even part A0 = K, where K = C or R;
• There exists a non trivial odd derivation T of A.

Proof. Denote by ε the unit element of A0. There are two different possibilities.

(1) T (ε) = 0, i.e., T |A0 = 0;
(2) T (ε) = a 6= 0.

In the case (1), there exists an odd element a such that T (a) = ε. One then has

A1 = K a⊕ kerT.

Moreover, ε b = 0, for all b ∈ kerT . Indeed, 0 = T (ab) = T (a) b = ε b. One has
ε a = λa + b, for some λ ∈ K and b ∈ kerT . Applying (7) one gets

T (εa) = T (ε) a + ε T (a) = ε.

On the other hand,
T (εa) = T (λa + b) = λ ε.

Therefore, λ = 1 and ε(a + b) = a + b. Replacing a by a + b, one gets ε a = a.
It follows that: a) if the space kerT is non-trivial, then the space spanned by

ε and a is a proper ideal; b) if kerT is trivial, then K a is a proper ideal. This is
a contradiction with the simplicity assumption, therefore the case (1) cannot occur.

Consider the case (2) where T (ε) = a 6= 0. From T (ε) = T (εε) = 2ε T (ε) one
deduces ε a = 1

2a. Applying T , one obtains T (a) = 0.

Lemma 5.1. The product in A restricted to A1, that is, A1 × A1 → K ε is a
non-degenerate bilinear skewsymmetric form.

Proof. Suppose there exists c ∈ A1 such that cb = 0 for all b ∈ A1. We will show
that we also have εc = 0. Consequently the element c generates a two-sided ideal
that contradicts the assumption of simplicity.

One has T (c) = µ ε for some µ. On the one hand,

T (c) a = µ εa = µ
2 a.

On the other hand,
T (c) a = T (ca) − c T (a) = 0.

Therefore one obtains µ = 0, i.e., T (c) = 0.
We can find b ∈ A1 such that ba = ε. Indeed, if ba = 0 for all b ∈ A1 then C a is

an ideal. From ε a = 1
2 a and

T (ba) = T (ε) = a = T (b) a− b T (a) = T (b) a

one deduces T (b) = 2ε. Now, from

T (bc) = 0 = T (b) c − b T (c) = 2 εc

one gets εc = 0. �
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Let us denote the bilinear form from Lemma 5.1 by ω.

Lemma 5.2. The space A1 is 2-dimensional.

Proof. The dimension of A1 is even and there exists a basis {a1, · · · , am, b1, · · · , bm}
such that ai bj = δi,j ε. Moreover, we can assume a1 = a.

For all b ∈ kerT one has T (ab) = T (a) b − a T (b) = 0, since we have proved

T (a) = 0. So necessarily ab = 0. This implies: kerT ⊂ (K a)⊥ω . Since the
dimensions of these spaces are the same we have

kerT = (K a)
⊥ω

= 〈a1, · · · , am, b2, · · · bm〉

If m > 1 then we have two vectors a2, b2 such that

T (a2b2) = T (a2) b2 − a2 T (b2) = 0.

But a2b2 = ε and T (ε) 6= 0. This is a contradiction. �

So far we have shown that A is 1|2-dimensional and has a basis {ε; a, b} such
that

ε a = 1
2 a, a b = ε.

We want now to determine the product ε b.
In general,

ε b = λa + µ b, T (b) = ν b.

Applying the derivation T to the expression for a b, one obtains

a = T (ε) = T (ab) = T (a) b − a T (b) = −a νε,

that implies ν = −2. Applying T to the above expression for ε b, one has

−2µ ε = T (ε b) = T (ε) b + ε T (b) = a b + ε (−2 ε),

that gives µ = 1
2 . The parameter λ cannot be found from the above equations.

One obtains the most general formula for the product of the basis elements:

ε ε = ε

ε a = 1
2 a, ε b = 1

2 b + λa,

a b = ε.

To complete the proof, one observes that all the algebras corresponding to λ 6= 0
are isomorphic to each other but not isomorphic to the algebra corresponding to
λ = 0. One therefor has exactly two non-isomorphic algebras.

Proposition 3 is proved. �

If λ = 0, we recognize the algebra K3(K) (see formula (3)). This algebra is
particularly interesting. This is the only simple Z2-commutative algebra that have
the Lie superalgebra osp(1|2) as the algebra of derivations, see [14] and also [12].
The algebra of derivations in the case λ 6= 0 is of dimension 1|1.
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5.2. Extended Clifford algebras. We associate to every Clifford algebra a simple

(Z2)
n+1

-commutative algebra of dimension 2n|2n+1. It is defined by the tensor
product with K3. More precisely, we define the “extended Clifford algebras”

(8) A = Cln ⊗C K3(C), and A = Clp,q ⊗R K3(R)

in the complex and in the real case, respectively.
The even part A0 of each of these algebras coincides with the corresponding

Clifford algebra: we identify α⊗ ε with α. The odd part is twice bigger; every odd
element is of the form

x = α ⊗ a + β ⊗ b,

where α, β are elements of the Clifford algebra and a, b are the basis elements of K3.
The (Z2)

n+1
-grading on A1 is defined by

α ⊗ a = ᾱ + (1, 1, . . . , 1), β ⊗ b = β̄ + (1, 1, . . . , 1).

The product in A is given by

(9)
γ (α ⊗ a + β ⊗ b) = 1

2 (γα ⊗ a + γβ ⊗ b) ,

(α ⊗ a + β ⊗ b) (α′ ⊗ a + β′ ⊗ b) = αβ′ − α′β,

where γ ∈ A0. Note that 1
2 appearing in (9) is crucial (a similar formula without 1

2
leads to an algebra with no non-trivial odd derivations).

Example 5.3. Let us describe with more details the extended algebra of quater-
nions A = H⊗R K3(R). This algebra is of dimension 4|8. The even part A0 = H is
spanned by {ε, i, j, k}; the odd part A1 has the basis {a, ai, aj , ak, b, bi, bj , bk} and
the multiplication is given by the following table.

· a ai aj ak b bi bj bk

2ε a ai aj ak b bi bj bk

2i ai −a ak −aj bi −b bk −bj

2j aj −ak −a ai bj −bk −b bi

2k ak aj −ai −a bk bj −bi −b

a 0 0 0 0 ε i j k
ai 0 0 0 0 i −ε k −j
aj 0 0 0 0 j −k −ε i
ak 0 0 0 0 k j −i −ε

The table can be completed using the multiplication of quaternions and the graded-
commutativity. For instance, we get

ai i = i ai = − 1
2 a, aj i = −i aj = − 1

2 ak,

for the products of even and odd elements. For the products of odd elements with
each other we have:

a b = −b a = ε, a bi = −bi a = i, ai bj = bj ai = k,

etc.
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Remark 5.4. The extended quaternion algebra H ⊗R K3(R) has an interesting
resemblance to the octonion algebra. It worth mentioning that the octonion algebra
itself cannot be realized as a Γ-commutative algebra (cf. [13]). We cite [9] for
a complete classification of group gradings on the octonion algebra without the
commutativity requirement.

One can show that the constructed algebras (8) satisfy cubic identities. For
instance, the odd elements satisfy the graded Jacobi identity. This property is not
too far from the associativity of Clifford algebras. We think that these algebras are
the only possible extensions of Clifford algebras satisfying cubic identity.

The extended Clifford algebras have large algebras of derivations. The following
statement can be checked by a straightforward calculation.

Proposition 4. The algebras of derivations of the extended Clifford algebras are

the following (Z2)
n+1

-graded Lie algebras:

Der(A) = Cln ⊗ osp(1|2), or Der(A) = Clp,q ⊗ osp(1|2),

respectively.

It is quite remarkable that, for every two elements a, b ∈ A, there exists T ∈ Der(A)
such that T (a) = T (b). We conjecture that the defined algebras are the only simple

(Z2)
n+1

-commutative algebras satisfying this property.

5.3. Further examples. Let us show more examples of simple (Z2)
n+1

-commuta-
tive algebras that contain the Clifford algebras as even part. These algebras are
2n|2n-dimensional. A nice property of of these new algebras is that they have the
unit element. However, their algebra of derivations is too small.

In the simplest case A0 = H, the basis of the algebra is: {ε, i, j, k; a, ai, aj , ak}.
The non-trivial odd derivation is as follows:

T(1,1,1) : ε, i, j, k 7−→ 0, ai, aj, ak,

T(1,1,1) : a, ai, aj , ak, 7−→ ε, 0, 0, 0.

The complete multiplication table is:

· ε i j k a ai aj ak

ε ε i j k a ai aj ak

i i −ε k −j λai 0 1
2ak − 1

2aj

j j −k −ε i µaj − 1
2ak 0 1

2ai

k k j −i −ε νak
1
2aj − 1

2ai 0

a a λai µaj νak 0 i j k
ai ai 0 − 1

2ak
1
2aj −i 0 0 0

aj aj
1
2ak 0 − 1

2ai −j 0 0 0
ak ak − 1

2aj
1
2ai 0 −k 0 0 0

where λ, µ, ν ∈ C are parameters. The obtained algebras are isomorphic if and only
if the corresponding parameters are proportional. One thus have a two-parameter
family of algebras parametrized by CP

2/τ , where τ is the action of the cyclic group
Z3 of coordinate permutation.
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It is easy to check that the algebra of derivations Der(A) does not depend on
λ, µ, ν. This algebra is 1|1-dimensional, it has one even generator T0 and one odd
generator T1 satisfying the commutation relations [T0, T1] = T1 and [T1, T1] = 0.

It is of course very easy to define an analogous construction for an arbitrary
Clifford algebra. We will not dwell on it here.
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