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ON LANDAU DAMPING

(STABLE RELEASE 2 OF September 1, 2009)

C. MOUHOT AND C. VILLANI

Abstract. Going beyond the linearized study has been a longstanding problem
in the theory of Landau damping. In this paper we establish Landau damping
for the nonlinear Vlasov equation, for any interaction potential less singular than
Coulomb. The damping phenomenon is reinterpreted in terms of transfer of regu-
larity between kinetic and spatial variables, rather than exchanges of energy. The
analysis involves new families of analytic norms, measuring regularity by compar-
ison with solutions of the free transport equation; new functional inequalities; a
control of nonlinear echoes; sharp scattering estimates; and a Newton approxima-
tion scheme. We point out the (a priori unexpected) critical nature of the Coulomb
potential and analytic regularity, which can be seen only at the nonlinear level;
in this case we derive Landau damping over finite but exponentially long times.
Physical implications are discussed.
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2 C. MOUHOT AND C. VILLANI

Landau damping may be the single most famous mystery of classical plasma
physics. For the past sixty years it has been treated in the linear setting at various
degrees of rigor; but its nonlinear version has remained elusive, since the only avail-
able results [13, 37] prove the existence of some damped solutions, without telling
anything about their genericity.

In the present work we nearly close this gap by treating the nonlinear version of
Landau damping in arbitrarily large times, under assumptions which cover both at-
tractive and repulsive interactions, of any regularity down to Coulomb/Newton, the
latter not included. Furthermore, we show that for Coulomb/Newton interaction,
damping still holds over exponentially large times.

This will lead us to discover a distinctive mathematical theory of Landau damping,
complete with its own functional spaces and functional inequalities. Let us make
it clear that this study is not just for the sake of mathematical rigor: indeed, we
shall get new insights in the physics of the problem, and identify new mathematical
phenomena.

The plan of the paper is as follows.
In Section 1 we provide an introduction to Landau damping, including historical

comments and a review of the existing literature. Then in Section 2, we state and
comment on our main result about the “nonlinear Landau damping” over arbitrarily
large times for any interaction less singular than Coulomb/Newton (Theorem 2.5);
and over exponentially large times for Coulomb/Newton interaction (Theorem 2.6).

In Section 3 we provide a rather complete treatment of linear Landau damping.
This section can be read independently of the rest.

In Section 4 we define the spaces of analytic functions which are used in the
remainder of the paper. The careful choice of norms is one of the keys of our
analysis; the complexity of the problem will naturally lead us to work with norms
having up to 5 parameters. As a first application, we shall revisit linear Landau
damping within this framework.

In Sections 5 to 7 we establish four types of new estimates (scattering estimates,
short-term and long-term regularity extortion, echo control); these are the key sec-
tions containing in particular the physically relevant new material.

In Section 8 we adapt the Newton algorithm to the setting of the nonlinear Vlasov
equation. Then in Sections 9 and 10 we establish some iterative estimates along this
scheme.

From these estimates Theorem 2.5 is easily deduced in Section 11. Then in Sec-
tion 12 we adapt our result to the case of Coulomb/Newton interaction and prove
Theorem 2.6.
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Some counterexamples and asymptotic expansions are studied in Section 13.
Final comments about the scope and range of applicability of these results are

provided in Section 14.

Even though it basically proves one main result, this paper is very long. This
is due partly to the intrinsic complexity and richness of the problem, partly to the
need to develop an adequate functional theory from scratch, and partly to the inclu-
sion of many remarks, comments, and explanations, as well as a few developments
(most notably Subsection 4.10) which are not necessary, but could prove useful in
related problems. The whole process culminates in the extremely technical iteration
performed in Section 10. A short summary of our results and methods of proofs can
be found in the expository paper [62].

This project started from an unlikely conjunction of discussions of the authors
with various people, most notably Yan Guo, Dong Li, Freddy Bouchet and Étienne
Ghys. We also got crucial inspiration from the books [10, 11] by James Binney
and Scott Tremaine; and [2] by Serge Alinhac and Patrick Gérard. Warm thanks
to Julien Barré, Jean Dolbeault, Thierry Gallay, Stephen Gustafson, Gregory Ham-
mett, Donald Lynden-Bell, Michael Sigal, Éric Séré and especially Michael Kiessling
for useful exchanges and references; and to Francis Filbet and Irene Gamba for pro-
viding numerical simulations. We are also grateful to Julien Barré, Patrick Bernard,
Emanuele Caglioti, Yves Elskens, Michael Loss, Peter Markowich, Govind Menon,
Yann Ollivier, Mario Pulvirenti, Igor Rodnianski, Yoshio Sone, Tom Spencer, and
the team of the Princeton Plasma Physics Laboratory for further constructive dis-
cussions about our results. Final thanks to the Institute for Advanced Study in
Princeton, for offering the second author a serene atmosphere of work and concen-
tration during the best part of the preparation of this work.

1. Introduction to Landau damping

1.1. Discovery. Under adequate assumptions (collisionless regime, nonrelativistic
motion, heavy ions, no magnetic field), a dilute plasma is well described by the
nonlinear Vlasov–Poisson equation

(1.1)
∂f

∂t
+ v · ∇xf +

F

m
· ∇vf = 0,

where f = f(t, x, v) ≥ 0 is the density of electrons in phase space (x= position,
v= velocity), m is the mass of an electron, and F = F (t, x) is the mean-field (self-
consistent) electrostatic force:

(1.2) F = −eE, E = ∇∆−1(4πρ).
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Here e > 0 is the absolute electron charge, E = E(t, x) is the electric field, and
ρ = ρ(t, x) is the density of charges

(1.3) ρ = ρi − e

∫
f dv,

ρi being the density of charges due to ions. This model and its many variants are of
tantamount importance in plasma physics [1, 6, 44, 48].

In contrast to models incorporating collisions [83], the Vlasov–Poisson equation is
time-reversible. However, in 1946 Landau [47] stunned the physical community by
predicting an irreversible behavior on the basis of this equation. This “astonishing
result” (as it was called in [76]) relied on the solution of the Cauchy problem for
the linearized Vlasov–Poisson equation around a spatially homogeneous Maxwellian
equilibrium. Landau formally solved the equation by means of Fourier and Laplace
transforms, and after a study of singularities in the complex plane, concluded that
the electric field decays exponentially fast; he further studied the rate of decay as
a function of the wave vector k. Landau’s computations are reproduced in [48,
Section 34] or [1, Section 4.2].

An alternative argument appears in [48, Section 30]: there the thermodynamical
formalism is applied to compute the amount of heat Q which is dissipated when
a (small) oscillating electric field E(t, x) = E ei(k·x−ωt) (k a wave vector, ω > 0 a
frequency) is applied to a plasma whose distribution f 0 is homogeneous in space and
isotropic in velocity space; the result is

(1.4) Q = −|E|2 πme
2ω

|k|2 φ′
(
ω

|k|

)
,

where φ(v1) =
∫
f 0(v1, v2, v3) dv2 dv3. In particular, (1.4) is always positive (see the

last remark in [48, Section 30]), which means that the system reacts against the
perturbation, and thus possesses some “active” stabilization mechanism.

A third argument [48, Section 32] consists in studying the dispersion relation,
or equivalently searching the (generalized) eigenmodes of the linearized Vlasov–
Poisson equation, now with complex frequency ω. After appropriate selection, these
eigenmodes are all decaying (ℑω < 0) as t → ∞. This again suggests stability,
although in a somewhat weaker sense than the computation of heat release.

The first and third arguments also apply to the gravitational Vlasov–Poisson equa-
tion, which is the main model for nonrelativistic galactic dynamics. This equation
is similar to (1.1), but now m is the mass of a typical star (!), and f is the density
of stars in phase space; moreover the first equation of (1.2) and the relation (1.3)
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should be replaced by

(1.5) F = −GmE, ρ = m

∫
f dv;

where G is the gravitational constant, E the gravitational field, and ρ the density
of mass. The books by Binney and Tremaine [10, 11] constitute excellent references
about the use of the Vlasov–Poisson equation in stellar dynamics — where it is
often called the “collisionless Boltzmann equation”, see footnote on [11, p. 276]. On
“intermediate” time scales, the Vlasov–Poisson equation is thought to be an accurate
description of very large star systems [26], which are now accessible to numerical
simulations.

Since the work of Lynden-Bell [51] it has been recognized that Landau damping,
and wilder collisionless relaxation processes generically dubbed “violent relaxation”,
constitute a fundamental stabilizing ingredient of galactic dynamics. Without these
still poorly understood mechanisms, the surprisingly short time scales for relaxation
of the universe would remain unexplained.

One main difference between the electrostatic and the gravitational interactions
is that in the latter case Landau damping should occur only at wavelengths smaller
than the Jeans length [11, Section 5.2]; beyond this scale, even for very nice (say
Maxwellian) velocity profiles, the Jeans instability takes over and governs planet
and galaxy aggregation.1

On the contrary, in (classical) plasma physics, Landau damping should hold at
all scales under suitable assumptions on the velocity profile; and in fact one is in
general not interested in scales smaller than the Debye length, which is roughly
defined in the same way as the Jeans length.

Nowadays, not only has Landau damping become a cornerstone of plasma physics2,
but it has also made its way in other areas of physics (astrophysics, but also wind
waves, fluids, superfluids,. . . ) and even biophysics. One may consult the concise
survey papers [67, 71, 81] for a discussion of its influence and some applications.

1or at least would do, if galactic matter was smoothly distributed; in presence of “microscopic”
heterogeneities, a phase transition for aggregation can occur far below this scale [42]. In the
language of statistical mechanics, the Jeans length corresponds to a “spinodal point” rather than
a phase transition [75].

2Ryutov [71] estimated in 1998 that “approximately every third paper on plasma physics and
its applications contains a direct reference to Landau damping”.
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1.2. Interpretation. True to his legend, Landau deduced the damping effect from
a mathematical-style study3, without bothering to give a physical explanation of the
underlying mechanism. His arguments anyway yield exact formulas, which in prin-
ciple can be checked experimentally, and indeed provide good qualitative agreement
with observations [52].

A first set of problems in the interpretation is related to the arrow of time. In
the thermodynamic argument, the exterior field is awkwardly imposed from time
−∞ on; moreover, reconciling a positive energy dissipation with the reversibility
of the equation is not obvious. In the dispersion argument, one has to arbitrarily
impose the location of the singularities taking into account the arrow of time; at
mathematical level this is equivalent to a choice of principal value:

1

z − i 0
= p.v.

(
1

z

)
+ iπ δ0.

This is not so serious, but then the spectral study requires some thinking. All in
all, the most convincing argument remains Landau’s original one, since it is based
only on the study of the Cauchy problem, which makes more physical sense than
the study of the dispersion relation (see the remark in [10, p. 682]).

A more fundamental issue resides in the use of analytic function theory, with
contour integration, singularities and residue computation, which has played a major
role in the theory of the Vlasov–Poisson equation ever since Landau [48, Chapter
32] [11, Subsection 5.2.4]. Not only does this impose stringent assumptions on the
data, but it helps little, if at all, to understand the underlying physical mechanism.4

The most popular interpretation of Landau damping considers the phenomenon
from an energetic point of view, as the result of the interaction of a plasma wave
with particles of nearby velocity [77, p. 18] [11, p. 412] [1, Section 4.2.3] [48, p. 127].
In a nutshell, the argument says that dominant exchanges occur with those particles
which are “trapped” by the wave because their velocity is close to the wave velocity.
If the distribution function is a decreasing function of |v|, among trapped particles
more are accelerated than are decelerated, so the wave loses energy to the plasma
— or the plasma surfs on the wave — and the wave is damped by the interaction.

3not completely rigorous from the mathematical point of view, but formally correct, in contrast
to the previous studies by Landau’s fellow physicists — as Landau himself pointed out without
mercy [47].

4Van Kampen [80] summarizes the conceptual problems posed to his contemporaries by Landau’s
treatment, and comments on more or less clumsy attempts to resolve the apparent paradox caused
by the singularity in the complex plane.
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Appealing as this image may seem, to a mathematically-oriented mind it will
probably make little sense at first hearing.5 A more down-to-Earth interpretation
emerged in the fifties from the “wave packet” analysis of Van Kampen [80] and Case
[14]: Landau damping would result from phase mixing. This phenomenon, well-
known in galactic dynamics, describes the damping of oscillations occurring when
a continuum is transported in phase space along an anharmonic Hamiltonian flow
[11, pp. 379–380]. The mixing results from the simple fact that particles following
different orbits travel at different angular6 speeds, so perturbations start “spiralling”
(see Figure 4.27 on [11, p. 379]) and homogenize by fast spatial oscillation. From
the mathematical point of view, phase mixing results in weak convergence; from the
physical point of view, this is just the convergence of observables, defined as averages
over the velocity space (this is sometimes called “convergence in the mean”).

At first sight, both points of view seem hardly compatible: Landau scenario sug-
gests a very smooth process, while the phase mixing one involves tremendous oscilla-
tions. The coexistence of these two interpretations did generate some speculation on
the nature of the damping, and on its relation to phase mixing, see e.g. [41] or [11,
p. 413]. There is actually no contradiction between the two points of view; many
physicists have rightly pointed out that that Landau damping should come with
filamentation and oscillations of the distribution function [80, p. 962] [48, p. 141] [1,
Vol. 1, pp. 223–224] [50, pp. 294–295]. Nowadays these oscillations can be visualized
spectacularly thanks to deterministic numerical schemes, see e.g. [85] [36, Fig. 3]
[25]. Below, we reproduce some examples provided by Filbet.

In any case, there is no definite interpretation of Landau damping: as noted by
Ryutov [71, Section 9], papers devoted to the interpretation and teaching of Landau
damping were still appearing regularly fifty years after its discovery; to quote just
a couple of more recent examples let us mention works by Elskens and Escande
[21, 23, 22].

1.3. Range of validity. The following issues are addressed in the literature [38,
41, 54, 85] and slightly controversial:

• Does Landau damping really hold for gravitational interaction? The case seems
thinner in this situation than for plasma interaction, all the more that there are
many instability results in the gravitational context; at present there does not seem

5Escande [23, Chapter 4, Footnote 6] points out some misconceptions associated with the surfer
image.

6“Angular” here refers to action-angle variables, and applies even for straight trajectories in a
periodic box.
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Figure 1. A slice of the distribution function (relative to a homoge-
neous equilibrium) for gravitational Landau damping, at two different
times

-23

-22

-21

-20

-19

-18

-17

-16

-15

-14

-13

-12

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

lo
g(

E
t(

t)
)

t

electric energy in log scale

Figure 2. Time-evolution of the norm of the field, for electrostatic
(on the left) and gravitational (on the right) interactions. Notice the
fast Langmuir oscillations in the electrostatic case.

to be any consensus among mathematical physicists [69]. (Numerical evidence is
not conclusive because of the difficulty of accurate simulations in very large time —
even in one dimension of space.)

• Does the damping hold for unbounded systems? Counterexamples from [28, 29]
show that some kind of confinement is necessary, even in the electrostatic case.
More precisely, Glassey and Schaeffer show that a solution of the linearized Vlasov–
Poisson equation in the whole space (linearized around a homogeneous equilibrium
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f 0 of infinite mass) decays at best like O(t−1), modulo logarithmic corrections, for
f 0(v) = c/(1 + |v|2); and like O((log t)−α) if f 0 is a Gaussian. In fact, Landau’s
original calculations already indicated that the damping is extremely weak at large
wavenumbers; see the discussion in [48, Section 32]. Of course, in the gravitational
case, this is even more dramatic because of the Jeans instability.

• Does convergence hold in infinite time for the solution of the “full” nonlinear
equation? This is not clear at all since there is no mechanism that would keep the
distribution close to the original equilibrium for all times. Some authors do not
believe that there is convergence as t→ ∞; others believe that there is convergence
but argue that it should be very slow [38], say O(1/t). Backus [5] notes that in
general the linear and nonlinear evolution break apart after some (not very large)
time, and questions the validity of the linearization. O’Neil [66] argues that relax-
ation holds in the “quasilinear regime” on larger time scales, when the “trapping
time” (roughly proportional the inverse square root of the size of the perturbation)
is much smaller than the damping time. Other speculations and arguments related
to trapping appear in many sources, e.g. [57]. Kaganovich [40] argues that nonlin-
ear effects may quantitatively affect Landau damping related phenomena by several
orders of magnitude.

The so-called “quasilinear relaxation theory” [48, Section 49] [1, Section 9.1.2]
[44, Chapter 10] uses second-order approximation of the Vlasov equation to predict
the convergence of the spatial average of the distribution function. The procedure is
most esoteric, involving averaging over statistical ensembles, and diffusion equations
with discontinuous coefficients, acting only near the resonance velocity for particle-
wave exchanges. Because of these discontinuities, the predicted asymptotic state
is discontinuous, and collisions are invoked to restore smoothness. Linear Fokker–
Planck equations7 in velocity space have also been used in astrophysics [51, p. 111],
but only on phenomenological grounds (the ad hoc addition of a friction term leading
to a Gaussian stationary state); and this procedure has been exported to the study
of two-dimensional incompressible fluids [15, 16].

Careful numerical simulation [85] seems to show that the solution of the nonlinear
Vlasov–Poisson equation does converge to a spatially homogeneous distribution,
but only as long as the size of the perturbation is small enough. We shall call
this phenomenon the nonlinear Landau damping. This terminology summarizes
well the problem, still it is subject to criticism since (a) Landau himself sticked to
the linear case and did not discuss the large-time convergence of the data; (b) this

7These equations act on some ensemble average of the distribution; they are different from the
Vlasov–Landau equation.
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damping is expected to hold when the regime is close to linear, but not necessarily
when the nonlinear term dominates8; and (c) this expression is used to designate a
related but different phenomenon [1, Section 10.1.3].

• Is Landau damping related to the more classical notion of stability in orbital
sense? Orbital stability means that the system, slightly perturbed at initial time
from an equilibrium distribution, will always remain close to this equilibrium. Even
in the favorable electrostatic case, stability is not granted; the most prominent
phenomenon being the Penrose instability [68] according to which a distribution with
two deep bumps may be unstable. In the more subtle gravitational case, various
stability and instability criteria are associated with the names of Chandrasekhar,
Antonov, Goodman, Doremus, Feix, Baumann, . . . [11, Section 7.4]. There is a
widespread agreement (see e.g. the comments in [85]) that Landau damping and
stability are related, and that Landau damping cannot be hoped for if there is no
orbital stability.9

1.4. Conceptual problems. Summarizing, we can identify three main conceptual
obstacles which make Landau damping mysterious, even sixty years after its discov-
ery:

(i) The equation is time-reversible, yet we are looking for an irreversible behavior
as t→ +∞ (or t→ −∞). The value of the entropy does not change in time, which
physically speaking means that there is no loss of information in the distribution
function. The spectacular experiment of the “plasma echo” illustrates this conser-
vation of microscopic information [30, 53]: a plasma which is apparently back to
equilibrium after an initial disturbance, will react to a second disturbance in a way
that shows that it has not forgotten the first one.10 And at the linear level, if there
are decaying modes, there also has to be growing modes!

(ii) When one perturbs an equilibrium, there is no mechanism forcing the system
to go back to this equilibrium in large time; so there is no justification in the use of
linearization to predict the large-time behavior. In the first mathematically rigorous

8although phase mixing might still play a crucial role in violent relaxation or other unclassified
nonlinear phenomena.

9The question is not so absurd as it may seem. Common wisdom says, why worry about a fine
damping if the system anyway goes away from the equilibrium? However, it could be the case that
the system goes away in strong topology, and remains close in weak topology. Still there is no hint
for such a behavior, and there is no reason to doubt the common view.

10Interestingly enough, this experiment was suggested as a way to measure the strength of
irreversible phenomena going on inside a plasma, e.g. collision frequency, by measuring attenuations
with respect to the predicted echo. See [74] for an interesting application and appealing figures.
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study on the subject, Backus [5] had already put forward this objection in a very
convincing way.

(iii) At the technical level, Landau damping rests on analyticity, and its most
attractive interpretation is in terms of phase mixing. But both phenomena are
incompatible in the large-time limit: phase mixing implies an irreversible deteriora-
tion of analyticity. For instance, it is easily checked that free transport induces an
exponential growth of analytic norms as t → ∞ — except if the initial datum is
spatially homogeneous. In particular, the Vlasov–Poisson equation is unstable (in
large time) in any norm incorporating velocity regularity. (Space-averaging is one of
the ingredients used in the quasilinear theory to formally get rid of this instability.)

How can we respond to these issues?
One way to solve the first problem (time-reversibility) is to appeal to Van Kam-

pen modes as in [11, p. 415]; however these are not so physical, as noticed in [10,
p. 682]. A simpler conceptual solution is to invoke the notion of weak convergence:
reversibility manifests itself in the conservation of the information contained in the
density function; but information may be lost irreversibly in the limit when we con-
sider weak convergence. Weak convergence only describes the long-time behavior
of arbitrary observables, each of which does not contain as much information as
the density function.11 As a very simple illustration, consider the time-reversible
evolution defined by u(t, x) = eitxui(x), and notice that it does converge weakly to
0 as t → ±∞; this convergence is even exponentially fast if the initial datum ui is
analytic. (Our example is not chosen at random: although it is extremely simple,
it may be a good illustration of what happens in phase mixing.) In a way, microso-
copic reversibility is compatible with macroscopic irreversibility, provided that the
“microscopic regularity” is destroyed asymptotically.

Still in respect to this reversibility, it should be noted that the “dual” mechanism
of radiation, according to which an infinite-dimensional system may lose energy
towards very large scales, is relatively well understood and recognized as a crucial
stability mechanism [73, 4].

The second problem only indicates that there is a large gap between the under-
standing of linear Landau damping, and that of the nonlinear phenomenon.

The third problem, maybe the most troubling, does not dismiss the phase mixing
explanation, but suggests that we shall have to keep track of the initial time, in the

11In Lynden-Bell’s appealing words [50, p.295], “a system whose density has achieved a steady
state will have information about its birth still stored in the peculiar velocities of its stars.”
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sense that a rigorous proof cannot be based on the propagation of some phenomenon.
This situation is of course in sharp contrast with the study of dissipative systems
admitting a Lyapunov functional, as do many collisional kinetic equations [83, 82];
it will require completely different mathematical techniques.

1.5. Previous mathematical results. At the linear level, the first rigorous treat-
ments of Landau damping were performed in the sixties; see Saenz [72] for rather
complete results and a review of earlier works. The theory was rediscovered and
renewed at the beginning of the eighties by Degond [19], and Maslov and Fedoryuk
[56]. In all these works, analytic arguments play a crucial role (for instance for an-
alytic extension of resolvent operators), and asymptotic expansions for the electric
field associated to the linearized Vlasov–Poisson equation are obtained.

Also at the linearized level, there are counterexamples by Glassey and Schaeffer
[28, 29] showing that there is in general no exponential decay for the linearized
Vlasov–Poisson equation without analyticity, or without confining.

In a nonlinear setting, the only rigorous treatments so far are those by Caglioti–
Maffei [13], and later Hwang–Vélazquez [37]. Both sets of authors work in the
one-dimensional torus and use fixed-point theorems and perturbative arguments to
prove the existence of a class of solutions behaving, asymptotically as t → +∞,
and in a strong sense, like perturbed solutions of free transport. Since solutions of
free transport weakly converge to spatially homogeneous distributions, the solutions
constructed by this “scattering” approach are indeed damped.

The weakness of these results is that they say nothing about the initial perturba-
tions leading to such solutions, which could be very special. In other words: damped
solutions do exist, but do we ever reach them?

Sparse as it may seem, this list is kind of exhaustive. On the other hand, there is
a rather large mathematical literature on the orbital stability problem, due to Guo,
Rein, Strauss, Wolansky and others. In this respect see for instance [33] for the
plasma case, and [32] for the gravitational case; both sources contain many refer-
ences on the subject. This body of works has confirmed the intuition of physicists,
although with quite different methods. The gap between a formal, linear treatment
and a rigorous, nonlinear one is striking: Compare the Appendix of [32] to the rest
of the paper.

Our treatment of Landau damping will be performed from scratch, and will not
rely on any of these results.
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2. Main result

2.1. Modelling. We shall work in adimensional units throughout the paper, in d
dimensions of space and d dimensions of velocity (d ∈ N).

As should be clear from our presentation in Section 1, to observe Landau damping,
we need to put a restriction on the length scale; to achieve this we shall take the
position space to be the d-dimensional torus of sidelength L, namely Td

L = Rd/(LZ)d.
This is admittedly a bit unrealistic, but it is commonly done in plasma physics (see
e.g. [6]).

In a periodic setting the Poisson equation has to be reinterpreted, since ∆−1ρ
is not well-defined unless

∫
Td

L
ρ = 0. The natural solution consists in removing the

mean value of ρ, independently of any “neutrality” assumption; in galactic dynamics
this is known as the Jeans swindle, a trick considered as efficient but logically
absurd. However, in 2003 Kiessling [43] re-opened the case and acquitted Jeans, on
the basis that his “swindle” can be justified by a simple limit procedure. In the
present case, one may adapt Kiessling’s argument and approximate the Coulomb
potential V by any cutoffed version Vκ, e.g. of Debye type (invoking screening for a
plasma, or a cosmological constant for stellar systems; anyway the particular choice
of approximation has no influence on the result). Then ∇Vκ ∗ ρ makes sense for a
periodic ρ, and moreover

(∇Vκ ∗ ρ)(x) =

∫

Rd

∇Vκ(x− y) ρ(y) dy =

∫

[0,L]d
∇V (L)

κ (x− y) ρ(y) dy,

where V
(L)
κ (z) =

∑
ℓ∈Zd Vκ(z + ℓL) Passing to the limit as κ→ 0 yields

∫

[0,L]d
∇V (L)(x−y) ρ(y) dy =

∫

[0,L]d
∇V (L)(x−y)

(
ρ−〈ρ〉

)
(y) dy = −∇∆−1

L

(
ρ−〈ρ〉

)
,

where ∆−1
L is the inverse Laplace operator on Td

L. (We refer to [43] for a discussion
of the physics underlying this limit κ→ 0.)

More generally, we may consider any interaction potential W on Td
L, satisfying

certain regularity assumptions. Then the self-consistent field will be given by

F = −∇W ∗ ρ, ρ(x) =

∫
f(x, v) dv,

where now ∗ denotes the convolution on Td
L.

In accordance with our conventions from Appendix A.3, we shall write Ŵ (L)(k) =∫
Td

L
e−2iπk· x

L W (x) dx. In particular, if W is the periodization of a potential Rd → R
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(still denoted W by abuse of notation), i.e.,

W (x) = W (L)(x) =
∑

ℓ∈Zd

W (x+ ℓL),

then

(2.1) Ŵ (L)(k) = Ŵ

(
k

L

)
,

where Ŵ (ξ) =
∫

Rd e
−2iπξ·xW (x) dx is the original Fourier transform in the whole

space.

2.2. Linear damping. It is well-known that Landau damping requires some stabil-
ity assumptions on the unperturbed homogeneous distribution function, say f 0(v).
In this paper we shall use a very general assumption, expressed in terms of the
Fourier transform

(2.2) f̃ 0(η) =

∫

Rd

e−2iπη·v f 0(v) dv,

the length L, and the interaction potential W . To state it, we define, for t ≥ 0 and
k ∈ Zd,

(2.3) K0(t, k) = −4π2 Ŵ (L)(k) f̃ 0

(
kt

L

) |k|2
L2

t;

and, for any ξ ∈ C, we define a function L via the following Fourier–Laplace trans-
form of K0 in the time variable:

(2.4) L(ξ, k) =

∫ +∞

0

e2πξ∗
|k|
L

tK0(t, k) dt,

where ξ∗ is the complex conjugate to ξ. Our linear damping condition is expressed
as follows:

(L) There are constants λ, κ > 0 such that |f̃ 0(η)| = O(e−2πλ|η|); and for any
ξ ∈ C with 0 ≤ ℜ ξ < λ,

inf
k∈Zd

∣∣L(ξ, k) − 1
∣∣ ≥ κ.

We shall prove in Section 3 that (L) implies Landau damping. For the moment,
we give two sufficient conditions for (L) to be satisfied. The first one can be thought
of as a smallness assumption on either the length, or the potential, or the velocity
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distribution. The second one is a structure assumption involving the marginals of
f 0 along arbitrary wave vectors k:

(2.5) ϕk(v) =

∫

k
|k|

v+k⊥

f 0(w) dw, v ∈ R.

All studies known to us use one of these assumptions, so (L) appears as a unifying
condition for linear Landau damping around a homogeneous equilibrium.

Proposition 2.1. Let f 0 = f 0(v) be a velocity distribution such that f̃ 0 decays
exponentially fast at infinity, let L > 0 and let W be an interaction potential on Td

L,
W ∈ L1(Td). If any one of the following two conditions is satisfied:

(a) smallness:

(2.6) 4π2

(
max
k∈Zd

∗

∣∣Ŵ (L)(k)
∣∣
) (

sup
|σ|=1

∫ ∞

0

∣∣f̃ 0(rσ)
∣∣ r dr

)
< 1;

(b) repulsive interaction and decreasing marginals: for all k ∈ Zd,

(2.7) Ŵ (L)(k) ≥ 0;

{
v < 0 =⇒ ϕ′

k(v) ≥ 0

v > 0 =⇒ ϕ′
k(v) ≤ 0;

then (L) holds true for some λ, κ > 0.

Remark 2.2. [48, Problem, Section 30] If f 0 is radially symmetric and positive,
and d ≥ 3, then all marginals of f 0 are decreasing functions of |v|. Indeed, if

ϕ(v) =
∫

Rd−1 f(
√
v2 + |w|2) dw, then after differentiation and integration by parts

we find 


ϕ′(v) = −(d − 3) v

∫

Rd−1

f
(√

v2 + |w|2
) dw
|w|2 (d ≥ 4)

ϕ′(v) = −2π v f(|v|) (d = 3).

Example 2.3. Take a gravitational interaction and Mawellian background:

Ŵ (k) = − G
π |k|2 , f 0(v) = ρ0 e−

|v|2

2T

(2πT )d/2
.

Recalling (2.1), we see that (2.6) becomes

(2.8) L <

√
π T

G ρ0
=: LJ(T, ρ0).
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The length LJ is the celebrated Jeans length [11, 43], so criterion (a) can be applied,
all the way up to the onset of the Jeans instability.

Example 2.4. If we replace the gravitational interaction by the electrostatic interac-
tion, the same computation yields

(2.9) L <

√
π T

e2 ρ0
=: LD(T, ρ0),

and now LD is essentially the Debye length. Then criterion (a) becomes quite
restrictive, but because the interaction is repulsive we can use criterion (b) as soon
as f 0 is a strictly monotone function of |v|; this covers in particular Maxwellian
distributions, independently of the size of the box. Criterion (b) also applies if d ≥ 3
and f 0 has radial symmetry; or even if f 0 has two bumps but L is not too large.
Then in the case of two bumps with large L, the Penrose instability will take over.

We shall show in Section 3 that (L) implies linear Landau damping (Theorem
3.1); then we shall prove Proposition 2.1 at the end of that section. The general
ideas are close to those appearing in previous works, including Landau himself; the
only novelties lie in the slightly more general assumptions, the elementary nature of
the arguments, and the slightly more precise quantitative results.

2.3. Nonlinear damping. As others have done before in the study of Vlasov–
Poisson [13], we shall quantify the analyticity by means of norms involving Fourier
transform in both variables (also denoted with a tilde in the sequel). So we define

(2.10) ‖f‖λ,µ = sup
k,η

(
e2πλ|η| e2πµ

|k|
L

∣∣f̃ (L)(k, η)
∣∣
)
,

where k varies in Zd, η ∈ Rd, λ, µ are positive parameters, and we recall the depen-
dence of the Fourier transform on L (see Appendix A.3 for conventions). Now we
can state our main result as follows:

Theorem 2.5 (Nonlinear Landau damping). Let f 0 : Rd → R+ be an analytic
velocity profile. Let L > 0 and W : Td

L → R be an interaction potential satisfying

(2.11) ∀ k ∈ Zd, |Ŵ (L)(k)| ≤ CW

|k|1+γ

for some constants CW > 0, γ > 1. Assume that f 0 and W satisfy the stability
condition (L) from Subsection 2.2, with some constants λ, κ > 0; further assume
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that, for the same parameter λ,

(2.12) sup
η∈Rd

(
|f̃ 0(η)| e2πλ|η|

)
≤ C0,

∑

n∈Nd
0

λn

n!
‖∇n

vf
0‖L1(Rd) ≤ C0 < +∞.

Then for any 0 < λ′ < λ, β > 0, 0 < µ′ < µ, there is ε = ε(d, L, CW , C0, κ, λ, λ
′, µ, µ′, β, γ)

with the following property: if fi is an initial datum satisfying

(2.13) δ := ‖fi − f 0‖λ,µ +

∫∫

Td
L×Rd

|fi − f 0| eβ|v| dv dx ≤ ε,

then

• the unique classical solution f to the nonlinear Vlasov equation

(2.14)
∂f

∂t
+ v · ∇xf − (∇W ∗ ρ) · ∇vf = 0, ρ =

∫

Rd

f dv,

with initial datum f(0, · ) = fi, converges in the weak topology as t → ±∞, with
rate O(e−2πλ′|t|), to a spatially homogeneous equilibrium f±∞;

• the density ρ(t, x) =
∫
f(t, x, v) dv converges in the strong topology as t → ±∞,

with rate O(e−2πλ′|t|), to the constant density

ρ∞ =
1

Ld

∫

Rd

∫

Td
L

fi(x, v) dx dv;

• the space average 〈f〉(t, v) =
∫
f(t, x, v) dx converges in the strong topology as

t→ ±∞, with rate O(e−2πλ′|t|), to f±∞.

More precisely, there are C > 0, and spatially homogeneous distributions f+∞(v)
and f−∞(v), depending continuously on fi and W , such that

(2.15) sup
t∈R

∥∥∥f(t, x+ vt, v) − f 0(v)
∥∥∥

λ′,µ′
≤ C δ;

∀ η ∈ Rd, |f̃±∞(η) − f̃ 0(η)| ≤ C δ e−2πλ′|η|;

and

∀ (k, η) ∈ Zd × Rd,
∣∣∣L−d f̃ (L)(t, k, η) − f̃+∞(η)1k=0

∣∣∣ = O(e−2π λ′

L
t) as t→ +∞;

∀ (k, η) ∈ Zd × Rd,
∣∣∣L−d f̃ (L)(t, k, η)− f̃−∞(η)1k=0

∣∣∣ = O(e−2π λ′

L
|t|) as t→ −∞;

(2.16) ∀ r ∈ N,
∥∥ρ(t, ·) − ρ∞

∥∥
Cr = O

(
e−2π λ′

L
|t|) as |t| → ∞;
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(2.17) ∀ r ∈ N, ∀σ > 0,
∥∥∥
〈
f(t, ·, v)

〉
− f±∞

∥∥∥
Cr

σ

= O
(
e−2π λ′

L
|t|) as t→ ±∞.

In this statement Cr stands for the usual norm on r times continuously dif-
ferentiable functions, and Cr

σ involves in addition moments of order σ, namely
‖f‖Cr

σ
= supr′≤r,v∈Rd |f (r′)(v) (1 + |v|σ)|.

2.4. Comments. Let us start with a list of remarks about Theorem 2.5.

• Our result covers both attractive and repulsive interactions, as long as the
linear damping condition is satisfied; it fails just short of covering Newton/Coulomb
potential (this would be γ = 1 in (2.11)). It may be that our method can be adapted
to include this limit case; but anyway the proof clearly breaks down for γ < 1. This
is a nonlinear effect, as any γ ≥ 0 would work for the linearized equation. We shall
see below that a slightly weaker conclusion still holds for γ = 1 (Theorem 2.6). The
singularity of the interaction at short scales will anyway be the source of important
technical problems.12

• Condition (2.12) could be replaced by

(2.18) |f̃ 0(η)| ≤ C0 e
−2πλ|η|,

∫
f 0(v) eβ|v| dv ≤ C0.

But condition (2.12) is more general, in view of Theorem 4.20 below. For instance,
f 0(v) = 1/(1+v2) in dimension d = 1 satisfies (2.12) but not (2.18); this distribution
is commonly used in theoretical and numerical studies, see e.g. [36]. We shall also
establish slightly more precise estimates under slightly more stringent conditions on
f 0, see (11.1).

• Our conditions are expressed in terms of the initial datum, which is a consid-
erable improvement over [13, 37]. Still it is of interest to pursue the “scattering”
program started in [13], e.g. in a hope of better understanding of the nonperturba-
tive regime.

• Strictly speaking, known existence and uniqueness results for solutions of the
nonlinear Vlasov–Poisson equation [7, 49] do not apply to the present setting of
close-to-homogeneous analytic solutions. (The problem with [7] is that velocities are
assumed to be uniformly bounded, and the problem with [49] is that the position
space is the whole of Rd; in both papers these assumptions are not superficial.)
However, this really is not a big deal: our proof will provide an existence theorem,

12In a related field, this singularity is also the reason why the Vlasov–Poisson equation is still
far from being established as a mean-field limit of particle dynamics (see [34] for partial results
covering much less singular interactions).
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together with regularity estimates which are considerably stronger than what is
needed to prove the uniqueness. We shall not come back to these issues which
are rather irrelevant for our study: uniqueness only needs local in time regularity
estimates, while all the difficulty in the study of Landau damping consists in getting
estimates in (very) large time.

• The smallness assumption on fi − f 0 is expected, for instance in view of the
theoretical work of O’Neil [66], or the numerical results of [85]. We also make the
standard assumption that fi − f 0 is well localized.

• The norm in (2.13) cannot be weakened much. The free case (W = 0, no inter-
action) strongly suggests that the v-analyticity is mandatory to get the exponential
convergence to equilibrium. Our scheme of proof also needs some dose of analyticity
in x, but µ in Theorem 2.5 can be arbitrarily small.

• In any case, no convergence can be hoped for if the initial datum is only close
to f 0 in the weak topology: indeed there is instability in the weak topology, even
around a Maxwellian [13].

• Estimate (2.15) expresses the orbital “travelling stability” around f 0; it is much
stronger than the usual orbital stability in Lebesgue norms [33, 32]. An equivalent
formulation is that if (Tt)t∈R stands for the nonlinear Vlasov evolution operator, and
(T 0

t )t∈R for the free transport operator, then in a neighborhood of a homogeneous
equilibrium satisfying the stability criterion (L), T 0

−t ◦ Tt remains uniformly close
to Id for all t. Note the important difference: unlike in the usual orbital stability
theory, in our work we use functional spaces which are not invariant under the free
transport semigroup. This a source of difficulty (our functional spaces are sensitive
to the filamentation phenomenon), but it is also the reason for which this “analytic”
orbital stability contains more information, and in particular the damping of the
density.

• f(t, ·) is not close to f 0 in analytic norm as t → ∞, and does not converge
to anything in strong topology, so the conclusion cannot be improved much. Still
we shall establish more precise quantitative results, and the limit profiles f±∞ are
obtained by a constructive argument.

With respect to the questions raised above, our analysis brings the following an-
swers (assuming that the exclusion of Coulomb/Newton is only of technical nature):

(a) Convergence of the distribution f does hold for t→ +∞; it is indeed based on
phase mixing, and involves very fast oscillations. In this sense it is right to consider
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Landau damping as a “wild” process. But on the other hand, the spatial density
(and therefore the force field) converges strongly and smoothly.

(b) The space average 〈f〉 does converge in large time. However the conclusions
are radically different from those of quasilinear relaxation theory, since there is no
need for extra randomness, and the limiting distribution is smooth, even without
collisions.

(c) Landau damping is a linear phenomenon, which survives nonlinear pertur-
bation thanks to the structure of the Vlasov–Poisson equation. The nonlinearity
manifests itself by the presence of echoes. Echoes were well-known to specialists of
plasma physics [48, Section 35] [1, Section 12.7], but were not identified as a possible
source of instability. On the one hand, we shall argue that the echo nature of the
response explains, to a large extent, the stability of Landau damping over very large
time-scales, thus answering the objection raised by Backus. But on the other hand,
we shall also argue that for any interaction more singular than Coulomb/Newton,
or any regularity lower than analytic, self-induced echoes might win over Landau
damping.

(d) The large-time limit is in general different from the limit predicted by the
linearized equation, and depends on the interaction (more precise statements will
be given in Section 13); still the linearized equation, or higher-order expansions, do
provide a good approximation. We shall also set up a systematic recipe for approx-
imating the large-time limit with arbitrarily high precision as the strength of the
perturbation becomes small. This justifies a posteriori many known computations.

(e) From the point of view of dynamical systems, the nonlinear Vlasov equation
exhibits a truly remarkable behavior. It is not uncommon for a Hamiltonian system
to have many, or even countably many heteroclinic orbits (there are various theories
for this, a popular one being the Melnikov method); but in the present case we see
that heteroclinic/homoclinic orbits13 are so numerous as to fill up a whole neigh-
borhood of the equilibrium. This is possible only because of the infinite-dimensional
nature of the system, and the possibility to work with nonequivalent norms; such
a behavior has already been reported for other systems [45, 46], in relation with
infinite-dimensional KAM theory. To draw a parallel with classical KAM theory,
one may argue that the linearized Vlasov equation is a completely integrable, an-
harmonic phase mixing system, and one step of our result is the preservation of the
phase mixing property under nonlinear perturbation of the interaction. (Although

13Here we use these words just to designate solutions connecting two distinct/equal equilibria,
without any mention of stable or unstable manifolds.
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there is no ergodicity in phase space, the mixing will imply an ergodic behavior for
the spatial density.) In any case, the proof of Theorem 2.5 shares many features
with the proof of the KAM theorem (closest to Kolmogorov’s original version, see
[18] for a complete exposition).

Thus we see that three of the most famous paradoxical phenomena from classical
physics: Landau damping, echoes, and KAM theorem, are intimately related. For
us this was a surprise.

2.5. Main ingredients. Some of our ingredients are similar to those in [13]: in par-
ticular, the use of Fourier transform to quantify analytic regularity and to implement
phase mixing. New ingredients used in our work include

• the introduction of a time-shift parameter to keep memory of the initial time
(Sections 4 and 5), thus getting uniform estimates in spite of the loss of regularity
in large time. We call this the gliding regularity: it shifts in phase space from low
to high modes. Gliding regularity automatically comes with an improvement of the
regularity in x, and a deterioration of the regularity in v, as time passes by.

• “finite-time scattering” at the level of trajectories to reduce the problem to
homogenization of free flow (Section 5) via composition. The physical meaning is
the following: when a background with gliding regularity acts on (say) a plasma,
the trajectories of plasma particles are asymptotic to free transport trajectories.

• the use of carefully designed flexible analytic norms behaving well with respect
to composition (Section 4). This requires care, because analytic norms are very
sensitive to composition, contrary to, say, Sobolev norms.

• new functional inequalities of bilinear type, involving analytic functional spaces,
integration in time and velocity variables, and evolution by free transport (Section
6). These inequalities morally mean the following: when a plasma acts (by forcing)
on a smooth background of particles, the background reacts by lending a bit of
its (gliding) regularity to the plasma, uniformly in time. This most subtle effect,
which is at the heart of Landau’s damping, will be mathematically expressed in the
formalism of analytic norms with gliding regularity.

• a new analysis of the time response associated to the Vlasov–Poisson equation
(Section 7), aimed ultimately at controlling the self-induced echoes of the plasma.

• a Newton iteration scheme, solving the nonlinear evolution problem as a succes-
sion of linear ones (Section 10). Picard iteration schemes still play a role, since they
are run at each step of the iteration process, to estimate the scattering operators.
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It is only in the linear study of Section 3 that the length scale L will play a crucial
role, via the stability condition (L). In all the rest of the paper we shall normalize
L to 1 for simplicity.

2.6. About phase mixing. A physical mechanism transferring energy from large
scales to very fine scales, asymptotically in time, is sometimes called weak turbu-
lence. Phase mixing provides such a mechanism, and in a way our study shows that
the Vlasov–Poisson equation is subject to weak turbulence. But the phase mixing
interpretation provides a more precise picture. While one often sees weak turbulence
as a “cascade” from low to high Fourier modes, the relevant picture would rather
be a two-dimensional figure with an interplay between spatial Fourier modes and
velocity Fourier modes. More precisely, phase mixing transfers the energy from each
nonzero spatial frequency k, to large velocity frequences η, and this transfer occurs
at a speed proportional to k. This picture is clear from the solution of free transport
in Fourier space, and is illustrated in Fig. 3. (Note the resemblance with a shear
flow.) So there is transfer of energy from one variable (here x) to another (here v);
homogenization in the first variable going together with filamentation in the second
one. The same mechanism may also underlie other cases of weak turbulence.

Whether ultimately the high modes are damped by some “random” microscopic
process (collisions, diffusion, . . . ) not described by the Vlasov–Poisson equation
is certainly undisputed in plasma physics [48, Section 41]14, and is the object of
debate in galactic dynamics; anyway this is a different story. Some mathematical
statistical theories of Euler and Vlasov–Poisson equations do postulate the existence
of some small-scale coarse graining mechanism, but resulting in mixing rather than
dissipation [70, 79].

2.7. Why analyticity? For Landau damping there are two basic reasons why the
analyticity is interesting:

• this is the historical assumption used by Landau and made ever since;

• it is mandatory to get the exponential convergence.

While these justifications may seem rather superficial, we shall suggest a much
more fundamental reason for analyticity: in the case of a Coulomb/gravitational
interaction, it is the critical regularity for which Landau damping is stronger than the
“echo” instability. The point is that the nonlinearity of the Vlasov–Poisson equation
may result in a slow growth of all regularity estimates — even measured in gliding

14See [48, Problem 41]: thanks to Landau damping, collisions are expected to smooth the
distribution quite efficiently; this is clearly a hypoelliptic problematic.
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Figure 3. Schematic picture of the evolution of energy by free trans-
port, or perturbation thereof; marks indicate localization of energy in
phase space.
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Figure 4. The distribution function in phase space (position, veloc-
ity) at a given time; notice how the fast oscillations in v contrast with
the small variations in x.
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sense. Due to the oscillatory nature of the problem, the self-interaction manifests
itself not immediately, but only after some time — this is the echo phenomenon —
which depends on the ratio of the frequences involved. For a smooth (say analytic)
interaction, the echoes are well separated, and the expected resulting growth is
slow. But when the interaction is more singular, the echoes become closer to each
other, and estimates are worse; eventually for Coulomb interaction we end up with
an expected exponential growth, that has to be compensated by an exponential
damping. This competition mechanism between nonlinear exponential “echoing”
instability and linear exponential damping stability does not appear to have been
noticed in previous works; in fact the regularity of the interaction potential does not
play any role in linear damping. These suppositions will be explained in more detail
in Section 7; it will be extremely interesting to back them up with counterexamples.
For the moment we claim that unless some new stability effect is identified, there is
no reason to believe in nonlinear Landau damping for, say, gravitational interaction,
in any regularity class lower than analytic.

Because of the same phenomena, one may doubt the possibility of Landau damping
— with any decay rate — in the C∞ class, even for analytic interactions. It is all
the more striking that linear damping does hold in C∞ (with a decay rate O(t−∞)),
or even in Cr for small r.

Between C∞ and analyticity lies the Gevrey regularity. There is no conceptual
problem in adapting our methods to Gevrey regularity, provided that the potential
is less singular than Coulomb (again, there will be a critical Gevrey regularity cor-
responding to the Sobolev regularity of the interaction). Such a study would show
that Landau damping (a) is not tied to analyticity, or even quasi-analyticity, and
in particular covers perturbations that are local in velocity space; (b) applies in sit-
uations where there is no analogue of spectral gap or exponential convergence: for
Gevrey-α regularity (0 < α < 1) the convergence cannot be faster than O(e−λtα).

2.8. Coulomb/Newton interaction. When γ = 1 we do not know whether the
conclusions of Theorem 2.5 apply. This is precisely the most interesting case, both
from the physical point of view (because it corresponds to Coulomb or Newton
interaction, by far the most commonly used) and from the mathematical point of
view (because it is the critical interaction).

However, the constructive nature of the proof of Theorem 2.5 makes it possible
to adapt it and get a conclusion which, although weaker, is still mathematically and
physically relevant: Landau damping holds on extremely long time scales, (almost)
exponentially large in the size of the perturbation. This “quasi-global” proof
of Landau damping is more than sufficient to answer, at least qualitatively, the
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objections raised by Backus [5] on the validity of the linearization. Below is a
precise statement; we use the notation (2.10).

Theorem 2.6 (Nonlinear Landau damping for Coulomb/Newton interaction). Let
f 0 : Rd → R+ be an analytic velocity profile. Let L > 0 and W : Td

L → R be an
interaction potential satisfying

(2.19) ∀ k ∈ Zd, |Ŵ (L)(k)| ≤ CW

|k|2

for some constant CW > 0. Assume that f 0 and W satisfy the stability condition
(L) from Subsection 2.2, with some λ, κ > 0; further assume that, for the same
parameter λ,

∑

n∈Nd
0

λn

n!
‖∇n

vf
0‖L1(Rd) ≤ C0 < +∞.

Then for any 0 < λ′ < λ, β > 0, 0 < µ′ < µ there is ε = ε(d, L, CW , C0, κ, λ, λ
′, µ, µ′, β)

with the following property: if fi is an initial datum satisfying

δ := ‖fi − f 0‖λ,µ +

∫∫

Td
L×Rd

|fi − f 0| eβ|v| dv dx ≤ ε,

and f is the unique classical solution to the nonlinear Vlasov equation with interac-
tion potential W , then ρ(t, x) =

∫
f(t, x, v) dv satisfies, for any r ∈ N,

(2.20) |t| ≤ T exp

(
K

δ
(
log 1

δ

)2

)
=⇒

∥∥ρ(t, · ) − ρ∞
∥∥

Cr ≤ C δ e−λ′|t|,

where ρ∞ = L−d
∫∫

fi dx dv and T,K,C > 0 may depend on d, L, CW , C0, κ, λ, λ
′,

µ, µ′, β, r.

The proof of this theorem will be sketched in Section 12; it relies directly on the
fact that the Newton scheme enjoys a doubly exponential convergence rate.

Remark 2.7. It is not so common that one uses the full strength of the doubly
exponential convergence in the Newton scheme: most of the time (even for the proof
of the KAM theorem) it suffices to know that the convergence is faster than any
exponential. The present example is all the more striking that it is not academic at
all, and that it is associated with Newton’s name in two completely different ways!
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2.9. Further extensions. An extension which looks feasible consists of incorporat-
ing more general interactions, depending not only on the positions but also on the
velocities of particles. Such cases occur notably when magnetic fields are involved,
or when homogeneous equilibria are replaced by so-called BGK equilibria [9]. As we
shall see, there is in principle no obstacle to adapt our methods to such situations.
However, at least for BGK states, we are limited by the poor linear theory: it seems
that no single BGK state is known to be linearly stable (say under perturbations of
the same spatial period as the state). There is a huge literature on BGK equilibria,
in large part speculative, and any progress on this issue would be valuable.

Finally, the ideas introduced in this work can be applied to two-dimensional in-
viscid incompressible fluids. It is well-known that the vorticity formulation of the
two-dimensional Euler equations in a shear flow or in a vortex flow shares common
features with the Vlasov–Poisson equations, and that a phenomenon called “inviscid
damping”, similar to Landau damping could occur. In a work in progress [61] we
shall develop a mathematical theory of the inviscid damping in these regimes.

3. Linear damping

In this section we establish Landau damping for the linearized Vlasov equation.
Beforehand, let us recall that the free transport equation

(3.1)
∂f

∂t
+ v · ∇xf = 0

has a strong mixing property: any solution of (3.1) converges weakly in large time
to a spatially homogeneous distribution equal to the space-averaging of the initial
datum. Let us sketch the proof.

If f solves (3.1) in Td × Rd, with initial datum fi = f(0, ·), then f(t, x, v) =
fi(x− vt, v), so the space-velocity Fourier transform of f is given by the formula

(3.2) f̃(t, k, η) = f̃i(k, η + kt).

On the other hand, if f∞ is defined by

f∞(v) = 〈fi( · , v)〉 =

∫

Td

fi(x, v) dx,

then f̃∞(k, η) = f̃i(0, η) 1k=0. So, by Riemann’s lemma, for any fixed k, η we have
∣∣∣f̃(t, k, η) − f̃∞(k, η)

∣∣∣ −−−→
|t|→∞

0,



ON LANDAU DAMPING 27

which shows that f converges weakly to f∞. The convergence holds as soon as f is
merely integrable; and by (3.2), the rate of convergence is determined by the decay

of f̃i(k, η) as |η| → ∞, or equivalently the smoothness in the velocity variable. In
particular, the convergence is exponentially fast if (and only if) fi(x, v) is analytic
in v.

This argument obviously works independently of the size of the box. But when
we turn to the Vlasov equation, length scales will matter, so we shall introduce a
length L > 0, and work in Td

L = Rd/(LZd). Then the length scale will appear in
the Fourier transform: see Appendix A.3. (This is the only section in this paper
where the scale will play a nontrivial role, so in all the rest of the paper we shall
take L = 1.)

Any velocity distribution f 0 = f 0(v) defines a stationary state for the nonlin-
ear Vlasov equation with interaction potential W . Then the linearization of that
equation around f 0 yields

(3.3)





∂f

∂t
+ v · ∇xf − (∇W ∗ ρ) · ∇vf

0 = 0

ρ =

∫
f dv.

Note that there is no force term in (3.3), due to the fact that f 0 does not depend
on x. This equation describes what happens to a plasma density f which tries to
force a stationary homogeneous background f 0; equivalently, it describes the reaction
exerted by the background which is acted upon.

Theorem 3.1 (Linear Landau damping). Let f 0 = f 0(v), L > 0, W : Td
L → R such

that ‖∇W‖L1 ≤ CW < +∞, and fi(x, v) such that

(i) Condition (L) from Subsection 2.2 holds for some constants λ, κ > 0;

(ii) ∀ η ∈ Rd, |f̃ 0(η)| ≤ C0 e
−2πλ|η|,

(iii) ∀ k ∈ Zd, ∀η ∈ Rd, |f̃ (L)
i (k, η)| ≤ Ci e

−2πα|η| for some constant α > 0.

Then as t → +∞ the solution f(t, ·) to the linearized Vlasov equation (3.3) with
initial datum fi converges weakly to f∞ = 〈fi〉 defined by

f∞(v) =
1

Ld

∫

Td
L

fi(x, v) dx;
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and ρ(x) =

∫
f(x, v) dv converges strongly to the constant

ρ∞ =
1

Ld

∫∫

Td
L×Rd

fi(x, v) dx dv.

More precisely, for any λ′ < min{λ ; α},




∀r ∈ N,
∥∥ρ(t, ·) − ρ∞

∥∥
Cr = O

(
e−

2πλ′

L
|t|)

∀(k, η) ∈ Zd × Zd,
∣∣∣f̃ (L)(t, k, η) − f̃ (L)

∞ (k, η)
∣∣∣ = O

(
e−

2πλ′

L
|kt|).

Remark 3.2. Even if the initial datum is more regular than analytic, the conver-
gence will in general not be better than exponential (except in some exceptional
cases [35]). See [11, pp. 414–416] for an illustration.

Remark 3.3. The fact that the convergence is to the average of the initial datum will
not survive nonlinear perturbation, as shown by the counterexamples in Subsection
13.

Remark 3.4. Dimension does not play any important role in the linear analysis.
This can be attributed to the fact that only longitudinal waves occur, so everything
happens “in the direction of the wave vector”. Transversal waves arise in plasma
physics only when magnetic effects are taken into account [1, Chapter 5].

Remark 3.5. The proof can be adapted to the case when f 0 and fi are only C∞;
then the convergence is not exponential, but still O(t−∞). The regularity can also be
further decreased, down to W s,1, at least for any s > 2; more precisely, if f 0 ∈W s0,1

and fi ∈W si,1 there will be damping with a rate O(t−κ) for any κ < max{s0−2 ; si}.
(Compare with [1, Vol. 1, p. 189].) This is independent of the regularity of the
interaction.

The proof of Theorem 3.1 relies on the following elementary estimate for Volterra
equations. We use the notation of Subsection 2.2.

Lemma 3.6. Assume that (L) holds true for some constants κ, λ > 0, and let

C0 = supη |f̃ 0(η)| e2πλ|η|, CW = ‖W‖L1(Td). Then any solution ϕ(t, k) of

(3.4) ϕ(t, k) = a(t, k) +

∫ t

0

K0(t− τ, k)ϕ(τ, k) dτ
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(where K0 is defined in (2.3)) satisfies, for any k ∈ Zd and any λ′ < λ,

sup
t≥0

(
|ϕ(t, k)| e2πλ′ |k|

L
t
)
≤
[
1 + C0CW C(λ, λ′, κ)

]
sup
t≥0

(
|a(t, k)| e2πλ

|k|
L

t
)
.

Remark 3.7. It has been known since the early days of the theory that the lin-
earized Vlasov equation can be reduced to an infinite system of uncoupled Volterra
equations. It is standard to solve them by Laplace transform; but, with a view to
the nonlinear setting, we shall prefer a more flexible and quantitative approach.

Proof of Lemma 3.6. If k = 0 this is obvious since K0 = 0; so we assume k 6= 0.

Consider λ′ < λ, and multiply (3.4) by e2πλ′ |k|
L

t, and write

Φ(t, k) = ϕ(t, k) e2πλ′ |k|
L

t, A(t, k) = a(t, k) e2πλ′ |k|
L

t;

so (3.4) becomes

(3.5) Φ(t, k) = A(t, k) +

∫ t

0

K0(t− τ, k) e2πλ′ |k|
L

(t−τ) Φ(τ, k) dτ.

A particular case: The proof is extremely simple if we make the stronger assump-
tion ∫ +∞

0

|K0(τ, k)| e2πλ′ |k|
L

τ dτ ≤ 1 − κ, κ ∈ (0, 1) :

then from (3.5),

sup
0≤t≤T

|Φ(t, k)| ≤ sup
0≤t≤T

|A(t, k)|

+ sup
0≤t≤T

(∫ t

0

∣∣K0(t− τ, k)
∣∣ e2πλ′ |k|

L
(t−τ) dτ

)
sup

0≤τ≤T
|Φ(τ, k)|,

whence

sup
0≤τ≤t

|Φ(τ, k)| ≤
sup

0≤τ≤t
|A(τ, k)|

1 −
∫ +∞

0

|K0(τ, k)| e2πλ′ |k|
L

τ dτ

≤
sup

0≤τ≤t
|A(τ, k)|

κ
,

and therefore

sup
t≥0

(
e2πλ′ |k|

L
t|ϕ(t, k)|

)
≤
(

1

κ

)
sup
t≥0

(
|a(t, k)| e2πλ′ |k|

L
t
)
.
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The general case: To treat the general case we take the Fourier transform in the
time variable, after extending K, A and Φ by 0 at negative times. (This presentation
was suggested to us by Sigal, and appears to be technically simpler than the use of
the Laplace transform.) Denoting the Fourier transform with a hat and recalling
(2.4), we have, for ξ = λ′ + iωL/|k|,

Φ̂(ω, k) = Â(ω, k) + L(ξ, k) Φ̂(ω, k).

By assumption L(ξ, k) 6= 1, so

Φ̂(ω, k) =
Â(ω, k)

1 − L(ξ, k)
.

From there, it is traditional to apply the Fourier (or Laplace) inversion transform.
Instead, we apply Plancherel’s identity to find (for each k)

‖Φ‖L2(dt) ≤
‖A‖L2(dt)

κ
;

and then we plug this in the equation (3.5) to get

‖Φ‖L∞(dt) ≤ ‖A‖L∞(dt) + ‖K0 e2πλ′ |k|
L

t‖L2(dt) ‖Φ‖L2(dt)(3.6)

≤ ‖A‖L∞(dt) +

∥∥K0 e2πλ′ |k|
L

t
∥∥

L2(dt)
‖A‖L2(dt)

κ
.

It remains to bound the second term. On the one hand,

‖A‖L2(dt) =

(∫ ∞

0

|a(t, k)|2 e4πλ′ |k|
L

t dt

)1/2

(3.7)

≤
(∫ ∞

0

e−4π(λ−λ′)
|k|
L

t

)1/2

sup
t≥0

(
|a(t, k)| e2πλ

|k|
L

t
)

≤
(

L

4π|k| (λ− λ′)

) 1
2

sup
t≥0

(
|a(t, k)| e2πλ |k|

L
t
)
.

On the other hand,

∥∥K0 e2πλ′ |k|
L

t
∥∥

L2(dt)
= 4π2 |Ŵ (L)(k)| |k|

2

L2

(∫ ∞

0

e4πλ′ |k|
L

t

∣∣∣∣f̃ 0

(
kt

L

)∣∣∣∣
2

t2 dt

)1/2

(3.8)

= 4π2 |Ŵ (L)(k)| |k|
1/2

L1/2

(∫ ∞

0

e4πλ′u |f̃ 0(σ u)|2 u2 du

)1/2

,
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where σ = k/|k|. The estimate follows easily. (Note that the factor |k|−1/2 in (3.7)
cancels with |k|1/2 in (3.8).)

It seems that we only used properties of the function L in a strip ℜξ ≃ λ; but this
is an illusion. Indeed, we have taken the Fourier transform of Φ without checking
that it belongs to (L1 + L2)(dt), so what we have established is only an a priori
estimate. To convert it into a rigorous result, one can use a continuity argument after
replacing λ′ by a parameter α which varies from −ǫ to λ′. (By the integrability of K0

and Gronwall’s lemma, ϕ is obviously bounded as a function of t; so ϕ(k, t) e−ǫ|k|t/L

is integrable for any ǫ > 0, and continuous as ǫ → 0.) Then assumption (L)
guarantees that our bounds are uniform in the strip 0 ≤ ℜξ ≤ λ′, and the proof goes
through. �

Proof of Theorem 3.1. Without loss of generality we consider only t ≥ 0. Consider-
ing (3.3) as a perturbation of free transport, we apply Duhamel’s formula to get

(3.9) f(t, x, v) = fi(x− vt, v) +

∫ t

0

[
(∇W ∗ ρ) · ∇vf

0
](
τ, x− v(t− τ), v

)
dτ.

Integration in v yields

(3.10) ρ(t, x) =

∫

Rd

fi(x−vt, v) dv+
∫ t

0

∫

Rd

[
(∇W ∗ρ)·∇vf

0
](
τ, x−v(t−τ), v

)
dv dτ.

Of course,
∫
ρ(t, x) dx =

∫∫
fi(x, v) dx dv.
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For k 6= 0, taking the Fourier transform of (3.10), we obtain

ρ̂(L)(t, k) =

∫

Td
L

∫

Rd

fi(x− vt, v) e−2iπ k
L
·x dv dx

+

∫ t

0

∫

Td
L

∫

Rd

[
(∇W ∗ ρ) · ∇vf

0
](
τ, x− v(t− τ), v

)
e−2iπ k

L
·x dv dx dτ

=

∫

Td
L

∫

Rd

fi(x, v) e
−2iπ k

L
·x e−2iπ k

L
·vt dv dx

+

∫ t

0

∫

Td
L

∫

Rd

[
(∇W ∗ ρ) · ∇vf

0
]
(τ, x, v) e−2iπ k

L
·x e−2iπ k

L
·v(t−τ) dv dx dτ

= f̃
(L)
i

(
k,
kt

L

)
+

∫ t

0

(∇W ∗ ρ)b(L)(τ, k) · ∇̃vf 0

(
k(t− τ)

L

)
dτ

= f̃
(L)
i

(
k,
kt

L

)
+

∫ t

0

(
2iπ

k

L
Ŵ (L)(k) ρ̂(L)(τ, k)

)
·
(

2iπ
k(t− τ)

L
f̃ 0

(
k(t− τ)

L

))
dτ.

In conclusion, we have established the closed equation on ρ̂(L):

(3.11) ρ̂(L)(t, k) = f̃
(L)
i

(
k,
kt

L

)

− 4π2 Ŵ (L)(k)

∫ t

0

ρ̂(L)(τ, k) f̃ 0

(
k(t− τ)

L

) |k|2
L2

(t− τ) dτ.

Recalling (2.3), this is the same as

ρ̂(L)(t, k) = f̃
(L)
i

(
k,
kt

L

)
+

∫ t

0

K0(t− τ, k) ρ̂(L)(τ, k) dτ.

Without loss of generality, λ ≤ α. By Assumption (L) and Lemma 3.6,
∣∣ρ̂(L)(t, k)

∣∣ ≤ C0CW C(λ, λ′, κ)Ci e
−2π

λ′ |k|
L

t.

In particular, for k 6= 0 we have

∀ t ≥ 1, |ρ̂(L)(t, k)| = O
(
e−

2πλ′′

L
t e−

2π(λ′−λ′′)
L

|k|
)
;

so any Sobolev norm of ρ− ρ∞ converges to zero like O(e−
2πλ′′

L
t), where λ′′ is arbi-

trarily close to λ′ and therefore also to λ. By Sobolev embedding, the same is true
for any Cr norm.
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Next, we go back to (3.9) and take the Fourier transform in both variables x and
v, to find

f̃ (L)(t, k, η) =

∫

Td

∫

Rd

fi(x− vt, v) e−2iπ k
L
·x e−2iπη·v dx dv

+

∫ t

0

∫

Td

∫

Rd

(∇W ∗ ρ)
(
τ, x− v(t− τ)

)
· ∇vf

0(v) e−2iπ k
L
·x e−2iπη·v dx dv dτ

=

∫

Td

∫

Rd

fi(x, v) e
−2iπ k

L
·x e−2iπ k

L
·vt e−2iπη·v dx dv

+

∫ t

0

∫

Td

∫

Rd

(∇W ∗ ρ)(τ, x) · ∇vf
0(v) e−2iπ k

L
·x e−2iπ k

L
·v(t−τ) e−2iπη·v dx dv dτ

= f̃
(L)
i

(
k, η +

kt

L

)
+

∫ t

0

∇̂W (L)
(k) ρ̂(L)(τ, k) · ∇̃vf 0

(
η +

k

L
(t− τ)

)
dτ.

So
(3.12)

f̃ (L)

(
t, k, η − kt

L

)
= f̃

(L)
i (k, η) +

∫ t

0

∇̂W (L)
(k) ρ̂(L)(τ, k) · ∇̃vf 0

(
η − kτ

L

)
dτ.

In particular, for any η ∈ Rd,

(3.13) f̃ (L)(t, 0, η) = f̃
(L)
i (0, η);

in other words, 〈f〉 =
∫
f dx remains equal to 〈fi〉 for all times.

On the other hand, if k 6= 0,

∣∣∣∣f̃ (L)

(
t, k, η − kt

L

)∣∣∣∣ ≤
∣∣f̃ (L)

i (k, η)
∣∣

(3.14)

+

∫ t

0

∣∣∇̂W (L)
(k)
∣∣ ∣∣ρ̂(L)(τ, k)

∣∣
∣∣∣∣∇̃vf 0

(
η − kτ

L

)∣∣∣∣ dτ

≤ Ci e
−2πα|η|

+

∫ t

0

CW C(λ, λ′, κ)Ci e
−2πλ′ |k|

L
τ

(
2πC0

∣∣∣∣η −
kτ

L

∣∣∣∣ e
−2πλ|η− kτ

L |
)
dτ

≤ C

(
e−2πα|η| +

∫ t

0

e−2πλ′ |k|
L

τ e−2π (λ′+λ)
2 |η− kτ

L | dτ
)
,



34 C. MOUHOT AND C. VILLANI

where we have used λ′ < (λ′ + λ)/2 < λ, and C only depends on CW , Ci, λ, λ
′, κ.

In the end,

∫ t

0

e−2πλ′ |k|
L

τ e−2π
(λ′+λ)

2 |η− kτ
L | dτ ≤

∫ t

0

e−2πλ′|η| e−2π
(λ−λ′)

2
|k|
L

τ dτ

≤ L

π(λ− λ′)
e−2πλ′|η|.

Plugging this back in (3.14), we obtain

(3.15)

∣∣∣∣f̃ (L)

(
t, k, η − kt

L

)∣∣∣∣ ≤ C e−2πλ′|η|.

In particular, for any fixed η and k 6= 0,

∣∣f̃ (L)(t, k, η)
∣∣ ≤ C e−2πλ′|η+ kt

L | = O
(
e−2π λ′

L
|t|).

We conclude that f̃ (L) converges pointwise, exponentially fast, to the Fourier trans-
form of 〈fi〉. �

We close this section by proving Proposition 2.1.

Proof of Proposition 2.1. First assume (a). Since f̃ 0 decreases exponentially fast,
we can find λ, κ > 0 such that

4π2 max
∣∣Ŵ (L)(k)

∣∣ sup
|σ|=1

∫ ∞

0

∣∣f̃ 0(rσ)
∣∣ r e2πλr dr ≤ 1 − κ.

Performing the change of variables kt/L = rσ inside the integral, we deduce

∫ ∞

0

4π2 |Ŵ (L)(k)|
∣∣∣∣f̃ 0

(
kt

L

)∣∣∣∣
|k|2 t
L2

e2πλ |k|
L

t dt ≤ 1 − κ,

and this obviously implies (L).
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In case (b) the reasoning is more subtle. First we note that

K0(t, k) = −4π2 Ŵ (k)

∫

Rd

f 0(v) e−2iπ kt
L
·v |k|2
L2

t dv

= −4π2 Ŵ (k)

∫

R

ϕk(v) e
−2iπ

|k|
L

tv |k|2
L2

t dv

= −4π2 |k|2 Ŵ (k) t

L2

∫

R

(
2iπ |k|t
L

)−1

ϕ′
k(v) e

−2iπ |k|
L

tv dv

= 2iπ
|k| Ŵ (k)

L

∫

R

ϕ′
k(v) e

−2iπ
|k|
L

tv dv.

Then, for ξ = γ + iω, using the formula
∫ ∞

0

e−st eiωt dt =
s+ iω

s2 + ω2
,

we get from (2.4)

L(ξ, k) = Ŵ (k)

∫

R

ϕ′
k(v)

[
(v + ω) − iγ

(v + ω)2 + γ2

]
dv.

(To be rigorous, one may first establish this formula for γ < 0, and then use analyt-
icity to derive it for γ ∈ [0, λ).)

As γ → 0, this expression approaches, uniformly in k and ω,

Ŵ (k)

∫
ϕ′

k

v + ω + i 0
dv = Ŵ (k) p.v.

(∫

R

ϕ′
k(v)

v + ω
dv

)
− iπ Ŵ (k)ϕ′

k(ω)

(Plemelj formula for the Cauchy transform). So the imaginary part vanishes only in

the limit Ŵ (k) → 0 (but then also the real part approaches 0), or if |ω| → ∞ (but
then also the real part approaches 0), or ω = 0; but then in the limit

L(0, k) = Ŵ (k)

∫

R

ϕ′
k

v
dv ≤ 0,

so even in this case L cannot approach 1. Case (b) of Proposition 2.1 follows. �

4. Analytic norms

In this section we introduce some functional spaces of analytic functions on Rd,
Td = Rd/Zd, and most importantly Td × Rd. (Changing the sidelength of the torus
will only result in some changes in the constants.) Then we establish a number of
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functional inequalities which will be crucial in the subsequent analysis. At the end
of this section we shall reformulate the linear study in this new setting.

Throughout the whole section d is a positive integer. Working with analytic
functions will force us to be careful with combinatorial issues, and proofs will at
times involve summation over many indices.

4.1. Single-variable analytic norms. Here “single-variable” means that the vari-
able lives in either Rd or Td, but d may be greater than 1. Among many possible
families of norms for analytic functions, two will be of particular interest for us; they
will be denoted by Cλ;p and Fλ;p. The Cλ;p norms are defined for functions on Rd or
Td, while the Fλ;p norms are defined only for Td (although we could easily cook up
a variant in Rd). We shall write Nd

0 for the set of d-tuples of integers (the subscript
being here to insist that 0 is allowed). If n ∈ Nd

0 and λ ≥ 0 we shall write λn = λ|n|.
Conventions about Fourier transform and multidimensional differential calculus are
gathered in the Appendix.

Definition 4.1 (One-variable analytic norms). For any p ∈ [1,∞] and λ ≥ 0, we
define

(4.1) ‖f‖Cλ;p :=
∑

n∈Nd
0

λn

n!
‖f (n)‖Lp; ‖f‖Fλ;p :=

(∑

k∈Zd

e2πλp|k| |f̂(k)|p
)1/p

;

the latter expression standing for supk(e
2πλ|k| |f̂(k)|) if p = ∞. We further write

(4.2) Cλ,∞ = Cλ, Fλ,1 = Fλ.

Remark 4.2. The parameter λ can be interpreted as a radius of convergence.

Remark 4.3. The norms Cλ and Fλ are of particular interest because they are
algebra norms.

We shall sometimes abbreviate ‖ · ‖Cλ;p or ‖ · ‖Fλ;p into ‖ · ‖λ;p when no confusion
is possible, or when the statement works for either.

The norms in (4.1) extend to vector-valued functions in a natural way: if f is

valued in Rd or Td or Zd, define f (n) = (f
(n)
1 , . . . , f

(n)
d ), f̂(k) = (f̂1(k), . . . , f̂d(k));

then the formulas in (4.1) make sense provided that we choose a norm on Rd or Td

or Zd. Which norm we choose will depend on the context; the choice will always be
done in such a way to get the duality right in the inequality |a · b| ≤ ‖a‖ ‖b‖∗. For
instance if f is valued in Zd and g in Td, and we have to estimate f ·g, we may norm
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Zd by |k| =
∑

|ki| and Td by |x| = sup |xi|.15 This will not pose any problem, and
the reader can forget about this issue; we shall just make remarks about it whenever
needed. For the rest of this section, we shall focus on scalar-valued functions for
simplicity of exposition.

Next, we define “homogeneous” analytic seminorms by removing the zero-order
term. We write Nd

∗ = Nd
0 \ {0}, Zd

∗ = Zd \ {0}.
Definition 4.4 (One-variable homogeneous analytic seminorms). For p ∈ [1,∞]
and λ ≥ 0 we write

‖f‖Ċλ;p =
∑

n∈Nd
∗

λn

n!
‖f (n)‖Lp; ‖f‖Ḟλ;p =


∑

k∈Zd
∗

e2πλp|k| |f̂(k)|p



1/p

.

It is interesting to note that affine functions x 7→ a · x + b can be included in
Ċλ = Ċλ;∞, even though they are unbounded; in particular ‖a · x+ b‖Ċλ = λ |a|. On

the other hand, linear forms x 7−→ a ·x do not naturally belong to Ḟλ, because their
Fourier expansion is not even summable (it decays like 1/k).

The spaces Cλ;p and Fλ;p enjoy remarkable properties, summarized in Propositions
4.5, 4.8 and 4.10 below. Some of these properties are well-known, other not so.

Proposition 4.5 (Algebra property). (i) For any λ ≥ 0, and p, q, r ∈ [1,+∞] such
that 1/p+ 1/q = 1/r, we have

‖f g‖Cλ;r ≤ ‖f‖Cλ;p ‖g‖Cλ;q.

(ii) For any λ ≥ 0, and p, q, r ∈ [1,+∞] such that 1/p+ 1/q = 1/r + 1, we have

‖f g‖Fλ;r ≤ ‖f‖Fλ;p ‖g‖Fλ;q .

(iii) As a consequence, for any λ ≥ 0, Cλ = Cλ;∞ and Fλ = Fλ;1 are normed
algebras: for either space,

‖fg‖λ ≤ ‖f‖λ ‖g‖λ.

In particular, ‖fn‖λ ≤ ‖f‖n
λ for any n ∈ N0, and ‖ef‖λ ≤ e‖f‖λ.

Remark 4.6. Ultimately, property (iii) relies on the fact that L∞ and L1 are normed
algebras for the multiplication and convolution, respectively.

15Of course all norms are equivalent, still the choice is not innocent when the estimates are
iterated infinitely many times; an advantage of the supremum norm on Rd is that it has the
algebra property.
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Remark 4.7. It follows from the Fourier inversion formula and Proposition 4.5 that
‖f‖Cλ ≤ ‖f‖Fλ (and ‖f‖Ċλ ≤ ‖f‖Ḟλ); this is a special case of Proposition 4.8 (iv)

below. The reverse inequality does not hold, because ‖f‖∞ does not control ‖f̂‖L1.

Analytic norms are very sensitive to composition; think that if a > 0 then
‖f ◦ (a Id )‖Cλ;p = a−d/p ‖f‖Caλ;p; so we typically lose on the functional space. This is
a major difference with more traditional norms used in partial differential equations
theory, such as Hölder or Sobolev norms, for which composition may affect constants
but not regularity indices. The next proposition controls the loss of regularity im-
plied by composition.

Proposition 4.8 (Composition inequality). (i) For any λ > 0 and any p ∈ [1,+∞],

‖f ◦H‖Cλ;p ≤
∥∥(det∇H)−1

∥∥1/p

∞ ‖f‖Cν;p, ν = ‖H‖Ċλ,

where H is possibly unbounded.
(ii) For any λ > 0, any p ∈ [1,∞] and any a > 0,∥∥∥f ◦ (a Id +G)

∥∥∥
Cλ;p

≤ a−d/p ‖f‖Caλ+ν ;p, ν = ‖G‖Cλ .

(iii) For any λ > 0,∥∥∥f ◦ (Id +G)
∥∥∥
Fλ

≤ ‖f‖Fλ+ν , ν = ‖G‖Ḟλ.

(iv) For any λ > 0 and any a > 0,∥∥∥f ◦ (a Id +G)
∥∥∥
Cλ

≤ ‖f‖Faλ+ν , ν = ‖G‖Ċλ .

Remark 4.9. Inequality (iv), with C on the left and F on the right, will be most
useful. The reverse inequality is not likely to hold, in view of Remark 4.7.

The last property of interest for us is the control of the loss of regularity involved
by differentiation.

Proposition 4.10 (Control of gradients). For any λ > λ, any p ∈ [1,+∞], we have

(4.3) ‖∇f‖Cλ;p ≤
(

1

λe log(λ/λ)

)
‖f‖Ċλ;p;

(4.4) ‖∇f‖Fλ;p ≤
(

1

2πe (λ− λ)

)
‖f‖Ḟλ;p.

The proofs of Propositions 4.5 to 4.10 will be preparations for the more compli-
cated situations considered in the sequel.
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Proof of Proposition 4.5. (i) Denoting by ‖ · ‖λ;p the norm of Cλ;p, using the multi-
dimensional Leibniz formula from Appendix A.2, we have

‖fg‖λ;r =
∑

ℓ∈Nd
0

‖(fg)(ℓ)‖Lr

λℓ

ℓ!
≤
∑

ℓ∈Nd
0

∑

m≤ℓ

( ℓ

m

) ∥∥f (m)g(ℓ−m)
∥∥

Lr

λℓ

ℓ!

≤
∑

ℓ∈Nd
0

∑

m≤ℓ

( ℓ

m

)
‖f (m)‖Lp ‖g(ℓ−m)‖Lq

λℓ

ℓ!

=
∑

ℓ

∑

m

‖f (m)‖Lp λm

m!

‖g(ℓ−m)‖Lq λℓ−m

(ℓ−m)!

= ‖f‖λ;p ‖g‖λ;q.

(ii) Denoting now by ‖ · ‖λ;p the norm of Fλ;p, and applying Young’s convolution
inequality, we get

‖fg‖λ;r =
(∑

|f̂ g(k)|r e2πλr|k|
)1/r

≤
(∑

k

(∑

ℓ

|f̂(ℓ)| |ĝ(k − ℓ)| e2πλ|k−ℓ|e2πλ|ℓ|
)r
)1/r

≤
(∑

k

|f̂(k)|p e2πλp|k−ℓ|

) 1
p
(∑

ℓ

|ĝ(ℓ)|q e2πλq|ℓ|

) 1
q

.

�

Proof of Proposition 4.8. Case (i). We use the (multi-dimensional) Faà di Bruno
formula:

(f ◦H)(n) =
∑

Pn
j=1 j mj=n

n!

m1! . . .mn!

(
f (m1+...+mn) ◦H

) n∏

j=1

(
H(j)

j!

)mj

;

so

∥∥(f ◦H)(n)
∥∥

Lp ≤
∑

Pn
j=1 j mj=n

n!

m1! . . .mn!

∥∥∥f (m1+...+mn) ◦H
∥∥∥

Lp

n∏

j=1

∥∥∥∥
H(j)

j!

∥∥∥∥
mj

∞
;
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thus

∑

n≥1

λn

n!

∥∥(f ◦H)(n)
∥∥

Lp ≤
∥∥(det∇H)−1

∥∥1/p

∞

(
+∞∑

k=1

‖f (k)‖Lp

∑
Pn

j=1 j mj=n,
Pn

j=1 mj=k

λn

m1! . . .mn!

n∏

j=1

∥∥∥∥
H(j)

j!

∥∥∥∥
mj

∞

)

=
∥∥(det∇H)−1

∥∥1/p

∞



∑

k≥1

‖f (k)‖Lp

1

k!


∑

|ℓ|≥1

λℓ

ℓ!
‖H(ℓ)‖∞




k

 ,

where the last step follows from the multidimensional binomial formula.

Case (ii). We decompose h(x) := f(ax+G(x)) as

h(x) =
∑

n∈Nd
0

(f (n))(ax)

n!
G(x)n

and we apply ∇k:

∇kh(x) =
∑

k1+k2=k,∈Nd
0

∑

n∈Nd
0

k! ak1

k1! k2!n!
(∇k1+nf)(ax) (∇k2(Gn))(x).

Then we take the Lp norm, multiply by λk/k! and sum over k:

‖h‖Cλ;p ≤ |a|−d/p
∑

k1,k2,n≥0

λk1+k2 |a|k1

k1! k2!n!
‖∇k1+nf‖Lp

∥∥∇k2(Gn)
∥∥
∞

= |a|−d/p
∑

k1,n≥0

λk1 |a|k1

k1!n!
‖∇k1+nf‖Lp ‖Gn‖Cλ

≤ |a|−d/p
∑

k1,n≥0

λk1 |a|k1

k1!n!
‖∇k1+nf‖Lp ‖G‖n

Cλ

= |a|−d/p
∑

m≥0

(a λ+ ‖G‖Cλ)m

m!
‖∇mf‖Lp,

where Proposition 4.5 (iii) was used in the but-to-last step.



ON LANDAU DAMPING 41

Case (iii). In this case we write, with G0 = Ĝ(0),

h(x) = f(x+G(x)) =
∑

k

f̂(k) e2iπk·x e2iπk·G0 e2iπk·(G(x)−G0);

so
ĥ(ℓ) =

∑

k

f̂(k) e2iπk·G0
[
e2iπk·(G−G0)

]
b

(ℓ− k).

Then (using again Proposition 4.5)
∑

ℓ

|ĥ(ℓ)| e2πλ|ℓ| ≤
∑

k

∑

ℓ

|f̂(k)| e2πλ|k| e2πλ|ℓ−k|
∣∣∣
[
e2iπk·(G−G0)

]
b

(ℓ− k)
∣∣∣

=
∑

k

|f̂(k)| e2πλ|k|
∥∥∥e2iπk·(G−G0)

∥∥∥
λ

≤
∑

k

|f̂(k)| e2πλ|k| e‖2πk·(G−G0)‖λ

≤
∑

k

|f̂(k)| e2πλ|k| e2π|k| ‖G−G0‖λ

= ‖f‖λ+‖G−G0‖λ
= ‖f‖λ+ν , ν = ‖G‖Ḟλ .

Case (iv). We actually have the more precise result

(4.5) ‖f ◦H‖Cλ ≤
∑

|f̂(k)| e2π|k| ‖H‖
Ċλ .

Writing f ◦H =
∑
f̂(k) e2iπk·H , we see that (4.5) follows from

(4.6) ‖eih‖Cλ ≤ e‖h‖Ċλ .

To prove (4.6), let Pn be the polynomial in the variables Xm (m ≤ n) defined by the
identity (ef)(n) = Pn((f

(m))m≤n) ef ; this polynomial (which can be made more ex-
plicit from the Faà di Bruno formula) has nonnegative coefficients, so ‖(eif )(n)‖∞ ≤
Pn((‖f (m)‖)m≤n). The conclusion will follow from the identity (between formal se-
ries!)

(4.7) 1 +
∑

n∈Nd
∗

λn

n!
Pn((Xm)m≤n) = exp


∑

k∈Nd
∗

λk

k!
Xk


 .

To prove (4.7), it is sufficient to note that the left-hand side is the expansion of eg

in powers of λ at 0, where g(λ) =
∑

k∈Nd
∗

λk

k!
Xk. �
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Proof of Proposition 4.10. (a) Writing ‖ · ‖λ;p = ‖ · ‖Cλ;p, we have

‖∂if‖λ;p =
∑

n

λn

n!
‖∂n

x∂if‖Lp,

where ∂i = ∂/∂xi. If 1i is the d-uple of integers with 1 in position i, then (n+1i)! ≤
(|n| + 1)n!, so

‖∂if‖λ;p ≤ sup
n

(
(|n| + 1)λn

λ
n+1

) ∑

|m|≥1

λ
m

m!
‖∇mf‖Lp,

and the proof of (4.3) follows easily.

(b) Writing ‖ · ‖λ;p = ‖ · ‖Fλ;p, we have

‖∂if‖λ;p =

(∑

k

|ki|p |f̂(k)|p e2πλp |k|

)1/p

≤
[
sup
k∈Z

(
|k| e2π(λ−λ) |k|

)] (∑

k∈Zd

|f̂(k)|p e2πλp |k|

)1/p

,

and (4.4) follows. �

4.2. Analytic norms in two variables. To estimate solutions and trajectories of
kinetic equations we will work on the phase space Td

x×Rd
v, and use three parameters:

λ (gliding analytic regularity); µ (analytic regularity in x); and τ (time-shift along
the free transport semigroup). The regularity quantified by λ is said to be gliding
because for τ = 0 this is an analytic regularity in v, but as τ grows the regularity is
progressively transferred from velocity to spatial modes, according to the evolution
by free transport. This catch is crucial to our analysis: indeed, the solution of a
transport equation like free transport or Vlasov cannot be uniformly analytic16 in v
as time goes by — except of course if it is spatially homogeneous. Instead, the best
we can do is compare the solution at time τ to the solution of free transport at the
same time — a kind of scattering point of view.

The parameters λ, µ will be nonnegative; τ will vary in R, but often be restricted
to R+, just because we shall work in positive time. When τ is not specified, this
means τ = 0. Sometimes we shall abuse notation by writing ‖f(x, v)‖ instead of
‖f‖, to stress the dependence of f on the two variables.

16By this we mean of course that some norm or seminorm quantifying the degree of analytic
smoothness in v will remain uniformly bounded.
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Putting aside the time-shift for a moment, we may generalize the norms Cλ and
Fλ in an obvious way:

Definition 4.11 (Two-variables analytic norms). For any λ, µ ≥ 0, we define

(4.8) ‖f‖Cλ,µ =
∑

m∈Nd
0

∑

n∈Nd
0

λn

n!

µm

m!

∥∥∥∇m
x ∇n

vf
∥∥∥

L∞(Td
x×Rd

v)
;

(4.9) ‖f‖Fλ,µ =
∑

k∈Zd

∫

η∈Rd

|f̃(k, η)| e2πλ|η| e2πµ|k| dη.

Of course one might also introduce variants based on Lp or ℓp norms (with two
additional parameters p, q, since one can make different choices for the space and
velocity variables).

The norm (4.9) is better adapted to the periodic nature of the problem, and is very
well suited to estimate solutions of kinetic equations (with fast decay as |v| → ∞);
but in the sequel we shall also have to estimate characteristics (trajectories) which
are unbounded functions of v. We could hope to play with two different families
of norms, but this would entail considerable technical difficulties. Instead, we shall
mix the two recipes to get the following hybrid norm:

Definition 4.12 (Hybrid analytic norms). For any λ, µ ≥ 0, let

(4.10) ‖f‖Zλ,µ =
∑

ℓ∈Zd

∑

n∈Nd
0

λn

n!
e2πµ|ℓ|

∥∥∥∇̂n
vf(ℓ, v)

∥∥∥
L∞(Rd

v)
.

More generally, for any p ∈ [1,∞] we define

(4.11) ‖f‖Zλ,µ;p =
∑

ℓ∈Zd

∑

n∈Nd
0

λn

n!
e2πµ|ℓ|

∥∥∥∇̂n
vf(ℓ, v)

∥∥∥
Lp(Rd

v)
.

Now let us introduce the time-shift τ . We denote by (S0
τ )τ≥0 the geodesic semi-

group: (S0
τ )(x, v) = (x+ vτ, v). Recall that the backward free transport semigroup

is defined by (f ◦ S0
τ )τ≥0, and the forward semigroup by (f ◦ S0

−τ )τ≥0.

Definition 4.13 (Time-shift pure and hybrid analytic norms).

(4.12) ‖f‖Cλ,µ
τ

= ‖f ◦ S0
τ‖Cλ,µ =

∑

m∈Nd
0

∑

n∈Nd
0

λn

n!

µm

m!

∥∥∥∇m
x (∇v + τ∇x)

nf
∥∥∥

L∞(Td
x×Rd

v)
;
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(4.13) ‖f‖Fλ,µ
τ

= ‖f ◦ S0
τ‖Fλ,µ =

∑

k∈Zd

∫

η∈Rd

|f̃(k, η)| e2πλ|kτ+η| e2πµ|k| dη;

(4.14) ‖f‖Zλ,µ
τ

= ‖f ◦ S0
τ‖Zλ,µ =

∑

ℓ∈Zd

∑

n∈Nd
0

λn

n!
e2πµ|ℓ|

∥∥∥(∇v + 2iπτℓ)nf̂(ℓ, v)
∥∥∥

L∞(Rd
v)

;

(4.15) ‖f‖Zλ,µ;p
τ

=
∑

ℓ∈Zd

∑

n∈Nd
0

λn

n!
e2πµ|ℓ|

∥∥∥(∇v + 2iπτℓ)nf̂(ℓ, v)
∥∥∥

Lp(Rd
v)
.

This choice of norms is one of the cornerstones of our analysis: first, because of
their hybrid nature, they will connect well to both periodic (in x) estimates on the
force field, and uniform (in v) estimates on the “scattering transforms” studied in
Section 5. Secondly, they are well-behaved with respect to the properties of free
transport, allowing to keep track of the initial time without needing ridiculous (and
inaccessible) amounts of regularity in x as time goes by. Thirdly, they will satisfy the
algebra property (for p = ∞), the composition inequality and the gradient inequality
(for any p ∈ [1,∞]). Before going on with the proof of these properties, we note the
following alternative representations.

Proposition 4.14. The norm Zλ,µ;p
τ admits the alternative representations:

(4.16) ‖f‖Zλ,µ;p
τ

=
∑

ℓ∈Zd

∑

n∈Nd
0

λn

n!
e2πµ|ℓ|

∥∥∥∇n
v

(
f̂(ℓ, v) e2iπτℓ·v)∥∥∥

Lp(Rd
v)

;

(4.17) ‖f‖Zλ,µ;p
τ

=
∑

n∈Nd
0

λn

n!

∥∥∥
∣∣∣(∇v + τ∇x)

nf
∥∥∥
∣∣∣
µ;p
,

where

(4.18) ‖|g‖|µ;p =
∑

ℓ∈Zd

e2πµ|ℓ| ∥∥ĝ(ℓ, v)
∥∥

Lp(Rd
v)
.

4.3. Relations between functional spaces. The next propositions are easily
checked.

Proposition 4.15. With the notation from Subsection 4.2, for any τ ∈ R,
(i) if f is a function only of x then

‖f‖Cλ,µ
τ

= ‖f‖Cλ|τ |+µ, ‖f‖Fλ,µ
τ

= ‖f‖Zλ,µ
τ

= ‖f‖Fλ|τ |+µ;
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(ii) if f is a function only of v then

‖f‖Cλ,µ;p
τ

= ‖f‖Zλ,µ;p
τ

= ‖f‖Cλ;p, ‖f‖Fλ,µ
τ

= ‖f‖Fλ ;

(iii) for any function f = f(x, v), if 〈 · 〉 stands for spatial average then

‖〈f〉‖Cλ;p ≤ ‖f‖Zλ,µ;p
τ

;

(iv) for any function f = f(x, v),
∥∥∥∥
∫

Rd

f dv

∥∥∥∥
Fλ|τ |+µ

≤ ‖f‖Zλ,µ;1
τ

.

Remark 4.16. Note, in Proposition 4.15, how the regularity in x is improved by
the time-shift.

Proof of Proposition 4.15. Only (iv) requires some explanations. Let ρ(x) =
∫
f(x, v) dv.

Then for any k ∈ Zd,

ρ̂(k) =

∫

Rd

f̂(k, v) dv;

so for any n ∈ Nd
0,

(2iπtk)n ρ̂(k) =

∫
(2iπtk)nf̂(k, v) dv

=

∫
(∇v + 2iπtk)n f̂(k, v) dv.

Recalling the conventions from Appendix A.1 we deduce

∑

k,n

e2πµ|k| |2πλtk|n
n!

|ρ̂(k)| ≤
∑

k,n

e2πµ|k| λ
n

n!

∫ ∣∣∣(∇v + 2iπtk)n f̂(k, v)
∣∣∣ dv

= ‖f‖Zλ,µ;1
t

.

�

Proposition 4.17. With the notation from Subsection 4.2,

λ ≤ λ′, µ ≤ µ′ =⇒ ‖f‖Zλ,µ
τ

≤ ‖f‖Zλ′,µ′
τ

.

Moreover, for τ, τ̄ ∈ R, and any p ∈ [1,∞],

(4.19) ‖f‖Zλ,µ;p
τ

≤ ‖f‖Zλ,µ+λ|τ−τ |;p
τ

.
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Remark 4.18. Note carefully that the spaces Zλ,µ
τ are not ordered with respect

to the parameter τ , which cannot be thought of as a regularity index. We could
dispend with this parameter if we were working in time O(1); but (4.19) is of course
of absolutely no use in the study of large time behavior. This means that errors on
the exponent τ should remain somehow small, in order to be controllable by small
losses on the exponent µ.

Finally we state an easy proposition which follows from the time-invariance of the
free transport equation:

Proposition 4.19. For any X ∈ {C,F ,Z}, and any t, τ ∈ R,

‖f ◦ S0
t ‖Xλ,µ

τ
= ‖f‖Xλ,µ

t+τ
.

Now we shall see that the hybrid norms, and certain variants thereof, enjoy prop-
erties rather similar to those of the single-variable analytic norms studied before.
This will not be very pleasant, and the reader who would like to connect to physical
problems can go directly to Subsection 4.11.

4.4. Injections. In this section we relate Zλ,µ;p
τ norms to more standard norms

entirely based on Fourier space. In the next theorem we write

(4.20) ‖f‖Yλ,µ
τ

= ‖f‖Fλ,µ;∞
τ

= sup
k∈Zd

sup
η∈Rd

e2πµ|k| e2πλ|η+kτ | |f̃(k, η)|.

Theorem 4.20 (Injections between analytic spaces). (i) If λ, µ ≥ 0 and τ ∈ R then

(4.21) ‖f‖Yλ,µ
τ

≤ ‖f‖Zλ,µ;1
τ

.

(ii) If 0 < λ < λ, 0 < µ < µ ≤M , τ ∈ R, then

(4.22) ‖f‖Zλ,µ
τ

≤ C(d, µ)

(λ− λ)d (µ− µ)d
‖f‖Yλ,µ

τ
.

(iii) If 0 < λ < λ ≤ Λ, 0 < µ < µ ≤ M , b ≤ β ≤ B, then there is C =
C(Λ,M, b, B, d) such that

‖f‖Zλ,µ;1
τ

≤ C
1

min{λ−λ ; µ−µ}

(
‖f‖Yλ,µ

τ
+

max

{(∫∫
|f(x, v)| eβ|v| dv dx

)
;
(∫∫

|f(x, v)| eβ|v| dv dx
)2
})

.
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Remark 4.21. The combination of (ii) and (iii), plus elementary Lebesgue inter-
polation, enables to control all norms Zλ,µ;p

τ , 1 ≤ p ≤ ∞.

Proof of Theorem 4.20. By the invariance under the action of free transport, it is
sufficient to do the proof for τ = 0.

By integration by parts in the Fourier transform formula, we have

f̃(k, η) =

∫
f̂(k, v) e−2iπη·v dv =

∫
∇m

v f̂(k, v)
e−2iπη·v

(2iπη)m
dv.

So

|f̃(k, η)| ≤ 1

(2π|η|)m

∫
|∇m

v f̂(k, v)| dv;

and therefore

e2πµ|k| e2πλ|η| |f̃(k, η)| ≤ e2πµ|k|
∑

n

(2πλ)n

n!
|η|n |f̃(k, η)|

≤ e2πµ|k|
∑

n

λn

n!

∫
|∇n

v f̃(k, v)| dv.

This establishes (i).

Next, by differentiating the identity

f̂(k, v) =

∫
f̃(k, η) e2iπη·v dη,

we get

(4.23) ∇m
v f̂(k, v) =

∫
f̃(k, η) (2iπη)m e2iπη·v dη.

Then we deduce (ii) by writing

∑

k,m

e2πµ|k| λ
m

m!
‖∇m

v f̂(k, v)‖L∞(dv)

≤
∑

k

e2πµ|k|
∫
e2πλ|η||f̃(k, η)| dη

≤
(∑

k

e−2π(µ−µ)|k|

)(∫
e−2π(λ−λ)|η| dη

)(
sup
k,η

e2πλ|η| e2πµ|k| |f̃(k, η)|
)
.
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The proof of (iii) is the most tricky. We start again from (4.23), but now we
integrate by parts in the η variable:

(4.24) ∇m
v f̂(k, v) = (−1)q

∫
∇q

η

[
f̃(k, η) (2iπη)m

] e2iπη·v

(2iπv)q
dv,

where q = q(v) is a multi-index to be chosen.
We split Rd

v into 2d disjoint regions ∆(i1, . . . , in), where the ij are distinct indices
in {1, . . . , d}:

∆(I) =
{
v ∈ Rd; |vi| ≥ 1 ∀ i ∈ I, |vi| < 1 ∀ i /∈ I

}
.

If v ∈ ∆(i1, . . . , in) we apply (4.24) with the multi-index q defined by qj = 2 if
j ∈ {i1, . . . , in}, qj = 0 otherwise. This gives
∫

∆(i1,...,in)

|∇m
v f̂(k, v)| dv ≤

(
1

(2π)2n

∫

∆(i1,...,in)

dvi1 . . . dvin

|vi1 |2 . . . |vin|2
)

sup
k,η

∣∣∣∇q
η

[
f̃(k, η) (2iπη)m

]∣∣∣.

Summing up all pieces and using the Leibniz formula, we get
∫

|∇m
v f̂(k, v)| dv ≤ C(d)(1 +m2d) sup

k,η
sup
|q|≤2d

|∇q
ηf̃(k, η)| |2πη|m−q.

At this point we apply Lemma 4.22 below with

ε =
1

4
min

{
λ− λ

λ
;
µ− µ

µ

}
,

and we get, for q ≤ 2d,

|∇q
ηf̃(k, η)| ≤ C(d)

max
n

λ
λ−λ

; µ
µ−µ

o

K(b, B) e−2π λ+λ̄
2

|η|

(
sup

η
e2πλ|η||f̃(k, η)|

)1−ε

max





(
sup
ℓ,η

βℓ ‖∇ℓ
ηf̃‖∞
ℓ!

)ε

;

(
sup
ℓ,η

βℓ ‖∇ℓ
ηf̃‖∞
ℓ!

)2ε


 .

Of course,

βℓ |∇ℓ
ηf̃(k, η)|
ℓ!

≤ (2πβ)ℓ

∫

Rd

|f̂(k, v)| |v|
ℓ

ℓ!
dv

≤
∫

Rd

|f(x, v)| (2πβ)ℓ |v|ℓ
ℓ!

dv ≤
∫

Rd

|f(x, v)| e2πβ|v| dv.
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So, all in all,

∑

k,m

e2πµ|k| λ
m

m!

∫
|∇m

v f̂(k, v)| dv

≤
∑

|q|≤2d

C(d,Λ,M, b, B)
1

min{λ−λ ; µ−µ}

sup
η∈Rd

(
e−2π λ+λ̄

2
|η|
∑

m

λm(1 +m)2d |2πη|m−q

m!

) (∑

k

e−2π(µ(1−ε)−µ)|k|

)

(
sup
k,η

e2πµ|k| e2πλ|η| |f̃(k, η)|
)1−ε

max

{(∫

Rd

|f(x, v)| eβ|v| dv

)ε

;

(∫

Rd

|f(x, v)| eβ|v| dv

)2ε
}
.

Since
∑

m

λm(1 +m)2d |2πη|m−q

m!
≤ C(q,Λ) e2π λ+λ

2
|η|

and ∑

k

e−2π(µ(1−ε)−µ)|k| ≤
∑

k

e−π(µ−µ)|k| ≤ C/(µ− µ)d,

we easily end up with the desired result. �

Lemma 4.22. Let f : Rd → C, and let α > 0, A ≥ 1, q ∈ Nd
0. Let β such that

0 < b ≤ β ≤ B. If |f(x)| ≤ Ae−α|x| for all x, then for any ε ∈ (0, 1/4) one has

|∇qf(x)| ≤ C(q, d)
1
ε K(b, B)A1−ε e−(1−2ε)α|x|

sup
r∈Nd

0

max

{(
βr ‖∇rf‖∞

r!

)ε

;

(
βr ‖∇rf‖∞

r!

)2ε
}
.

Remark 4.23. One may conjecture that the optimal constant is in fact polyno-
mial in 1/ε; then the constants in Theorem 4.20 (iii) can be improved accordingly.
Mironescu communicated to us a derivation of polynomial bounds for the optimal
constant in the related interpolation inequality

‖f (k)‖L∞(R) ≤ C(k) ‖f‖1/(k+2)

L1(R) ‖f (k+1)‖(k+1)/(k+2)
L∞(R) ,

based on a real interpolation method.
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Proof of Lemma 4.22. Let us first see f as a function of x1, and treat x′ = (x2, . . . , xd)
as a parameter. Thus the assumption is |f(x1, x

′)| ≤ (Ae−α|x′|) e−α|x1|. By a more
or less standard interpolation inequality [20, Lemma A.1],

(4.25) |∂1f(x1, x
′)| ≤ 2

√
Ae−α|x′|

√
e−α|x1| ‖∂2

1f(x1, x
′)‖

1
2∞ = 2

√
Ae−α|x|

√
‖∂2

1f‖∞.
Let Cq1,r1 be the optimal constant (not smaller than 1) such that

(4.26) |∂q1

1 f(x1, x
′)| ≤ Cq1,r1 (Ae−α|x|)

1− q1
r1 ‖∂r1

r f(x1, x
′)‖

q1
r1∞ .

By iterating (4.25), we find Cq1,r1 ≤ 2
√
Cq1−1,r1 Cq1+1,r1 . It follows by induction that

Cq,r ≤ 2q(r−q).

Next, using (4.26) and interpolating according to the second variable x2 as in
(4.25), we get

|∂q2
2 ∂

q1
1 f(x)| ≤ Cq2,r2

(
Cq1,r1 (Ae−α|x|)

1− q1
r1 ‖∂r1

1 f‖
q1
r1∞
)1− q2

r2 ‖∂r2
2 ∂

q1
1 f‖

q2
r2∞

≤ Cq1,r1 Cq2,r2 (Ae−α|x|)
(1− q1

r1
)(1− q2

r2
) ‖∂r1

1 f‖
q1
r1

(1− q2
r2

)

∞ ‖∂r2
2 ∂

q1
1 f‖

q2
r2∞ .

We repeat this until we get

(4.27) |∇qf(x)| ≤ (Cq1,r1 . . . Cqd,rd
) (Ae−α|x|)

(1− q1
r1

)...(1− qd
rd

)

‖∂r1
1 f‖

q1
r1

(1− q2
r2

)...(1− qd
rd

)

∞ ‖∂q1

1 ∂
r2
2 f‖

q2
r2

(1− q3
r3

)...(1− qd
rd

)
. . . ‖∂q1

1 ∂
q2

2 . . . ∂
qd−1

d−1 ∂
rd
d f‖

qd
rd .

Choose ri (1 ≤ i ≤ d) in such a way that

ε

d
≤ qi
ri

≤ 2ε

d
;

this is always possible for ε < d/4. Then Cqi,ri
≤ (2dq2

i )1/ε, and (4.27) implies

|∇qf(x)| ≤ (2d|q|2)1/ε (Ae−α|x|)1−ε max
s≤r+q

{
‖∇sf‖ε

∞ ; ‖∇sf‖2ε
∞
}
.

Then, since 2(r+ q)ε ≤ 3dq we have, by a crude application of Stirling’s formula (in
quantitative form), for s ≤ r + q,

‖∇sf‖ε
∞ ≤

(
βs ‖∇sf‖∞

s!

)ε (
s!

βs

)ε

≤
(

sup
n

βn ‖∇nf‖∞
n!

)ε

C(β, q, d) ε−3dq,
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and the result follows easily. �

4.5. Algebra property in two variables. In this section we only consider the
norms Zλ,µ;p

τ ; but similar results would hold true for the two-variables C and F
spaces, and could be proven with the same method as those used for the one-variable
spaces Fλ and Cλ respectively (note that the Leibniz formula still applies because
∇x and (∇v + τ∇x) commute).

Proposition 4.24. (i) For any λ, µ ≥ 0, τ ∈ R and p, q, r ∈ [1,+∞] such that
1/p+ 1/q = 1/r, we have

‖f g‖Zλ,µ;r
τ

≤ ‖f‖Zλ,µ;p
τ

‖g‖Zλ,µ;q
τ

.

(ii) As a consequence, Zλ,µ
τ = Zλ,µ;∞

τ is a normed algebra:

‖fg‖Zλ,µ
τ

≤ ‖f‖Zλ,µ
τ

‖g‖Zλ,µ
τ
.

In particular, ‖fn‖Zλ,µ
τ

≤ ‖f‖n
Zλ,µ

τ
for any n ∈ N0, and ‖ef‖Zλ,µ

τ
≤ e

‖f‖
Z

λ,µ
τ .

Proof of Proposition 4.24. First we note that (with the notation (4.18)) ‖| · ‖|µ;r sat-
isfies the “(p, q, r) property”: whenever p, q, r ∈ [1,+∞] satisfy 1/p+ 1/q = 1/r, we
have

‖|fg‖|µ;r =
∑

ℓ∈Zd

e2πµ|ℓ| ‖f̂ g(ℓ, · )‖Lr(Rd
v)

=
∑

ℓ∈Zd

e2πµ|ℓ|
∥∥∥
∑

k

f̂(k, · ) ĝ(ℓ− k, · )
∥∥∥

Lr(Rd
v)

≤
∑

ℓ∈Zd

∑

k∈Zd

e2πµ|k| e2πµ|ℓ−k| ‖f̂(k, · )‖Lp(Rd
v) ‖ĝ(ℓ− k, · )‖Lq(Rd

v)

= ‖|f‖|µ;p ‖|g‖|µ;q.
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Next, we write

‖|fg‖|Zλ,µ;r
τ

=
∑

n∈Nd
0

λn

n!
‖|(∇v + τ∇x)

n(fg)‖|µ;r

=
∑

n

λn

n!

∥∥∥
∣∣∣
∑

m≤n

( n

m

)
(∇v + τ∇x)

mf (∇v + τ∇x)
n−mg

∥∥∥
∣∣∣
µ;r

≤
∑

n

λn

n!

∑

m≤n

( n

m

)
‖|(∇v + τ∇x)

mf‖|µ;p ‖|(∇v + τ∇x)
n−mg‖|µ;q

=

(∑

m

λm

m!
‖|(∇v + τ∇x)

mf‖|µ;p

) (∑

ℓ

λℓ

ℓ!
‖|(∇v + τ∇x)

ℓf‖|µ;q

)

= ‖|f‖|Zλ,µ;p
τ

‖|g‖|Zλ,µ;q
τ

.

(We could also reduce to τ = 0 by means of Proposition 4.19.) �

4.6. Composition inequality.

Proposition 4.25 (Composition inequality in two variables). For any λ, µ ≥ 0 and
any p ∈ [1,∞], τ ∈ R, a ∈ R \ {0}, b ∈ R,

(4.28)
∥∥∥f
(
x+ bv +X(x, v), av + V (x, v)

)∥∥∥
Zλ,µ;p

τ

≤ |a|−d/p ‖f‖Zα,β;p
σ

,

where

(4.29) α = λ|a| + ‖V ‖Zλ,µ
τ
, β = µ+ λ |b+ τ − aσ| + ‖X − σV ‖Zλ,µ

τ
.

Remark 4.26. The norms in (4.29) for X and V have to be based on L∞, not just
any Lp. Also note: the fact that the second argument of f has the form av+V (and
not av + cx+ V ) is related to Remark 4.7.

Proof of Proposition 4.25. The proof is a combination of the arguments in Proposi-
tion 4.8. In a first step, we do it for the case τ = σ = 0, and we write ‖ · ‖λ,µ;p =
‖ · ‖Zλ,µ;p

0
.
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From the expansion f(x, v) =
∑
f̂(k, v) e2iπk·x we deduce

h(x, v) := f
(
x+ bv +X(x, v), av + V (x, v)

)

=
∑

k

f̂(k, av + V ) e2iπk·(x+bv+X)

=
∑

k

∑

m

∇m
v f̂(k, av) · V

m

m!
e2iπk·x e2iπk·bv e2iπk·X .

Taking the Fourier transform in x, we see that for any ℓ ∈ Zd,

ĥ(ℓ, v) =
∑

k

∑

m

∇m
v f̂(k, av) e2iπk·bv

∑

j

(V m)b(j)

m!
(e2iπk·X)b(ℓ− k − j).

Differentiating n times via the Leibniz formula (here applied to a product of four
functions), we get

∇n
v ĥ(ℓ, v) =

∑

k,m,j

∑

n1+n2+n3+n4=n

n! an1

n1!n2!n3!n4!
∇m+n1

v f̂(k, av)

∇n2
v (V m)b(j)

m!
∇n3

v

(
e2iπk·X)b(ℓ− k − j) (2iπbk)n4 e2iπk·bv.
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Multiplying by λn e2πµ|ℓ|/n! and summing over n and ℓ, taking Lp norms and using
‖fg‖Lp ≤ ‖f‖Lp‖g‖L∞, we finally obtain

‖h‖λ,µ ≤ |a|−d/p
∑

k,j,ℓ∈Zd
0; m,n, n1+n2+n3+n4=n≥0

λn e2πµ|ℓ||a|n1

n1!n2!n3!n4!

∥∥∇m+n1
v f̂(k, ·)

∥∥
Lp

∥∥∥∥
∇n2

v (V m)b(j)

m!

∥∥∥∥
∞

∥∥∥∇n3
v (e2iπk·X)b(ℓ− k − j)

∥∥∥
∞

(2π|b| |k|)n4

= |a|−d/p
∑

k,j,ℓ∈Zd
0, m,n1,n2,n3,n4≥0

λn1+n2+n3+n4 e2πµ|k| e2πµ|j| e2πµ|ℓ−k−j| |a|n1

n1!n2!n3!n4!
‖∇m+n1

v f̂(k, ·)‖Lp

∥∥∥∥
∇n2

v (V m)b(j)

m!

∥∥∥∥
∞

∥∥∥∇n3
v (e2iπk·X)b(ℓ− k − j)

∥∥∥
∞

(2π|b| |k|)n4

≤ |a|−d/p
∑

k,n1,m

λn1|a|n1

n1!

∥∥∇n1+m
v f̂(k, ·)

∥∥
Lp e

2πµ|k|

(
1

m!

∑

n2,j

λn2

n2!
e2πµ|j| ‖∇n2

v (V m)b(j)‖∞
)

(∑

n3,h

λn3

n3!
e2πµ|h| ∥∥∇n3

v (e2iπk·X)b(h)
∥∥
∞

) (∑

n4

(2πλ|b||k|)n4

n4!

)

= |a|−d/p
∑

k,p,m

(λ|a|)n1

n1!
e2πµ|k| ∥∥∇n1+m

v f̂(k, ·)‖Lp

‖V m‖λ,µ

m!

∥∥e2iπk·X‖λ,µ e
2πλ|b||k|

≤ |a|−d/p
∑

k,n1,m

(λ|a|)n1

n1!
e2π(µ+λ|b|)|k| ∥∥∇n1+m

v f̂(k, ·)
∥∥

Lp

‖V ‖m
λ,µ

m!
e2π|k| ‖X‖λ,µ

= |a|−d/p
∑

k,n

1

n!

(
λ|a| + ‖V ‖λ,µ

)n ∥∥∇n
v f̂(k, ·)

∥∥
Lp e

2π|k|(µ+λ|b|+‖X‖λ,µ)

= |a|−d/p ‖f‖λ|a|+‖V ‖λ,µ, µ+λ|b|+‖X‖λ,µ
.
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Now we generalize this to arbitrary values of σ and τ : by Proposition 4.19,
∥∥∥f
(
x+ bv +X(x, v), av + V (x, v)

)∥∥∥
Zλ,µ;p

τ

=
∥∥∥f
(
x+ v(b+ τ) +X(x+ vτ, v), av + V (x+ vτ, v)

)∥∥∥
Zλ,µ;p

=
∥∥∥f ◦ S0

σ ◦ S0
−σ

(
x+ v(b+ τ) +X(x+ vτ, v), av + V (x+ vτ, v)

)∥∥∥
Zλ,µ;p

=
∥∥∥(f ◦ S0

σ)
(
x+ v(b+ τ − aσ) + (X − σV )(x+ vτ, v), av + V (x+ vτ, v)

)∥∥∥
Zλ,µ;p

=
∥∥∥(f ◦ S0

σ)
(
x+ v(b+ τ − aσ) + Y (x, v), av +W (x, v)

)∥∥∥
Zλ,µ;p

,

where

W (x, v) = V ◦ S0
τ (x, v), Y (x, v) = (X − σV ) ◦ S0

τ (x, v).

Applying the result for τ = 0, we deduce that the norm of h(x, v) = f(x + bv +
X(x, v), av + V (x, v)) in Zλ,µ

τ is bounded by

‖f ◦ S0
σ‖Zα,β;p = ‖f‖Zα,β;p

σ
,

where

α = λ|a| + ‖V ◦ S0
τ‖Zλ,µ = |a|λ+ ‖V ‖Zλ,µ

τ
,

and

β = µ+ λ|b+ τ − aσ| + ‖(X − σV ) ◦ S0
τ‖Zλ,µ = µ+ λ|b+ τ − aσ| + ‖X − σV ‖Zλ,µ

τ
.

This establishes the desired bound. �

4.7. Gradient inequality. In the next proposition we shall write

(4.30) ‖f‖Żλ,µ
τ

=
∑

ℓ∈Zd\{0}

∑

n∈Nd
0

λn

n!
e2πµ|ℓ|

∥∥∥(∇v + 2iπτℓ)nf̂(ℓ, v)
∥∥∥

L∞(Rd
v)
.

This is again a homogeneous (in the x variable) seminorm.

Proposition 4.27. For λ > λ ≥ 0, µ > µ ≥ 0, we have the functional inequalities

‖∇xf‖Zλ,µ;p
τ

≤ C(d)

(µ− µ)
‖f‖Żλ,µ;p

τ
;

∥∥(∇v + τ∇x)f
∥∥
Zλ,µ;p

τ
≤ C(d)

λ log(λ/λ)
‖f‖Zλ,µ;p

τ
.
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In particular, for τ ≥ 0 we have

‖∇vf‖Zλ,µ;p
τ

≤ C(d)

[(
1

λ log(λ/λ)

)
‖f‖Zλ,µ;p

τ
+

(
τ

(µ− µ)

)
‖f‖Żλ,µ;p

τ

]
.

The proof is similar to the proof of Proposition 4.10; the constant C(d) arises in
the choice of norm on Rd. As a consequence, if 1 < λ/λ ≤ 2, we have e.g. the bound

‖∇f‖Zλ,µ;p
τ

≤ C(d)

(
1

λ− λ
+

1 + τ

µ− µ

)
‖f‖Zλ,µ;p

τ
.

4.8. Inversion. From the composition inequality follows an inversion estimate.

Proposition 4.28 (Inversion inequality). (i) Let λ, µ ≥ 0, τ ∈ R, and F : Td×Rd →
Td × Rd. Then there is ε = ε(d) such that if F satisfies

‖∇(F − Id )‖Zλ′,µ′
τ

≤ ε(d),

where
λ′ = λ+ 2‖F − Id ‖Zλ,µ

τ
, µ′ = µ+ 2(1 + |τ |) ‖F − Id ‖Zλ,µ

τ
,

then F is invertible and

(4.31) ‖F−1 − Id ‖Zλ,µ
τ

≤ 2 ‖F − Id ‖Zλ,µ
τ
.

(ii) More generally, if F and G are functions Td × Rd → Td × Rd such that

(4.32) ‖∇(F − Id )‖Zλ′,µ′
τ

≤ ε(d),

where
λ′ = λ+ 2‖F −G‖Zλ,µ

τ
, µ′ = µ+ 2(1 + |τ |) ‖F −G‖Zλ,µ

τ
,

then F is invertible and

(4.33) ‖F−1 ◦G− Id ‖Zλ,µ
τ

≤ 2 ‖F −G‖Zλ,µ
τ
.

Remark 4.29. As could be expected, the conditions become very stringent as τ
becomes large: basically, F − Id (or F − G in case (ii)) should be of order o(1/τ)
for Proposition 4.28 to be applicable.

Remark 4.30. By Proposition 4.27, a sufficient condition for (4.32) to hold is that
there be λ′′, µ′′ such that λ ≤ λ′′ ≤ 2λ, µ ≤ µ′′, and

‖F − Id ‖Zλ′′,µ′′
τ

≤ ε′(d)

1 + τ
min{λ′′ − λ′ ; µ′′ − µ′}.

However, this condition is in practice hard to fulfill.
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Proof of Proposition 4.28. We prove only (ii), of which (i) is a particular case. Let
f = F − Id , h = F−1 ◦G− Id , g = G− Id , so that Id + g = (Id + f) ◦ (Id + h), or
equivalently

h = g − f ◦ (Id + h).

So h is a

Φ : Z 7−→ g − f ◦ (Id + Z).

Note that Φ(0) = g − f . If Φ is (1/2)-Lipschitz on the ball B(0, 2‖f − g‖) in Zλ,µ
τ ,

then (4.33) will follow by fixed point iteration as in Theorem A.2.

So let Z, Z̃ be given with

‖Z‖Zλ,µ
τ
, ‖Z̃‖Zλ,µ

τ
≤ 2‖f − g‖Zλ,µ

τ
.

We have

Φ(Z) − Φ(Z̃) = f(Id + Z̃) − f(Id + Z)

=

(∫ 1

0

∇f
(
Id + (1 − θ)Z + θZ̃

)
dθ

)
· (Z̃ − Z).

By Proposition 4.24,

‖Φ(Z) − Φ(Z̃)‖Zλ,µ
τ

≤
(∫ 1

0

∥∥∥∇f
(
Id + (1 − θ)Z + θZ̃

)∥∥∥
Zλ,µ

τ

dθ

)
‖Z̃ − Z‖Zλ,µ

τ
.

For any θ ∈ [0, 1], by Proposition 4.25,
∥∥∥∇f

(
Id + (1 − θ)Z + θZ̃

)∥∥∥
Zλ,µ

τ

≤ ‖∇f‖Zbλ,bµ
τ
,

where

λ̂ = λ+ max{‖Z‖ ; ‖Z̃‖} ≤ λ+ 2‖f − g‖Zλ,µ
τ

and (writing Z = (Zx, Zv), Z̃ = (Z̃x, Z̃v))

µ̂ = µ+ max
{
‖Zx − τZv‖ ; ‖Z̃x − τZ̃v‖

}
≤ µ+ 2(1 + |τ |) ‖f − g‖Zλ,µ

τ
.

If F and G satisfy the assumptions of Proposition 4.28, we deduce that

‖Φ‖Lip(B(0,2)) ≤ C(d) ε(d),

and this is bounded above by 1/2 if ε(d) is small enough. �
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4.9. Sobolev corrections. We shall need to quantify Sobolev regularity corrections
to the analytic regularity, in the x variable.

Definition 4.31 (Hybrid analytic norms with Sobolev corrections). For λ, µ, γ ≥ 0,
τ ∈ R, p ∈ [1,∞], we define

‖f‖Zλ,(µ,γ);p
τ

=
∑

ℓ∈Zd

∑

n∈Nd
0

λn

n!
e2πµ|ℓ| (1 + |ℓ|)γ

∥∥(∇v + 2iπτℓ)n f̂(ℓ, v)
∥∥

Lp(Rd
v)

;

‖f‖Fλ,γ =
∑

k∈Zd

e2πλ|k| (1 + |k|)γ |f̂(k)|.

Proposition 4.32. Let λ, µ, γ ≥ 0, τ ∈ R and p ∈ [1,+∞]. We have the following
functional inequalities:

(i) ‖f‖Zλ,(µ,γ);p
t+τ

= ‖f ◦ S0
t ‖Zλ,(µ,γ);p

τ
;

(ii) 1/p+ 1/q = 1/r =⇒ ‖fg‖Zλ,(µ,γ);r
τ

≤ ‖f‖Zλ,(µ,γ);p
τ

‖g‖Zλ,(µ,γ);q
τ

and therefore in

particular Zλ,(µ,γ)
τ = Zλ,(µ,γ);∞

τ is a normed algebra;

(iii) If f depends only on x then ‖f‖Zλ,(µ,γ)
τ

= ‖f‖Fλ|τ |+µ,γ ;

(iv) ‖f‖Zλ,(µ,γ);p
τ

≤ ‖f‖Zλ,(µ+λ|τ−τ|,γ);p
τ

;

(v) for any σ ∈ R, a ∈ R \ {0}, b ∈ R, p ∈ [1,∞],
∥∥∥f
(
x+ bv +X(x, v), av + V (x, v)

)∥∥∥
Zλ,(µ,γ);p

τ

≤ |a|−d/p ‖f‖Zα,(β,γ);p
σ

,

where α = λ|a| + ‖V ‖Zλ,(µ,γ)
τ

and β = µ+ λ|b+ τ − aσ| + ‖X − σV ‖Zλ,(µ,γ)
τ

.

(vi) Gradient inequality:

‖∇xf‖Zλ,(µ,γ);p
τ

≤ C(d)

µ− µ
‖f‖Zλ,(µ,γ);p

τ
,

‖∇f‖Zλ,(µ,γ);p
τ

≤ C(d)

(
1

λ− λ
+

1 + τ

µ− µ

)
‖f‖Zλ,(µ,γ);p

τ
.

(vii) Inversion: If F and G are functions Td × Rd → Td × Rd such that

‖∇(F − Id )‖Zλ′,(µ′,γ)
τ

≤ ε(d),

where

λ′ = λ+ 2‖F −G‖Zλ,(µ,γ)
τ

, µ′ = µ+ 2(1 + |τ |) ‖F −G‖Zλ,(µ,γ)
τ

,
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then

(4.34) ‖F−1 ◦G− Id ‖Zλ,(µ,γ)
τ

≤ 2 ‖F −G‖Zλ,(µ,γ)
τ

.

Proof of Proposition 4.32. The proofs are the same as for the “plain” hybrid norms;
the only noticeable point is that for the proof of (ii) we use, in addition to e2πλ|k| ≤
e2πλ|k−ℓ| e2πλ|ℓ|, the inequality

(1 + |k|)γ ≤ (1 + |k − ℓ|)γ (1 + |ℓ|)γ.

�

Remark 4.33. Of course, some of the estimates in Proposition 4.32 can be “im-
proved” by taking advantage of γ; e.g. for γ ≥ 1 we have

‖∇xf‖Zλ,µ;p
τ

≤ C(d) ‖f‖Zλ,(µ,γ);p
τ

.

4.10. Two-shift hybrid norms. Our norms can be further refined by using two
(or more) different time shifts. While this can be avoided for the proof of our
main result, it played a crucial role in a preliminary version of this paper, and has
independent interest because it provides more flexibility. We shall illustrate this in
Section 6.

Definition 4.34 (Two-shift hybrid analytic norms with Sobolev correction). Let

λ, µ, γ ≥ 0, τ ∈ R and p ∈ [1,+∞]. We define the space Z(λ,λ′),(µ,γ);p
(τ,τ ′) by

(4.35) ‖f‖Z(λ,λ′),(µ,γ);p

(τ,τ ′)

=

∑

k

∑

n,n′∈Nd
0

e2πµ|k| (1 + |k|)γ

n!n′!

∥∥∥
[
λ(∇v + 2iπτk)

]n [
λ′(∇v + 2iπτ ′k)

]n′

ĝ(k, v)
∥∥∥

Lp(dv)
.

As before, the case p = ∞ will be simply denoted by Z(λ,λ′),(µ,γ)
(τ,τ ′) , and the case

τ = τ ′ = 0 by Z(λ,λ′),(µ,γ);p.

Remark 4.35. If τ = τ ′ we can apply the formula
∑

n+n′=m

( m

n

)
λn(λ′)n′

= (λ+ λ′)m

to see that the above space reduces to Zλ+λ′,(µ,γ);p
τ . Further note that if in (4.35) we

had exchanged
∑

n+n′=m with the Lp norm, by the formula
∑

n+n′=m

( m

n

)(
λ∇v + 2iπλτk

)n(
λ′∇v + 2iπλ′τ ′k

)n′

=
(
(λ+ λ′)∇v + 2iπ(λτ + λ′τ ′)

)n
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the resulting space would be just Zλ,(µ,γ);p
τ , with

λ = λ+ λ′; τ =
λτ + λ′τ ′

λ+ λ′
.

These two-shift hybrid norms do not in general reduce to the previous single-time-
shift hybrid norms. Even if their interpretation in terms of the transport semigroup
is not so easy, we have

(4.36) ‖f‖Z(λ,λ′),(µ,γ);p

(τ,τ ′)

=
∑

n,n′∈Nd
0

1

n!n′!

∥∥∥
∣∣∣(λ∇v)

nS∗
τ−τ ′(λ′∇v)

n′

S∗
τ ′f
∥∥∥
∣∣∣
µ;p

where S∗
τf = f ◦ S0

τ is the pullback of f by the characteristics of the free transport;
or equivalently the evolution of f by the backward free transport semigroup.

Variants of the estimates which we established for the hybrid norms remain valid
(although with a more tricky proof) for the two-shift hybrid norms. Let us establish

Proposition 4.36. Let λ, λ′, µ, γ ≥ 0, τ, τ ′ ∈ R and p ∈ [1,+∞]. We have the
following functional inequalities:

(i) ‖f‖Z(λ,λ′),(µ,γ);p

(t+τ,t+τ ′)

=
∥∥∥f ◦ S0

t

∥∥∥
Z(λ,λ′),(µ,γ);p

(τ,τ ′)

;

(ii) For any p, q, r ∈ [1,+∞] such that 1/p+ 1/q = 1/r, we have∥∥f g
∥∥
Z(λ,λ′),(µ,γ);r

(τ,τ ′)

≤
∥∥f
∥∥
Z(λ,λ′),(µ,γ);p

(τ,τ ′)

∥∥g
∥∥
Z(λ,λ′),(µ,γ);q

(τ,τ ′)

and therefore in particular the spaces Z(λ,λ′),(µ,γ)
(τ,τ ′) are normed algebras;

(iii) If f depends only on x then

‖f‖Z(λ,λ′),(µ,γ)

(τ,τ ′)

= ‖f‖Fλ|τ |+λ′|τ ′|+µ,γ ;

(iv) Change of time-shifts:∥∥f
∥∥
Z(λ,λ′),(µ,γ);p

(τ̄ ,τ̄ ′)

≤
∥∥f
∥∥
Z(λ,λ′),(µ+λ|τ−τ̄|+λ′|τ ′−τ̄ ′|,γ);p

(τ,τ ′)

and in particular ∥∥f
∥∥
Z(λ,λ′),(µ,γ);p

(τ,τ ′)

≤
∥∥f
∥∥
Z(λ,λ′),(µ+(λ|τ |+λ′|τ ′|),γ);p ;

(v) For any σ, σ′ ∈ R, a 6= 0, b ∈ R, p ∈ [1,∞], we have∥∥∥f
(
x+ bv +X(x, v), av + V (x, v)

)∥∥∥
Z(λ,λ′),(µ,γ);p

(τ,τ ′)

≤ |a|−d/p ‖f‖Z(α,α′),β;p

(σ,σ′)

,
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with

α = λ|a| + ‖V ‖Z(λ,λ′),(µ,γ)

(τ,τ ′)

, α′ = λ′|a|,

β = µ+ (|a|λ+ ‖V ‖) |τ + b− σ| + |a|λ′ |τ ′ + b− σ′| +
∥∥∥∥X −

(
b+ τ

a

)
V

∥∥∥∥
Z(λ,λ′),(µ,γ)

(τ,τ ′)

or symetrically with

α = λ|a|, α′ = λ′|a| + ‖V ‖Z(λ,λ′),(µ,γ)

(τ,τ ′)

,

β = µ+ λ |b+ τ − aσ| +
(
λ′ +

‖V ‖
|a|

)
|b+ τ ′ − aσ′| +

∥∥∥∥X −
(
b+ τ ′

a

)
V

∥∥∥∥
Z(λ,λ′),(µ,γ)

(τ,τ ′)

.

Proof of Proposition 4.36. For simplicity we do the proof for γ = 0; the general case
is completely similar.

(i). This comes readily from (4.36):

‖f ◦ S0
t ‖Z(λ,λ′),µ;p

(τ,τ ′)

=
∑

n,n′∈Nd
0

1

n!n′!

∥∥∥
∣∣∣(λ∇v)

nS∗
τ−τ ′(λ′∇v)

n′

S∗
τ ′S∗

t f
∥∥∥
∣∣∣
µ;p

=
∑

n,n′∈Nd
0

1

n!n′!
‖|(λ∇v)

nS∗
(t+τ)−(t+τ ′)(λ

′∇v)
n′

S∗
t+τ ′f‖|µ;p

= ‖f‖Z(λ,λ′),µ;p

(t+τ,t+τ ′)

.

(ii). Let D := λ (τ∇x + ∇v) and D′ := λ′ (τ ′∇x + ∇v). Then

∥∥f g
∥∥
Z(λ,λ′),µ;r

(τ,τ ′)

=
∑

n,n′∈Nd
0

1

n!n′!
‖|Dn(D′)n′

(f g)‖|µ;r.

Thus
∥∥f g

∥∥
Z(λ,λ′),µ;r

(τ,τ ′)

≤
∑

n,n′,m,m′∈Nd
0

1

n!m!n′!m′!

∥∥∥
∣∣∣(Dn(D′)n′

f) (Dm(D′)m′

g)
∥∥∥
∣∣∣
µ;r

≤
∑

n,n′,m,m′∈Nd
0

1

n!n′!m!m′!
‖|(Dn(D′)n′

f)‖|µ;p ‖|(Dm(D′)m′

g)‖|µ;q

=
∥∥f
∥∥
Z(λ,λ′),µ;p

(τ,τ ′)

∥∥g
∥∥
Z(λ,λ′),µ;q

(τ,τ ′)

.
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(iii). If f depends only on x, then we have

∥∥f
∥∥
Z(λ,λ′),µ

(τ,τ ′)

=
∑

n,n′∈Nd
0

1

n!n′!
(|τ |λ)n(|τ ′|λ′)n′‖∇n+n′

x f‖Fµ

=
∑

n∈Nd
0

(|τ |λ+ |τ ′|λ′)n

n!
‖∇n

xf‖Fµ

=
∑

n∈Nd
0

∑

k∈Zd

e2πµ|k| (|τ |λ+ |τ ′|λ′)n

n!
(2π|k|)n |f̂(k)|

=
∑

k∈Zd

e2πµ|k|+2π(|τ |λ+|τ ′|λ′)|k| |f̂(k)|

which is the desired result.

(iv). Let D := λ (τ∇x + ∇v), D
′ := λ′ (τ ′∇x + ∇v), D̄ := λ (τ̄∇x + ∇v), and

D̄′ := λ′ (τ̄ ′∇x + ∇v). Then

∥∥f
∥∥
Z(λ,λ′),µ;r

(τ̄ ,τ̄ ′)

=
∑

n,n′∈Nd
0

λn(λ′)n

n!n′!
‖|D̄n(D̄′)n′

f‖|µ;r

=
∑

k∈Zd

e2πµ|k|
∑

n,n′,m,m′∈Nd
0

λn(λ′)n (2πλ|τ − τ̄ ||k|)m(2πλ′|τ ′ − τ̄ ′||k|)m′

n!n′!m!m′!

∥∥∥
∣∣∣ ̂(Dn(D′)n′f)(k, ·)

∥∥∥
∣∣∣
Lr

v

=
∑

k∈Zd

e2π(µ+λ|τ−τ̄ |+λ′|τ ′−τ̄ ′|)|k|
∑

n,n′∈Nd
0

λn(λ′)n

n!n′!

∥∥∥
∣∣∣ ̂(Dn(D′)n′f)(k, ·)

∥∥∥
∣∣∣
Lr

v

=
∑

n,n′∈Nd
0

λn(λ′)n

n!n′!
‖|Dn(D′)n′

f‖|µ+λ|τ−τ̄ |+λ′|τ ′−τ̄ ′|;p

which is the desired result.

(v). The proof of this point is more involved, so we shall progress step by step.

Step 1. We first consider the (most important) case b = 0, a = 1, τ ′ = 0 and
σ = σ′ = 0. We still write D := λ (τ∇x + ∇v) and D′ := λ′ (τ ′∇x + ∇v) = λ′ ∇v.

We wish to estimate the Z(λ,λ′),µ;p
(τ,0) norm of

h(x, v) := f(x+X, v + V ).
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In contrast with the proof of Proposition 4.25, we write a Taylor expansion in both
variables x and v:

h(x, v) =
∑

r,s∈Nd
0

1

r! s!
(∇r

x∇s
vf)(x, v)Xr(x, v)V s(x, v).

Here are some guidelines for the reader: (a) all indices arising from polynomial
expansions and Leibniz formulae (whatever the number of variables) will run on Nd

0

and come with the inverse of their factorial, whereas (b) all indices arising from
Fourier decomposition and Fourier convolution formulae will run on Zd and come
with no factorial.

Applying the operator Dm(D′)n for m,n ∈ Nd
0 yields

1

m!n!
Dm(D′)nh =

∑

r,s, m1+m2+m3=m, n1+n2+n3=n,∈Nd
0

1

r! s!m1!m2!m3!n1!n2!n3!

(Dm1(D′)n1∇r
x∇s

vf) (Dm2(D′)n2Xr) (Dm3(D′)n3V s).

Taking Fourier transform, we get

1

m!n!
(Dm(D′)nh)b(k, v)

=
∑

k1+k2+k3=k,∈Zd
0

∑

r,s, m1+m2+m3=m, n1+n2+n3=n,∈Nd
0

1

r! s!m1!m2!m3!n1!n2!n3!

(Dm1(D′)n1∇r
x∇s

vf)b(k1, v) (Dm2(D′)n2Xr)b(k2, v) (Dm3(D′)n3V s)b(k3, v).

Then we take the Lp
v norm, multiply by λm(λ′)n e2πµ|k| and sum over k ∈ Zd

0 and
m,n ∈ Nd

0:

‖h‖Z(λ,λ′),µ;p
(τ,0)

≤
∑

k1,k2,k3∈Zd
0

∑

r,s,m1,m2,m3,n1,n2,n3∈Nd
0

λm1+m2+m3 (λ′)n1+n2+n3

r! s!m1!m2!m3!n1!n2!n3!

e2πµ|k1|
∥∥(Dm1(D′)n1∇r

x∇s
vf)b(k1, v)

∥∥
Lp

v
e2πµ|k2|

∥∥(Dm2(D′)n2Xr)b(k2, v)
∥∥

L∞
v

e2πµ|k3|
∥∥(Dm3(D′)n3V s)b(k3, v)

∥∥
L∞

v
.
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By computing the sums over the indices k2, m2, n2 and k3, m3, n3 we get:

‖h‖Z(λ,λ′),µ;p
(τ,0)

≤
∑

k1∈Zd
0

∑

r,s,m1,n1∈Nd
0

1

r! s!m1!n1!

e2πµ|k1|
∥∥(Dm1(D′)n1∇r

x∇s
vf)b(k1, v)

∥∥
Lp

v
‖Xr‖Z(λ,λ′),µ

(τ,0)

‖V s‖Z(λ,λ′),µ
(τ,0)

.

Then we use the algebra property for Z(λ,λ′),µ
(τ,0) :

‖h‖Z(λ,λ′),µ;p
(τ,0)

≤
∑

k1∈Zd
0

∑

r,s,m1,n1∈Nd
0

1

r! s!m1!n1!

e2πµ|k1|
∥∥(Dm1(D′)n1∇r

x∇s
vf)b(k1, v)

∥∥
Lp

v
‖X‖r

Z(λ,λ′),µ
(τ,0)

‖V ‖s

Z(λ,λ′),µ
(τ,0)

.

Since ∇x commutes with D and D′, we can get out the factor (2π|k1|)r created
by the operator ∇r

x in the norm:

‖h‖Z(λ,λ′),µ;p
(τ,0)

≤
∑

k1∈Zd
0

∑

r,s,m1,n1∈Nd
0

1

r! s!m1!n1!

e2πµ|k1| (2π|k1|)r
∥∥(Dm1(D′)n1∇s

vf)b(k1, v)
∥∥

Lp
v
‖X‖r

Z(λ,λ′),µ
(τ,0)

‖V ‖s

Z(λ,λ′),µ
(τ,0)

.

Summation over r ∈ Nd
0 yields

‖h‖Z(λ,λ′),µ;p
(τ,0)

≤
∑

k1∈Zd
0

∑

s,m1,n1∈Nd
0

1

s!m1!n1!

e2π(µ+‖X‖)|k1|
∥∥∥ ̂(Dm1(D′)n1∇s

vf)(k1, v)
∥∥∥

Lp
v

‖V ‖s

Z(λ,λ′),µ
(τ,0)

where ‖X‖ is a shorthand for ‖X‖Z(λ,λ′),µ
(τ,0)

. Since D′ = λ′∇v, this is the same as

‖h‖Z(λ,λ′),µ;p
(τ,0)

≤
∑

k1∈Zd
0

∑

s,m1,n1∈Nd
0

1

s!m1!n1!

e2π(µ+‖X‖)|k1| (λ′)n1

∥∥∥ ̂(Dm1∇n1+s
v f)(k1, v)

∥∥∥
Lp

v

‖V ‖s

Z(λ,λ′),µ
(τ,0)

.

But ∑

n1+s=ℓ,∈Nd
0

ℓ!

n1! s!
(λ′)n1 ‖V ‖s = (λ′ + ‖V ‖)ℓ,
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where ‖V ‖ is a shorthand for ‖V ‖Z(λ,λ′),µ
(τ,0)

; so

‖h‖Z(λ,λ′),µ;p
(τ,0)

≤
∑

k1∈Zd
0

∑

m1,ℓ∈Nd
0

1

m1! ℓ!
e2π(µ+‖X‖)|k1| (λ′ + ‖V ‖)ℓ

∥∥(Dm1∇ℓ
vf)b(k1, v)

∥∥
Lp

v

= ‖h‖Z(λ,λ′),µ;p
(τ,0)

≤ ‖f‖Z(λ,λ′+‖V ‖),µ+‖X‖;p
(τ,0)

.

Step 2. Let us relax the assumption τ ′ = 0. We start again from h(x, v) :=

f(x+X, v + V ), and we want to estimate the Z(λ,λ′),µ;p
(τ,τ ′) norm of h. By (i),

‖h‖Z(λ,λ′),µ;p

(τ,τ ′)

= ‖h ◦ S0
τ ′‖Z(λ,λ′),µ;p

(τ−τ ′,0)

.

But

h ◦ S0
τ ′ = f

(
x+ τ ′v +X(x+ τ ′v, v), v + V (x+ τ ′v, v)

)

= (f ◦ S0
τ ′)
(
x+ (X − τ ′V )(x+ τ ′v, v), v + V (x+ τ ′v, v)

)
.

So by applying Step 1, we get

‖h‖Z(λ,λ′),µ;p

(τ,τ ′)

≤ ‖f ◦ S0
τ ′‖Z(α,α′),β;p

(τ−τ ′,0)

with

α = λ, α′ = λ′ + ‖V ◦ S0
τ ′‖Z(λ,λ′),µ

(τ−τ ′,0)

, β = µ + ‖(X − τ ′V ) ◦ S0
τ ′‖Z(λ,λ′),µ

(τ−τ ′,0)

.

Using (i) again, we get

‖h‖Z(λ,λ′),µ;p

(τ,τ ′)

≤ ‖f‖Z(λ,λ′+‖V ‖),µ+‖X−τ ′V ‖;p

(τ,τ ′)

where ‖V ‖ = ‖V ‖Z(λ,λ′),µ

(τ,τ ′)

and ‖X − τ ′V ‖ = ‖X − τ ′V ‖Z(λ,λ′),µ

(τ,τ ′)

.

Of course the same proof would yield symetrically:

‖h‖Z(λ,λ′),µ;p

(τ,τ ′)

≤ ‖f‖Z(λ+‖V ‖,λ′),µ+‖X−τV ‖;p

(τ,τ ′)

.

Step 3. To treat the general case, we define fa(x, v) = f(x, av); then

(S∗
b fa)

(
x+

(
X − bV

a

)
, v +

V

a

)
= f

(
x+ bv +X, av + V

)
.
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So ∥∥∥f
(
x+ bv +X, av + V

)∥∥∥
Z(λ,λ′),µ;p

(τ,τ ′)

≤ ‖S∗
b fa‖Z(λ+‖V

a ‖,λ′),µ+‖X− b
a V −τ V

a ‖;p

(τ,τ ′)

= ‖fa‖
Z(λ+

‖V ‖
a ,λ′),µ+‖X− b

a V − τ
a V ‖;p

(τ+b,τ ′+b)

= |a|−d/p ‖f‖
Z(|a|λ+‖V ‖,|a|λ′),µ+‖X− b

a V − τ
a V ‖;p

( τ+b
a , τ ′+b

a )

≤ |a|−d/p ‖f‖Z(α,α′),β;p

(σ,σ′)

,

where α, α′, β, σ, σ′ are as in the statement of the proposition; the last step follows
from (iv). (Note: With respect to Proposition 4.25, we have less room for translation
along the semigroup, and the change of the final time-shifts results in an error in
the coefficient µ which also depends on the norm of V .) �

4.11. Measuring solutions of kinetic equations in large time. As we already
discussed at length, even for the simplest kinetic equation, namely free transport, we
cannot hope to have uniform in time regularity estimates in the velocity variable:
rather, because of filamentation, we may have ‖∇vf(t, ·)‖ = O(t), ‖∇2

vf(t, ·)‖ =
O(t2), etc. For analytic norms we may at best hope for an exponential growth.

But the invariance of the “gliding” norms Zλ,µ
τ under free transport (Proposition

4.19) makes it possible to look for uniform estimates such as

(4.37) ‖f(τ, ·)‖Zλ,µ
τ

= O(1) as τ → +∞.

Of course, by Proposition 4.27, (4.37) implies

(4.38) ‖∇vf(τ, ·)‖Zλ′,µ′
τ

= O(τ),

and nothing better as far as the asymptotic behavior of ∇vf is concerned; but (4.37)
is much more precise than (4.38). For instance it implies ‖(∇v +τ∇x)f(τ, ·)‖Zλ′,µ′

τ
=

O(1) for λ′ < λ, µ′ < µ.
Another way to get rid of filamentation is to average over the spatial variable x,

a common sense procedure which has already been used in physics [48, Section 49].
Think that, if f evolves according to free transport, or even according to the lin-
earized Vlasov equation (3.3), then its space-average

(4.39) 〈f〉(τ, v) :=

∫

Td

f(τ, x, v) dx

is time-invariant. (We used this infinite number of conservation laws to determine
the long-time behavior in Theorem 3.1.)
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The bound (4.37) easily implies a bound on the space average: indeed,

(4.40) ‖〈f〉(τ, ·)‖Cλ = ‖〈f〉(τ, ·)‖Zλ,µ
τ

≤ ‖f(τ, ·)‖Zλ,µ
τ

= O(1) as τ → ∞;

and in particular, for λ′ < λ,

(4.41) ‖〈∇vf〉(τ, ·)‖Cλ′ = O(1) as τ → ∞.

Again, (4.37) contains a lot more information than (4.41).

Remark 4.37. The idea to estimate solutions of a nonlinear equation by comparison
to some unperturbed (reversible) linear dynamics is already present in the definition
of Bourgain spaces Xs,b [12]. The analogy stops here, since time is a dummy variable

in Xs,b spaces, while in Zλ,µ
t spaces it is frozen and appears as a parameter, on which

we shall play later.

4.12. Linear damping revisited. As a simple illustration of the functional analy-
sis introduced in this section, let us recast the linear damping (Theorem 3.1) in this
language. This will be the first step for the study of the nonlinear damping. For
simplicity we set L = 1.

Theorem 4.38 (Linear Landau damping again). Let f 0 = f 0(v), W : Td → R such
that ‖∇W‖L1 ≤ CW , and fi(x, v) such that

(i) Condition (L) from Subsection 2.2 holds for some constants C0, λ, κ > 0;

(ii) ‖f 0‖Cλ;1 ≤ C0;

(iii) ‖fi‖Zλ,µ;1 ≤ δ for some µ > 0;

Then for any λ′ < λ and µ′ < µ, the solution of the linearized Vlasov equation (3.3)
satisfies

(4.42) sup
t∈R

∥∥f(t, · )
∥∥
Zλ′,µ′;1

t
≤ C δ,

for some constant C = C(d, CW , C0, λ, λ
′, µ, µ′, κ). In particular, ρ =

∫
f dv satisfies

(4.43) sup
t∈R

∥∥ρ(t, · )
∥∥
Fλ′|t|+µ′ ≤ C δ.

As a consequence, as |t| → ∞, ρ converges strongly to ρ∞ =
∫∫

fi(x, v) dx dv, and

f converges weakly to 〈fi〉 =
∫
fi dx, at rate O(e−λ′′|t|) for any λ′′ < λ′.

If moreover ‖f 0‖Cλ;p ≤ C0 and ‖fi‖Zλ,µ;p ≤ δ for all p in some interval [1, p], then
(4.42) can be reinforced into

(4.44) sup
t∈R

∥∥f(t, · )
∥∥
Zλ′,µ′;p

t
≤ C δ, 1 ≤ p ≤ p.
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Remark 4.39. The notions of weak and convergence are the same as those in
Theorem 3.1. With respect to that statement, we have added an extra analyticity
assumption in the x variable; it is likely though that a slightly more careful analysis
would allow µ = µ′ = 0.

Proof of Theorem 4.38. Without loss of generality we restrict our attention to t ≥ 0.
Although (4.43) follows from (4.42) by Proposition 4.15, we shall establish (4.43)
first, and deduce (4.42) thanks to the equation. We shall write C for various con-
stants depending only on the parameters in the statement of the theorem.

As in the proof of Theorem 3.1, we have

ρ̂(t, k) = f̃i(k, kt) +

∫ t

0

K0(t− τ, k) ρ̂(τ, k) dτ

for any t ≥ 0, k ∈ Zd. By Lemma 3.6, for any λ′ < λ, µ′ < µ,

sup
t≥0

(∑

k

|ρ̂(t, k)| e2π(λ′t+µ′)|k|

)

≤ C(λ, λ′, κ)

(∑

k

e−2π(µ−µ′)|k|

)
sup
t≥0

sup
k∈Zd

∣∣f̃i(k, kt)
∣∣ e2π(λ′t+µ)|k|

≤ C(λ, λ′, κ, µ, µ′) sup
t≥0

(∑

k∈Zd

∣∣f̃i(k, kt)
∣∣ e2π(λt+µ)|k|

)
.

Equivalently,

(4.45) sup
t≥0

∥∥ρ(t, · )
∥∥
Fλ′t+µ′ ≤ C sup

t≥0

∥∥∥∥
∫
fi ◦ S0

−t dv

∥∥∥∥
Fλt+µ

.

By Propositions 4.15 and 4.19,
∥∥∥∥
∫
fi ◦ S0

−t dv

∥∥∥∥
Fλt+µ

≤
∥∥fi ◦ S0

−t

∥∥
Zλ,µ;1

t
= ‖fi‖Zλ,µ;1

0
≤ δ.

This and (4.45) imply (4.43).
To deduce (4.42), we first write

f(t, · ) = fi ◦ S0
−t +

∫ t

0

(
(∇W ∗ ρτ ) ◦ S0

−(t−τ)

)
· ∇vf

0 dτ,
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where ρτ = ρ(τ, · ). Then for any λ′′ < λ′ we have, by Propositions 4.24 and 4.15,
for all t ≥ 0,

‖f‖Zλ′′,µ′;1
t

≤
∥∥fi ◦ S0

−t

∥∥
Zλ′′,µ;1

t
+

∫ t

0

∥∥∥(∇W ∗ ρτ ) ◦ S0
−(t−τ)

∥∥∥
Zλ′′,µ′;∞

t

‖∇vf
0‖Zλ′′,µ;1

t
dτ

(4.46)

= ‖fi‖Zλ′′,µ;1 +

(∫ t

0

‖∇W ∗ ρτ‖Fλ′′τ+µ′ dτ

)
‖∇vf

0‖Cλ′′;1 .

Since ∇̂W (0) = 0, we have, for any τ ≥ 0,
∥∥∇W ∗ ρτ

∥∥
Fλ′′τ+µ ≤ e−2π(λ′′−λ′)τ

∥∥∇W ∗ ρτ

∥∥
Fλ′τ+µ′

≤ ‖∇W‖L1 e−2π(λ′′−λ′)τ ‖ρτ‖Fλ′τ+µ′

≤ CW C δ e−2π(λ′′−λ′)τ ;

in particular

(4.47)

∫ t

0

∥∥∇W ∗ ρτ

∥∥
Fλ′′+µ′ ≤ C δ

λ′′ − λ′
.

Also, by Proposition 4.10, for 1 < λ′/λ′′ ≤ 2 we have

(4.48) ‖∇vf
0‖Cλ′′;1 ≤

C

λ− λ′′
‖f 0‖Cλ;1 ≤ C C0

λ− λ′′
.

Plugging (4.47) and (4.48) in (4.46), we deduce (4.42). The end of the proof is an
easy exercise if one recalls that 〈f(t, · )〉 = 〈fi〉 for all t. �

5. Scattering estimates

Let be given a small time-dependent force field, denoted by ε F (t, x), on Td ×Rd,
whose analytic regularity improves linearly in time. (Think of εF as the force created
by a damped density.) This force field perturbs the trajectories S0

τ,t of the free
transport (τ the initial time, t the current time) into trajectories Sτ,t. The goal of this
section is to get an estimate on the maps Ωt,τ = St,τ ◦ S0

τ,t (so that St,τ = Ωt,τ ◦ S0
t,τ .

These bounds should be in an analytic class about as good as F , with a loss of
analyticity depending on ε; they should also be (for 0 ≤ τ ≤ t)

• uniform in t ≥ τ ;

• small as τ → ∞;

• small as τ → t.
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We shall informally say that Ωt,τ is a scattering transform, even though this
terminology is usually reserved for the asymptotic regime t→ ±∞.

Remark 5.1. The order of composition of the free semigroup and perturbed semi-
group is dictated by the need to get uniformity as t → ∞. If we had defined, say,
Λt,τ = S0

τ,t ◦ St,τ , so that St,τ = S0
t,τ ◦ Λt,τ , and if the force was, say, supported in

0 ≤ t ≤ 1, we would get (denoting St,τ = (Xt,τ , Vt,τ ))

Λt,0(x, v) =
(
X1,0(x− v(t− 1), v) + tV1,0(x− v(t− 1), v), V1,0(x− v(t− 1), v)

)
,

which does not converge to anything as t→ ∞.

5.1. Formal expansion. Before stating the main result, we sketch a heuristic per-
turbation study. Let us write a formal expansion of V0,t(x, v) as a perturbation
series:

V0,t(x, v) = v + ε v(1)(t, x, v) + ε2 v(2)(t, x, v) + . . .

Then we deduce

X0,t(x, v) = x+ vt+ ε

∫ t

0

v(1)(s, x, v) ds+ ε2

∫ t

0

v(2)(s, x, v) ds+ . . . ,

with v(i)(t = 0) = 0.
So

∂2X0,t

∂t2
= ε

∂v(1)

∂t
+ ε2 ∂v

(2)

∂t
+ . . . .

On the other hand,

ε F (t, X0,t) = ε
∑

k

F̂ (t, k) e2iπk·xe2iπk·vte2iπk·[ε
R t
0

v(1) ds+ε2
R t
0

v(2) ds+...]

= ε
∑

k

F̂ (t, k) e2iπk·xe2iπk·vt
[
1 + 2iπεk ·

∫ t

0

v(1) ds+ 2iπε2k ·
∫ t

0

v(2) ds

− (2π)2ε2

(
k ·
∫ t

0

v(1) ds

)2

+ . . .
]
.

By successive identification,

∂v(1)

∂t
=
∑

k

F̂ (t, k) e2iπk·xe2iπk·vt;

∂v(2)

∂t
=
∑

k

F̂ (t, k) e2iπk·xe2iπk·vt 2iπk ·
∫ t

0

v(1) ds;
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∂v(3)

∂t
=
∑

k

F̂ (t, k) e2iπk·xe2iπk·vt

[
2iπk ·

∫ t

0

v(2) ds− (2π)2ε2

(
k ·
∫ t

0

v(1) ds

)2
]
,

etc.
In particular notice that

∣∣∣∂v(1)

∂t

∣∣∣ ≤
∑

k |F̂ (t, k)|, so

∫ ∞

0

∣∣∣∣
∂v(1)

∂t

∣∣∣∣ dt ≤
∫ ∞

0

∑

k

|F̂ (t, k)| dt ≤
∫ ∞

0

∑
|F̂ (t, k)| e2πµte−2πµt dt

≤ CF

∫ ∞

0

e−2πµt =
CF

2πµ
.

So, under our uniform analyticity assumptions we expect V0,t(x, v) to be a uniformly
bounded analytic perturbation of v.

5.2. Main result. On Td
x we consider the dynamical system

d2X

dt2
= ε F (t, X);

its phase space is Td ×Rd. Although this system is reversible we shall only consider
t ≥ 0.

For any (x, v) ∈ Td × Rd and any two times τ, t ∈ R+, let Sτ,t be the transform
mapping the state of the system at time τ , to the state of the system at time t. In
more precise terms, Sτ,t is described by the equations

Sτ,t(x, v) = (Xτ,t(x, v), Vτ,t(x, v));

Xτ,τ (x, v) = x, Vτ,τ (x, v) = v;

(5.1)
d

dt
Xτ,t(x, v) = Vτ,t(x, v),

d

dt
Vτ,t(x, v) = ε F (t, Xτ,t(x, v)).

From the definition we have the composition identity

(5.2) St2,t3 ◦ St1,t2 = St1,t3 ;

in particular St,τ is the inverse of Sτ,t.
We also write S0

τ,t for the same transform in the case of the free dynamics (ε = 0);
in this case there is an explicit expression:

(5.3) S0
τ,t(x, v) = (x+ v(t− τ), v),
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where x+ v(t− τ) is evaluated modulo Zd. Finally, we define the “scattering trans-
forms associated with εF”:

(5.4) Ωt,τ = St,τ ◦ S0
τ,t.

(There is no simple semigroup property for the transforms Ωt,τ .)
In this section we establish the following estimates:

Theorem 5.2 (Analytic estimates on scattering transforms in hybrid norms). Let
ε > 0 and let F = F (t, x) on R+ × Td satisfy

(5.5) F̂ (t, 0) = 0, sup
t≥0

(
‖F (t, ·)‖Fλt+µ + ‖∇xF (t, ·)‖Fλt+µ

)
≤ CF

for some parameters λ, µ > 0 and CF > 0. Let t ≥ τ ≥ 0, and let

Ωt,τ =
(
ΩXt,τ ,ΩVt,τ

)

be the scattering transforms associated with ε F . Let 0 ≤ λ′ < λ, 0 ≤ µ′ < µ and
τ ′ ≥ 0 be such that

(5.6) λ′ (τ ′ − τ) ≤ (µ− µ′)

2
.

Let 


R1(τ, t) = CF e

−2π (λ−λ′) τ min {(t− τ) ; (2π(λ− λ′))−1} ;

R2(τ, t) = CF e
−2π (λ−λ′) τ min {(t− τ)2/2 ; (2π(λ− λ′))−2} .

Assume that

(5.7) ∀ 0 ≤ τ ≤ t, ε R2(τ, t) ≤
(µ− µ′)

4
,

and

(5.8) ε CF ≤ 4π2 (λ− λ′)2

2
.

Then

(5.9) ∀ 0 ≤ τ ≤ t, ‖ΩXt,τ − Id ‖Zλ′,µ′

τ ′
≤ 2 εR2(τ, t)

and

(5.10) ∀ 0 ≤ τ ≤ t, ‖ΩVt,τ − Id ‖Zλ′,µ′

τ ′
≤ εR1(τ, t).

Remark 5.3. Note that the parameter ε plays no other role than to serve the
intuition by recalling the perturbative nature of the result.
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Proof of Theorem 5.2. For a start, let us make the ansatz

St,τ (x, v) =
(
x− v(t− τ) + ε Zt,τ (x, v), v + ε ∂τZt,τ (x, v)

)
,

with

Zt,t(x, v) = 0, ∂τZt,τ

∣∣∣
τ=t

(x, v) = 0.

Then it is easily checked that

Ωt,τ − Id = ε (Z, ∂τZ) ◦ S0
t−τ ;

in particular
‖Ωt,τ − Id ‖Zλ′,µ′

τ ′
= ε

∥∥(Z, ∂τZ)
∥∥
Zλ′,µ′

t+τ ′−τ

.

To estimate this we shall use a fixed point argument based on the equation for
St,τ , namely

d2Xt,τ

dτ 2
= ε F (τ,Xt,τ),

or equivalently
d2Zt,τ

dτ 2
= F

(
τ, x− v(t− τ) + ε Zt,τ

)
.

So let us fix t and define

Ψ : (Wt,τ )0≤τ≤t 7−→ (Zt,τ )0≤τ≤t

such that (Zt,τ )0≤τ≤t is the solution of

(5.11)





∂2Zt,τ

∂τ 2
= F

(
τ, x− v(t− τ) + εWt,τ

)

Zt,t = 0, (∂τZt,τ )
∣∣∣
τ=t

= 0.

What we are after is an estimate of the fixed point of Ψ. We do this in two steps.

Step 1. Estimate of Ψ(0). Let Z0 = Ψ(0). By integration of (5.11) (for W = 0)
we have

Z0
t,τ =

∫ t

τ

(s− τ)F (s, x− v(t− s)) ds.

Let σ such that λ′σ ≤ (µ− µ′)/2. We apply the Zλ′,µ′

t+σ norm and use Proposition
4.19:

‖Z0
t,τ‖Zλ′,µ′

t+σ
≤
∫ t

τ

(s− τ) ‖F (s, · ) ‖Zλ′,µ′

s+σ
ds =

∫ t

τ

(s− τ) ‖F (s, · ) ‖Fλ′s+λ′σ+µ′ ds.
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Of course λ′σ + µ′ ≤ µ, so in particular

λ′ s+ λ′ σ + µ′ ≤ −(λ− λ′) s+ λ s+ µ.

Combining this with the assumption F̂ (s, 0) = 0 yields

‖F (s, ·) ‖Fλ′s+λ′ σ+µ′ ≤ ‖F (s, ·) ‖Fλs+µ e−2π(λ−λ′) s

≤ CF e
−2π(λ−λ′)s.

So

‖Z0
t,τ‖Zλ′,µ′

t+σ
≤ CF

∫ t

τ

(s− τ) e−2π(λ−λ′) s ds

≤ CF e
−2π(λ−λ′) τ min

{
(t− τ)2

2
;

1

(2π(λ− λ′))2

}
≤ R2(τ, t).

With t still fixed, we define the norm
(5.12)∥∥∥∥
∥∥∥∥ (Zt,τ )0≤τ≤t

∥∥∥∥
∥∥∥∥ := sup

{‖Zt,τ‖Zλ′,µ′

t+σ

R2(τ, t)
; 0 ≤ τ ≤ t; σ + t ≥ 0; λ′σ ≤ µ− µ′

2

}
.

The above estimates show that ‖‖Ψ(0)‖‖ ≤ 1. (We can assume t + σ ≥ 0 since
t+ (τ ′ − τ) ≥ t− τ ≥ 0, and we aim at finally choosing σ = τ ′ − τ .)

Step 2. Lipschitz constant of Ψ. We shall prove that under our assumptions,

Ψ is 1/2-Lipschitz on the ball B(0, 2) in the norm ‖‖ · ‖‖. Let W, W̃ ∈ B(0, 2), and

Z = Ψ(W ), Z̃ = Ψ(W̃ ). By solving the differential inequality for Z − Z̃ we get

Zt,τ − Z̃t,τ = ε

[∫ 1

0

∫ t

τ

(s− τ)∇xF
(
s, x− v(t− s)

+ ε
(
θWt,s + (1 − θ)W̃t,s

))
ds dθ

]
·
(
Wt,s − W̃t,s

)
.

We divide by R2(τ, t), take the Z norm, and note that R2(s, t) ≤ R2(τ, t); we get
∥∥∥∥
∥∥∥∥
(
Zt,τ − Z̃t,τ

)
0≤τ≤t

∥∥∥∥
∥∥∥∥ ≤ ε

∥∥∥∥
∥∥∥∥
(
Wt,s − W̃t,s

)
0≤s≤t

∥∥∥∥
∥∥∥∥A(t)



ON LANDAU DAMPING 75

with

A(t) = sup
σ,τ

∫ 1

0

∫ t

τ

(s−τ)
∥∥∥∥∥∇xF

(
s, x−v(t−s)+ε

(
θWt,s+(1−θ)W̃t,s

))∥∥∥∥∥
Zλ′,µ′

t+σ

ds dθ.

By Proposition 4.25 (composition inequality),

A(t) ≤
∫ t

τ

(s− τ) ‖∇xF (s, · )‖Zλ′,µ′+e(t,s,σ)
s+σ

ds

=

∫ t

τ

(s− τ) ‖∇xF (s, · )‖Fλ′s+λ′σ+µ′+e(t,s,σ) ds,

with

e(t, s, σ) := ε
∥∥∥θWt,s + (1 − θ) W̃t,s

∥∥∥
Zλ′,µ′

t+σ

≤ 2 εR2(s, t) ≤ 2 εR2(τ, t).

Using (5.7), we get

λ′s+ λ′σ + µ′ + e(s, t, σ) ≤ λ′s+ λ′σ + µ′ + 2 εR2(τ, t)

≤ λ′s+ µ = (λs+ µ) − (λ− λ′)s.

Using again the bound on ∇xF and the assumption F̂ (s, 0) = 0, we deduce

A(t) ≤ sup
τ

∫ t

τ

(s− τ)CF e
−2π(λ−λ′) s ds ≤ R2(0, t) ≤

CF

4π2 (λ− λ′)2
.

Using (5.8), we conclude that∥∥∥∥
∥∥∥∥
(
Zt,τ − Z̃t,τ

)
0≤τ≤t

∥∥∥∥
∥∥∥∥ ≤ 1

2

∥∥∥∥
∥∥∥∥
(
Wt,s − W̃t,s

)
0≤s≤t

∥∥∥∥
∥∥∥∥.

So Ψ is 1/2-Lipschitz on B(0, 2), and we can conclude the proof of (5.9) by applying
Theorem A.2 and choosing σ = τ ′ − τ .

It remains to control the velocity component of Ω, i.e., establish (5.10); this
will follow from the control of the position component. Indeed, if we write Qt,τ =
ε−1(ΩVt,τ − Id )(x, v), we have

Qt,τ =

∫ t

τ

F
(
s, x− v(t− s) + εWt,s

)
ds

so we can estimate as before

‖Qt,τ‖Zλ′,µ′

t+(τ ′−τ)

≤
∫ t

τ

‖F (s, ·)‖Fλ′s+λ′(τ ′−τ)+µ′+e(t,s,τ ′−τ) ds
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to get

‖Qt,τ‖Zλ′,µ′

t+(τ ′−τ)

≤
∫ t

τ

CF e
−2π(λ−λ′) s ds ≤ R1(τ, t).

Thus the proof is complete. �

The proof of Theorem 5.2 is easily adapted to include Sobolev corrections. It is
important to note that the scattering transforms are smooth, uniformly in time, not
just in gliding regularity (τ ′ = 0 is admissible in (5.6)). This is why the estimate also
resists additional time-shifts in the norm. The following theorem illustrates this; it
proof is similar to that of Theorem 5.2.

Theorem 5.4 (Analytic estimates on scattering transforms in two-shift hybrid
norms). Let ε > 0 and let F = F (t, x) on R+ × Td satisfy

(5.13) F̂ (t, 0) = 0, sup
t≥0

(
‖F (t, ·)‖Fλt+µ,γ + ‖∇xF (t, ·)‖Fλt+µ,γ

)
≤ CF

for some parameters λ, µ > 0 and CF > 0. Let t ≥ τ ≥ 0, and let

Ωt,τ =
(
ΩXt,τ ,ΩVt,τ

)

be the scattering transforms associated with ε F . Let 0 ≤ λ′ + λ′′ < λ, 0 ≤ µ′ < µ
and τ ′, τ ′′ ≥ 0 be such that

(5.14) λ′(τ ′ − τ) + λ′′(τ ′′ − τ) ≤ (µ− µ′)

2
.

Let 


Rb

1(τ, t) = CF e
−2π (λ−λ′−λ′′) τ min {(t− τ) ; (2π(λ− λ′ − λ′′))−1} ;

Rb
2(τ, t) = CF e

−2π (λ−λ′−λ′′) τ min {(t− τ)2/2 ; (2π(λ− λ′ − λ′′))−2} .
Assume that

(5.15) εR2(τ, t) ≤
(µ− µ′)

4
,

and

(5.16) ε CF ≤ 4π2 (λ− λ′ − λ′′)2

2
.

Then

‖ΩXt,τ − Id ‖Z(λ′,λ′′),(µ′,γ)

(τ ′,τ ′′)

≤ 2 εR2(τ, t)
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and

‖ΩVt,τ − Id ‖Z(λ′,λ′′),(µ′,γ)

(τ ′,τ ′′)

≤ εR1(τ, t).

While Theorem 5.2 (and 5.4) provides a good idea of the scattering estimates
associated with gliding regularity, it will not be sufficient for later purposes, and we
shall have to establish variants thereof. The motivation for these variants will come
only in the course of the next three sections, so we postpone these extensions to
Section 10.

Remark 5.5. Loss and Bernard independently suggested to compare the estimates
in the present section with the Nekhoroshev theorem in dynamical systems theory
[64, 65]. The latter theorem roughly states that for a perturbation of a completely
integrable system, trajectories remain close to those of the unperturbed system for
a time growing exponentially in the inverse of the size of the perturbation (unlike
KAM theory, this result is not global in time; but it is more general in the sense
that it also applies outside invariant tori). The fact that our scattering estimates
are better (global in time) can probably be attributed to the exponential decay of
the force field; in the end, it will demonstrate that the nonlinear retroaction has a
positive effect for Landau damping. It might be of interest to explore this more in
detail.

6. Bilinear regularity and decay estimates

6.1. Presentation. To introduce this crucial section, let us reproduce and improve
a key computation from Section 3. Let G be a function of v, and R a time-dependent

function of x with R̂(0) = 0; both G and R may be vector-valued. (Think of G(v)
as ∇vf(v) and of R(τ, x) as ∇W ∗ ρ(τ, x).) Let further

σ(t, x) =

∫ t

0

∫

Rd

G(v) · R
(
τ, x− v(t− τ)

)
dv dτ.

Then

σ̂(t, k) =

∫ t

0

∫

Td

∫

Rd

G(v) ·R
(
τ, x− v(t− τ)

)
e−2iπk·x dv dx dτ

=

∫ t

0

∫

Td

∫

Rd

G(v) · R(τ, x) e−2iπk·x e−2iπk·v(t−τ) dv dx dτ

=

∫ t

0

G̃(k(t− τ)) · R̂(τ, k) dτ.
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Let us assume that G has a “high” gliding analytic regularity λ, and estimate σ
in regularity λt, with λ < λ. Let α = α(t, τ) satisfy

0 ≤ α(t, τ) ≤ (λ− λ) (t− τ);

then

‖σ(t)‖Fλt ≤
∑

k 6=0

∫ t

0

e2πλt|k| |G̃(k(t− τ))| |R̂(τ, k)| dτ

≤
∫ t

0

(
sup
k 6=0

e2π[λ(t−τ)+α] |k| |G̃(k(t− τ))|
) (∑

k

e2π(λτ−α)|k||R̂(τ, k)|
)
dτ

≤
(

sup
η
e2πλ|η||G̃(η)|

) (
sup

0≤τ≤t
‖R(τ, ·)‖Fλτ−α

)∫ t

0

e−2π[(λ−λ)(t−τ)−α] dτ,

where we have used

k 6= 0 =⇒ 2π(λ(t− τ) + α)|k| ≤ 2πλ|k|(t− τ) −
(
(λ− λ)(t− τ) − α

)
.

Let us choose

α(t, τ) =
(λ− λ)

2
min{1 ; t− τ};

then ∫ t

0

e−2π
[
(λ−λ)(t−τ)−α

]
dτ ≤

∫ t

0

e−π(λ−λ)(t−τ) dτ ≤ 1

π(λ− λ)
.

So in the end

‖σ(t)‖Fλt ≤ ‖G‖Xλ

π(λ− λ)
sup

0≤τ≤t
‖R(τ)‖Fλτ−α(t,τ),

where ‖G‖Xλ = supη(e
2πλ|η||G̃(η)|).

In the preceding computation there are three important things to notice, which
lie at the heart of Landau damping:

• The natural index of analytic regularity of σ in x increases linearly in time:
this is an automatic consequence of the gliding regularity, already observed
in Section 4.

• A bit α(t, τ) of analytic regularity of G was transferred from G to R, however
not more than a fraction of (λ − λ)(t − τ). We call this the regularity
extortion: if f forces f , it satisfies an equation of the form ∂tf + v · ∇xf +
F [f ] · ∇vf = S, then f will give away some (gliding) smoothness to ρ =∫
f dv.
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• The combination of higher regularity of G and the assumption R̂(0) = 0
has been converted into a time decay, so that the time-integral is bounded,
uniformly as t→ ∞. Thus there is decay by regularity.

The main goal of this section is to establish quantitative variants of these effects
in some general situations when G is not only a function of v and R not only a
function of t, x. Note that we shall have to work with regularity indices depending
on t and τ !

Regularity extortion is related to velocity averaging regularity, well-known in ki-
netic theory [39]; what is unusual though is that we are working in analytic regularity,
and in large time, while velocity averaging regularity is mainly a short-time effect.
In fact we shall study two distinct mechanisms for the extortion: the first one will
be well suited for short times (t − τ small), and will be crucial later to get rid of
small deteriorations in the functional spaces due to composition; the second one will
be well adapted to large times (t− τ → ∞) and will ensure convergence of the time
integrals.

The estimates in this section lead to a serious twist on the popular view on Landau
damping, according to which the waves gives energy to the particles that it forces;
instead, the picture here is that the wave gains regularity from the background, and
regularity is converted into decay.

For the sake of pedagogy, we shall first establish the basic, simple bilinear estimate,
and then discuss the various mechanisms once at a time.

6.2. Basic bilinear estimate.

Proposition 6.1 (Basic bilinear estimate in gliding regularity). Let G = G(τ, x, v),
R = R(τ, x, v),

β(τ, x) =

∫

Rd

(G · R)
(
τ, x− v(t− τ), v

)
dv,

σ(t, x) =

∫ t

0

β(τ, x) dτ.

Then

(6.1) ‖β(τ, ·)‖Fλt+µ ≤ ‖G‖Zλ,µ;1
τ

‖R‖Zλ,µ
τ

;

and

(6.2) ‖σ(t, ·)‖Fλt+µ ≤
∫ t

0

‖G‖Zλ,µ;1
τ

‖R‖Zλ,µ
τ
dτ.
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Proof of Proposition 6.1. Obviously (6.2) follows from (6.1). To prove (6.1) we apply
successively Propositions 4.15, 4.19 and 4.24:

‖β(τ, ·)‖Fλt+µ ≤
∥∥∥∥
∫

Rd

(G · R) ◦ S0
τ−t dv

∥∥∥∥
Fλt+µ

≤
∥∥∥(G ·R) ◦ S0

τ−t

∥∥∥
Zλ,µ;1

t

= ‖G ·R‖Zλ,µ;1
τ

≤ ‖G‖Zλ,µ;1
τ

‖R‖Zλ,µ
τ
.

�

6.3. Short-term regularity extortion by time cheating.

Proposition 6.2 (Short-term regularity extortion). Let G = G(x, v), R = R(x, v),
and

β(x) =

∫

Rd

(G · R) (x− v(t− τ), v) dv.

Then for any λ, µ, t ≥ 0 and any b > −1, we have

(6.3) ‖β‖Fλt+µ ≤ ‖G‖Zλ(1+b),µ;1

τ− bt
1+b

‖R‖Zλ(1+b),µ;∞

τ− bt
1+b

.

Remark 6.3. If R only depends on t, x, then the norm of R in the right-hand side
of (6.3) is ‖R‖Fν with

ν = λ(1 + b)

∣∣∣∣τ −
bt

1 + b

∣∣∣∣+ µ = (λτ + µ) − b(t− τ),

as soon as τ ≥ bt/(1 + b). This is where something has been gained with respect to
Proposition 6.1. Even if R is not a function of t, x alone, but rather a function of t, x
composed with a function depending on all the variables, this gain will be preserved
through the composition inequality.

Proof of Proposition 6.2. The proof presented here may not be the most direct, but
has the advantage to explicitly rely on commutators involving ∇v, ∇x and the trans-
port semigroup, all of them classically related to hypoelliptic regularity and velocity
averaging. Separating the different components of R and G, we may assume that
both are scalar-valued.

Let S = S0
τ−t, so that R ◦ S(x, v) = R(x− v(t− τ), v). By direct computation,

(6.4)

t∇x(R◦S) = (t∇xR)◦S =
[(

(τ − b(t−τ))∇x +(1+ b)∇v

)
R
]
◦S− (1+ b)∇v(R◦S).
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Let
D = Dτ,t,b :=

(
τ − b(t− τ)

)
∇x + (1 + b)∇v.

Then (6.4) becomes

(6.5) t∇x(R ◦ S) = (DR) ◦ S − (1 + b)∇v(R ◦ S).

Since ∇x commutes with ∇v and D, and with the composition by S as well, we
deduce from (6.5) that

t ∂xi

[
(1 + b)k∇k

v((D
ℓR) ◦ S)

]
= (1 + b)k∇k

v

(
t∂xi

(DℓR) ◦ S
)

= (1 + b)k∇k
v

(
(Dℓ+1iR) ◦ S

)
− (1 + b)k∇k

v

(
(1 + b)∂vi

(DℓR ◦ S)
)

=
[
(1 + b)∇v

]k(
(Dℓ+1iR) ◦ S

)
−
[
(1 + b)∇v

]k+1i
(
(DℓR) ◦ S

)
.

So by induction,

(6.6) (t∇x)n(R ◦ S) =
∑

m≤n

( n

m

)[
−(1 + b)∇v

]m(
(Dn−mR) ◦ S

)
.

Applying this formula with R replaced by G · R and integrating in v yields

(t∇x)
n

∫

Rd

(G · R) ◦ S0
τ−t dv =

∫

Rd

Dn(G ·R) ◦ S0
τ−t dv

=

∫

Rd

Dn(G ·R) dv.

It follows by taking Fourier transform that

(2iπtk)nβ̂(k) =

∫

Rd

[
Dn(G · R)

]
b

dv

=

∫

Rd

(
(1 + b)∇v + 2iπ

(
τ − b(t− τ)

)
k
)n

(G ·R)b(k, v) dv,

whence
∑

k,n

e2πµ|k| |2πλtk|n
n!

|β̂(k)|

≤
∑

k,n

e2πµ|k|
(
λ(1 + b)

)n

n!

∥∥∥
[
∇v + 2iπ

(
τ − bt

1 + b

)
k
]n

(G · R)b(k, v)
∥∥∥

L1(dv)

= ‖G · R‖Zλ(1+b),µ;1

τ− bt
1+b

,

and the conclusion follows by Proposition 4.24. �
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Let us conclude this subsection with some comments on Proposition 6.2. When
we wish to apply it, what constraints on b(t, τ) (assumed to be nonnegative to fix
the ideas) does this presuppose? First, b should be small, so that λ(1+b) ≤ λ given.
But most importantly, we have estimated Gτ in a norm Zτ ′ instead of Zτ (this is the
time cheating), where |τ ′ − τ | = bt/(1 + b). To compensate for this discrepancy, we
may apply (4.19), but for this to work bt/(1+b) should be small, otherwise we would
lose a large index of analyticity in x — or at best we would inherit an undesirable
exponentially growing constant. So all we are allowed is b(t, τ) = O(1/(1+ t)). This
is not enough to get the time-decay which would lead to Landau damping. Indeed,

if R = R(x) with R̂(0) = 0, then

‖R‖Zλ(1+b),µ
τ−bt/(1+b)

= ‖R‖Fλτ+µ−λ b(t−τ) ≤ e−λb(t−τ) ‖R‖Fλτ+µ;

so we gain a coefficient e−λb(t−τ), but then
∫ t

0

e−λb(t−τ) dτ ≥
∫ t

0

e−λε( t−τ
t ) dτ =

(
1 − e−λε

λ ε

)
t,

which of course diverges in large time.
To summarize: Proposition 6.2 is helpful when (t − τ) = O(1), which will al-

ready be very useful; but for long-time estimates we need another, complementary
mechanism.

6.4. Long-term regularity extortion. To search for the extra decay, let us refine
the computation of the beginning of this section. Assume that Gτ = ∇vgτ , where
(gτ)τ≥0 solves a transport-like equation, so G̃(τ, k, η) = 2iπη g̃(τ, k, η), and

|G̃(τ, k, η)| . 2π|η| e−2πµ|k| e−2πλ|η+kτ |.

Up to slightly increasing λ and µ, we may assume

(6.7) |G̃(τ, k, η)| . (1 + τ) e−2πµ|k| e−2πλ|η+kτ |.

Let then ρ(τ, x) =
∫
f(τ, x, v) dv, where also f solves a transport equation, but has

a lower analytic regularity; and R = ∇W ∗ ρ. Assuming |∇̂W (k)| = O(|k|−γ) for
some γ ≥ 0, we have

(6.8) |R̂(τ, k)| .
e−2π(λτ+µ)|k| 1k 6=0

1 + |k|γ .
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Let again

σ(t, x) =

∫ t

0

∫

Rd

G
(
τ, x− v(t− τ), v

)
· R
(
τ, x− v(t− τ)

)
dv dτ.

As t → +∞, G in the integrand of σ oscillates wildly in phase space, so it is not
clear that it will help at all. But let us compute:

σ̂(t, k) =

∫ t

0

∫

Rd

∫

Td

G
(
τ, x− v(t− τ), v

)
· R
(
τ, x− v(t− τ)

)
e−2iπk·x dx dv dτ

=

∫ t

0

∫

Rd

∫

Td

G(τ, x, v) ·R(τ, x) e−2iπk·x e−2iπk·v(t−τ) dx dv dτ

=

∫ t

0

∫

Rd

Ĝ ·R(τ, k, v) e−2iπk·v(t−τ) dv dτ

=

∫ t

0

∫

Rd

∑

ℓ

Ĝ(τ, ℓ, v) · R̂(τ, k − ℓ) e−2iπk·v(t−τ) dv dτ

=

∫ t

0

∑

ℓ

G̃
(
τ, ℓ, k(t− τ)

)
· R̂(τ, k − ℓ) dτ.

At this level, the difference with respect to the beginning of this section lies in the
fact that there is a summation over ℓ ∈ Zd, instead of just choosing ℓ = 0. Note
that σ̂(t, 0) =

∫ t

0

∫∫
G(τ, x, v) · R(τ, x) dx dv dτ = 0, because G is a v-gradient.

From (6.7) and (6.8) we deduce
∑

k

e2π(λt+µ)|k||σ̂(t, k)|

.

∫ t

0

(1 + τ)
∑

ℓ 6=k, k 6=0

e2πµ|k| e2πλt|k| e−2πµ|ℓ| e−2πλ|k(t−τ)+ℓτ | e−2πµ|k−ℓ| e
−2πλτ |k−ℓ|

1 + |k − ℓ|γ .

Using the inequalities

e−2πµ|k−ℓ| e2πµ|k| e−2πµ|ℓ| ≤ e−2π(µ−µ)|ℓ|

and
e−2πλτ |k−ℓ| e2πλt|k| e−2πλ|k(t−τ)+ℓτ | ≤ e−2π(λ−λ)|k(t−τ)+ℓτ |,

we end up with

‖σ(t)‖Fλt+µ .
∑

k 6=0, ℓ 6=k

e−2π(µ−µ)|ℓ|

1 + |k − ℓ|γ
∫ t

0

e−2π(λ−λ)|k(t−τ)+ℓτ | (1 + τ) dτ.
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If it were not for the negative exponential, the time-integral would be O(t2) as
t → ∞. The exponential helps only a bit: its argument vanishes e.g. for d = 1,
k > 0, ℓ < 0 and τ = (k/(k + |ℓ|))t. Thus we have the essentially optimal bounds

(6.9)

∫ t

0

e−2π(λ−λ)|k(t−τ)+ℓτ | dτ ≤ 1

π(λ− λ) |k − ℓ|
and

(6.10)

∫ t

0

e−2π(λ−λ)|k(t−τ)+ℓτ | τ dτ ≤ 1

2π2(λ− λ)2 |k − ℓ|2
+

(
1

π(λ− λ)

) |k|t
|k − ℓ| .

From this computation we conclude that:

• The higher regularity of G has allowed to reduce the time-integral thanks to a
factor e−α|k(t−τ)+ℓτ |; but this factor is not small when τ/t is equal to k/(k − ℓ). As
discussed in the next section, this reflects an important physical phenomenon called
(plasma) echo.

• If we had (in “gliding” norm) ‖Gτ‖ = O(1) this would ensure a uniform bound
on the integral, as soon as γ > 0, thanks to (6.9) and

∑

k,ℓ

e−α|ℓ|

(1 + |k − ℓ|)1+γ
< +∞.

• But Gτ is a velocity-gradient, so — unless of course G depends only on v —
‖Gτ‖ diverges like O(τ) as τ → ∞, which implies a divergence of our bounds in large
time, as can be seen from (6.10). If γ ≤ 1 this comes with a divergence in the k

variable, since in this case
∑

k,ℓ
e−α|ℓ||k|

(1+|k−ℓ|)1+γ = +∞. (The Coulomb case corresponds

to γ = 1, so in this respect it has a borderline divergence.)

For the moment let us adapt the previous computation to the formalism of hybrid
norms, still assuming R = R(τ, x). Note that we shall only estimate the seminorm
of σ, not the full norm.

Proposition 6.4 (Long-term extortion and decay). Let G = G(τ, x, v), R = R(τ, x),
and

σ(t, x) =

∫ t

0

∫

Rd

G
(
τ, x− v(t− τ), v

)
· R
(
τ, x− v(t− τ)

)
dv dτ.

Then for any λ > λ > 0, µ > µ > 0, γ > 0,

(6.11) ‖σ(t, ·)‖Ḟλt+µ ≤
∫ t

0

K(t, τ) ‖Rτ‖Fλτ+µ,γ dτ,
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where
(6.12)

K(t, τ) = e−2π(λ−λ)(t−τ)

∥∥∥∥
∫

Td

G(τ, x, ·) dx
∥∥∥∥
Cλ;1

+

(
sup

0≤τ≤t

‖Gτ‖Zλ,µ;1
τ

1 + τ

)
K1(t, τ),

and

(6.13) K1(t, τ) = (1 + τ) sup
k 6=0, ℓ 6=0

e−2π(λ−λ)|k(t−τ)+ℓτ | e−2π(µ−µ)|ℓ|

1 + |k − ℓ|γ .

Remark 6.5. Notice the sharp contrast with Proposition 6.2 as far as the time
shifts are concerned: now Gτ is measured in a norm with time-shift τ .

Remark 6.6. It is essential in (6.12) to separate the contribution of Ĝ(τ, 0, v) from
the rest. Indeed, if we removed the restriction ℓ 6= 0 in (6.16) the kernel K1 would
be too large to be correctly controlled in large time. What makes this separation
reasonable is that, although in cases of application G(τ, x, v) is expected to grow like
O(τ) in large time, the spatial average

∫
G(τ, x, v) dx is expected to be bounded.

Proof of Proposition 6.4. As in the computation opening this subsection, we have

σ̂(t, k) =

∫ t

0

∑

ℓ 6=k

(∫

Rd

Ĝ(τ, ℓ, v) e−2iπk·v(t−τ) dv

)
R̂(τ, k − ℓ) dτ.

Discarding the contribution of k = 0, we have

∥∥σ(t, · )
∥∥
Ḟλt+µ ≤

∑

k 6=0

e2πλt|k| e2πµ|k|
∫ t

0

∑

ℓ 6=k

∣∣∣∣
∫

Rd

Ĝ(τ, ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣
∣∣R̂(τ, k − ℓ)

∣∣ dτ

≤
∑

ℓ 6=k 6=0

∫ t

0

e2πµ|ℓ| e2πµ|k−ℓ| e−2π(µ−µ)|ℓ| e2πλτ |k−ℓ| e2πλ|k(t−τ)+ℓτ | e−2π(λ−λ)|k(t−τ)+ℓτ |

∣∣∣∣
∫

Rd

Ĝ(τ, ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣
∣∣R̂(τ, k − ℓ)

∣∣ dτ.
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Next,

e2πλ|k(t−τ)+ℓτ |
∣∣∣∣
∫

Rd

Ĝ(τ, ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣

=
∑

n∈Nd
0

(2πλ)n

n!

∣∣k(t− τ) + ℓτ
∣∣n
∣∣∣∣
∫

Rd

Ĝ(τ, ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣

=
∑

n∈Nd
0

λ
n

n!

∣∣∣∣
∫

Rd

(2iπ)n
(
k(t− τ) + ℓτ

)n
Ĝ(τ, ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣ .

Since 2iπ(k(t − τ) + ℓτ) e−2iπk·v(t−τ) = (−∇v + 2iπℓτ) e−2iπk·v(t−τ), the v-integral
coincides with
∫

Rd

Ĝ(τ, ℓ, v)
(
−∇v + 2iπℓτ

)n
e−2iπk·v(t−τ) dv

=

∫

Rd

(
∇v + 2iπℓτ

)n
Ĝ(τ, ℓ, v) e−2iπk·v(t−τ) dv.

Reporting this in the estimate of σ, we conclude in the end that

‖σ(t)‖Ḟλt+µ ≤
∫ t

0

(
inf

ℓ 6=k 6=0
e−2π(λ−λ)|k(t−τ)+ℓτ | e−2π(µ−µ)|ℓ|

)

(∑

k∈Zd

|R̂(τ, k)| e2π(λτ+µ)|k|

) 
 ∑

ℓ∈Zd, n∈Nd
0

e2πµ|ℓ| λ
n

n!

∥∥∥
(
∇v + 2iπτℓ

)n
Ĝ(τ, ℓ, v)

∥∥∥
L1(dv)


 dτ.

The conclusion follows easily. �

6.5. Extension to the velocity dependence. Even though we will not need it in
the proof of Theorem 2.5, it is a natural question whether Proposition 6.4 extends
to the case when R also depends on v: this problem arises immediately if R is a
density composed by a scattering, or if the interaction has a velocity dependence.

In this situation we did not manage to find a relevant inequality in the setting of
the “plain” hybrid norms from Section 4; instead, we will be able to provide such
an estimate in the setting of the two-shift hybrid norms from Subsection 4.10:

Proposition 6.7 (Long-term extortion with velocity dependence). Let G = G(τ, x, v),
R = R(τ, x, v), and

σ(t, x) =

∫ t

0

∫

Rd

G
(
τ, x− v(t− τ), v

)
· R
(
τ, x− v(t− τ), v

)
dv dτ.
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Then for any λ > λ > 0, µ > µ > 0, γ > 0,

(6.14) ‖σ(t, ·)‖Ḟλt+µ ≤
∫ t

0

K(t, τ) ‖Rτ‖Z(λ,λ−λ),(µ,γ)
(τ,0)

dτ,

where
(6.15)

K(t, τ) = e−2π(λ−λ)(t−τ)

∥∥∥∥
∫

Td

G(τ, x, ·) dx
∥∥∥∥
Cλ;1

+

(
sup

0≤τ≤t

‖Gτ‖Zλ,µ;1
τ

1 + τ

)
K1(t, τ),

and

(6.16) K1(t, τ) = (1 + τ) sup
k 6=0, ℓ 6=0

e−2π(λ−λ)|k(t−τ)+ℓτ | e−2π(µ−µ)|ℓ|

1 + |k − ℓ|γ .

Remark 6.8. If R = R(τ, x) then in view of Proposition 4.32 the norm of R inside
(6.14) is just ‖Rτ‖Fλτ+µ,γ , and we are back to Proposition 6.4.

Proof of Proposition 6.7. Let us first assume that
∫
G(τ, x, v) dx = 0. We start by

computing the Fourier transform of σ:

σ̂(t, k) =

∫ t

0

∫

Rd

∫

Td

(G · R)(τ, x, v) e−2iπk·x e−2iπk·v(t−τ) dx dv dτ

=

∫ t

0

∑

ℓ∈Zd\{0}

∫

Rd

Ĝ(τ, ℓ, v) · R̂(τ, k − ℓ, v) e−2iπk·v(t−τ) dv dτ.

Taking into account only nonzero values of k, we have

‖σ(t)‖Ḟλt+µ =
∑

k 6=0

e2π(λt+µ)|k|

∣∣∣∣∣

∫ t

0

∑

ℓ 6=0

∫

Rd

Ĝτ (ℓ, v) · R̂τ (k − ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣∣ dτ

≤
∫ t

0

∑

k 6=0, ℓ 6=0

e2π(λt+µ)|k|
∣∣∣∣
∫

Rd

Ĝτ (ℓ, v) · R̂τ (k − ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣ dτ

=

∫ t

0

∑

k,ℓ,n

e2πµ|k| (2πλ|k|t)n

n!

∣∣∣∣
∫

Rd

Ĝτ (ℓ, v) · R̂τ (k − ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣ dτ

=

∫ t

0

∑

k,ℓ,n

e2πµ|k|λ
n

n!

∣∣∣∣
∫

Rd

(2iπkt)n Ĝτ (ℓ, v) · R̂τ (k − ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣ dτ.

(Needless to say, it is crucial to have the v-integral inside the modulus, not outside.)
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Next, we use

(2iπkt)n e−2iπk·v(t−τ) = (−∇v + 2iπkτ)n e−2iπk·v(t−τ).

After integration by parts in the v-integral, this results in
(6.17)

‖σ(t)‖Ḟλt+µ ≤
∫ t

0

∑

k,ℓ,n

e2πµ|k| λ
n

n!

∣∣∣∣
∫

Rd

(∇v + 2iπkτ)n
(
Ĝτ (ℓ, v) · R̂τ (k − ℓ, v)

)
e−2iπk·v(t−τ) dv

∣∣∣∣ dτ.

By the Leibniz-type formula from Lemma A.1, with a = 2iπℓτ and b = 2iπ(k−ℓ)τ ,

(∇v + 2iπkτ)n
(
Ĝ(ℓ, v) · R̂(k − ℓ, v)

)

=
∑

m

( n

m

)
(∇v + 2iπτℓ)m Ĝ(ℓ, v) · (∇v + 2iπτ(k − ℓ))n−mR̂(k − ℓ, v).

Plugging this in (6.17) we get

‖σ(t)‖Ḟλt+µ ≤
∫ t

0

∑

k,ℓ,n

e2πµ|k| λ
n

n!
∣∣∣∣∣
∑

m

( n

m

) ∫

Rd

(
∇v + 2iπτℓ

)m
Ĝτ (ℓ, v) ·

(
∇v + 2iπτ(k − ℓ)

)n−m
R̂τ (k − ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣∣ dτ.

If now we exchange the v-integral and the modulus, we shall be back to the old
estimate from Proposition 6.1. Instead, we insert (inside the k, ℓ summation, but
outside the m summation)

1 = e−2π(λ−λ)|k(t−τ)+ℓτ |
∑

q∈Nd
0

∣∣∣2iπ(λ− λ)
(
k(t− τ) + ℓτ

)∣∣∣
q

q!
.

Thus we get

‖σ(t)‖Ḟλt+µ ≤
∫ t

0

∑

k,n,ℓ,q

e2πµ|k| e−2π(λ−λ)|k(t−τ)+ℓτ | λ
n (λ− λ)q

n! q!
∣∣∣∣∣
∑

m

( n

m

) ∫

Rd

(∇v + 2iπτℓ)mĜτ (ℓ, v) · (∇v + 2iπτ(k − ℓ))n−mR̂τ (k − ℓ, v)

(
2iπ(k(t− τ) + ℓτ)

)q
e−2iπk·v(t−τ) dv

∣∣ dτ.
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The v-integral above is equal to

∫

Rd

(∇v + 2iπτℓ)mĜτ (ℓ, v) · (∇v + 2iπτ(k − ℓ))n−mR̂τ (k − ℓ, v) (−∇v + 2iπτℓ)q e−2iπk·v(t−τ) dv

=

∫

Rd

(∇v + 2iπτℓ)q
[
(∇v + 2iπτℓ)mĜτ (ℓ, v) · (∇v + 2iπτ(k − ℓ))n−mR̂τ (k − ℓ, v)

]
e−2iπk·v(t−τ) dv

=
∑

r≤q

( q

r

) ∫

Rd

(
∇v + 2iπτℓ

)m+r
Ĝτ (ℓ, v) · ∇q−r

v

(
∇v + 2iπτ(k − ℓ)

)n−m
R̂τ (k − ℓ, v) e−2iπk·v(t−τ) dv,

where the last step follows from Lemma A.1 again, this time with a = 2iπτℓ and
b = 0. We deduce

‖σ(t)‖Ḟλt+µ ≤
∫ t

0

∑

k,n,ℓ,q

e2πµ|k| e−2π(λ−λ)|k(t−τ)+ℓτ | λ
n (λ− λ)q

n! q!

∣∣∣∣∣
∑

m,r

( n

m

)( q

r

)

∫
(∇v + 2iπτℓ)m+rĜτ (ℓ, v) · ∇q−r

v (∇v + 2iπτ(k − ℓ))n−m R̂τ (k − ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣∣ dτ

≤
∫ t

0

∑

k,n,ℓ,q,m,r

e−2π(λ−λ)|k(t−τ)+ℓτ | e2πµ|k| λn (λ− λ)q

m! (n−m)! r! (q − r)!
∥∥∥(∇v + 2iπτℓ)m+rĜτ (ℓ, v)

∥∥∥
L1(dv)

∥∥∥∇q−r
v (∇v + 2iπτ(k − ℓ))n−mR̂τ (k − ℓ, v)

∥∥∥
L∞(dv)

dτ

≤
∫ t

0

∑

k,n,ℓ,q,m,r

e−2π(λ−λ)|k(t−τ)+ℓτ | e−2π(µ−µ)|ℓ| e2πµ|ℓ| e2πµ|k−ℓ|

1 + |k − ℓ|γ (1 + |k − ℓ|γ)

λm λn−m (λ− λ)r (λ− λ)q−r

m! (n−m)! r! (q − r)!

∥∥∥(∇v + 2iπτℓ)m+rĜτ (ℓ, v)
∥∥∥

L1(dv)∥∥∥∇q−r
v (∇v + 2iπτ(k − ℓ))n−mR̂τ (k − ℓ, v)

∥∥∥
L∞(dv)

dτ,
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and therefore

‖σ(t)‖Ḟλt+µ ≤
∫ t

0

sup
k,ℓ

(
e−2π(λ−λ)|k(t−τ)+ℓτ | e−2π(µ−µ)|ℓ|

1 + |k − ℓ|γ

)

∑

k,p,ℓ,s,m,r

λm λp (λ− λ)r (λ− λ)s

m! p! r! s!
e2πµ|ℓ| e2πµ|k−ℓ| (1 + |k − ℓ|γ)

∥∥∥(∇v + 2iπτℓ)m+rĜτ (ℓ, v)
∥∥∥

L1(dv)

∥∥∥∇s
v (∇v + 2iπτ(k − ℓ))pR̂τ (k − ℓ, v)

∥∥∥
L∞(dv)

dτ

=

∫ t

0

K1(t, τ)

1 + τ

(∑

m,r,ℓ

e2πµ|ℓ| λm (λ− λ)r

m! r!

∥∥∥(∇v + 2iπτℓ)m+rĜτ (ℓ, v)
∥∥∥

L1(dv)

)

(∑

p,ℓ,s

e2πµ|k−ℓ| (1 + |k − ℓ|γ) λ
p (λ− λ)s

p! s!

∥∥∥∇s
v (∇v + 2iπτ(k − ℓ))pR̂τ (k − ℓ, v)

∥∥∥
L∞(dv)

)
dτ

=

∫ t

0

K1(t, τ)

1 + τ
‖Gτ‖Zλ,µ;1

τ
‖Rτ‖Z(λ,λ−λ),(µ,γ)

(τ,0)

dτ,

and the estimate is complete.

It remains to include the contribution of
∫
G(τ, x, v) dx, i.e., the term ℓ = 0. This

is done is just the same way, noting that

sup
k 6=0

e−2π(λ−λ)|k|(t−τ)

1 + |k|γ ≤ e−2π(λ−λ)(t−τ).

(For this term we do not need to take advantage of the parameter γ.) �

6.6. Combined regularity extortion and decay estimate. Now we shall com-
bine the two mechanisms appearing in Propositions 6.2 and 6.4 (or 6.7).

Theorem 6.9 (Combined regularity transfer and regularity-to-decay). Let G =
G(τ, x, v), R = R(τ, x, v), and

σ(t, x) =

∫ t

0

∫

Rd

G
(
τ, x− v(t− τ), v

)
· R
(
τ, x− v(t− τ), v

)
dv dτ.

Let λ, λ, µ, µ, µ′ = µ′(t, τ), such that λ > λ > 0, µ ≥ µ′(τ, t) > µ > 0 and
b = b(t, τ) ≥ 0 such that

(6.18) ∀ 0 ≤ τ ≤ t, b ≤ 1

2t

(
µ̄− µ

λ̄− λ

)
.
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Then

‖σ(t, ·)‖Ḟλt+µ ≤
∫ t

0

KG
0 (t, τ) ‖Rτ‖Z((1+b)λ,λ−λ),µ′

(τ− bt
1+b

,0)
dτ+

∫ t

0

KG
1 (t, τ) ‖Rτ‖Z((1+b)λ,λ−λ),(µ′,γ)

(τ− bt
1+b

,0)
dτ

where

(6.19) KG
0 (t, τ) = e

−2π
“

λ−λ
2

”

(t−τ)

∥∥∥∥
∫

Rd

G(τ, x, ·) dx
∥∥∥∥
Cλ+bλ;1

and

(6.20) KG
1 (t, τ) =


 sup

0≤τ≤t

‖Gτ‖Zλ+bλ,µ
τ−bt/(1+b)

1 + τ


 K1(t, τ),

and

(6.21) K1(t, τ) = (1 + τ) sup
k 6=0, ℓ 6=0

e−2π(µ−µ
2 )|ℓ|

(
e−2π(µ′−µ)|k−ℓ|

1 + |k − ℓ|γ
)
e−2π(λ−λ)|k(t−τ)+ℓτ |.

In particular, if R does not depend on v, we have

‖σ(t, ·)‖Ḟλt+µ ≤
∫ t

0

KG
0 (t, τ) ‖Rτ‖Fν dτ +

∫ t

0

KG
1 (t, τ) ‖Rτ‖Fν,γ dτ,

where

ν = (1 + b)λ

∣∣∣∣τ −
bt

1 + b

∣∣∣∣+ µ′.

Proof of Theorem 6.9. The proof is basically obtained by reproducing in Fourier
space the proof of Proposition 6.2 and mixing it with the proof of Proposition 6.7.

Let us first assume Ĝ(τ, 0, v) = 0, and write again

‖σ(t)‖Ḟλt+µ ≤
∫ t

0

∑

k,ℓ,n

e2πµ|k| λ
n

n!

∣∣∣∣
∫

Rd

(2iπkt)n Ĝτ (ℓ, v) · R̂τ (k − ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣ dτ ;

but now we write

(2iπkt)n e−2iπk·v(t−τ) = (1 + b)n

(
2iπkt

1 + b

)n

e−2iπk·v(t−τ)

= (1 + b)n
(
−∇v + 2iπkτ ′

)n
e−2iπk·v(t−τ),

where

τ ′ = τ − bt

1 + b
.
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Integrating by parts in the v-integral and applying Lemma A.1, this gives

‖σ(t)‖Ḟλt+µ ≤
∫ t

0

∑

k,ℓ,n

e2πµ|k| (1 + b)n

n!
λn

∣∣∣∣
∫

Rd

(∇v + 2iπkτ ′)n
[
Ĝτ (ℓ, v) · R̂τ (k − ℓ, v)

]
e−2iπk·v(t−τ) dv

∣∣∣∣ dτ

=

∫ t

0

∑

k,ℓ,n

e2πµ|k| (1 + b)n

n!
λn

∣∣∣∣∣
∑

m

( n

m

) ∫

Rd

(
∇v + 2iπτ ′ℓ

)m
Ĝτ (ℓ, v) ·

(
∇v + 2iπτ ′(k − ℓ)

)n−m
R̂τ (k − ℓ, v) e−2iπk·v(t−τ) dv

∣∣∣∣∣ dτ.

Now we insert

1 = e−2π(λ̄−λ)|k(t−τ)+ℓτ ′|
∑

q∈Nd
0

∣∣∣2iπ(λ̄− λ) (τ ′ℓ+ k(t− τ))
∣∣∣
q

q!
.

Reasoning as in the proof of Proposition 6.7, we get

‖σ(t)‖Ḟλt+µ ≤
∫ t

0

sup
k,ℓ

(
e−2π(λ̄−λ)|k(t−τ)+ℓτ ′| e−2π(µ̄−µ)|ℓ| e−2π(µ′−µ)|k−ℓ|

1 + |k − ℓ|γ

)

∑

k,p,ℓ,s,m,r

((1 + b)λ)m ((1 + b)λ)p (λ̄− λ)r (λ̄− λ)s

m! p! r! s!
e2πµ̄|ℓ| e2πµ′|k−ℓ| (1 + |k − ℓ|γ)

∥∥∥(∇v + 2iπτ ′ℓ)m+rĜτ (ℓ, v)
∥∥∥

L1(dv)

∥∥∥∇s
v (∇v + 2iπτ ′(k − ℓ))p R̂τ (k − ℓ, v)

∥∥∥
L∞(dv)

dτ

≤
∫ t

0

K ′
1(t, τ)

1 + τ
‖Gτ‖Z(1+b)λ+(λ̄−λ),µ̄;1

τ− bt
1+b

‖Rτ‖Z((1+b)λ,λ−λ),(µ′,γ)

(τ− bt
1+b

,0)
dτ,

where

K ′
1(t, τ) = (1 + τ) sup

k,ℓ

(
e−2π(λ̄−λ)|k(t−τ)+ℓτ ′| e−2π(µ̄−µ)|ℓ| e−2π(µ′−µ)|k−ℓ|

1 + |k − ℓ|γ

)
.
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Moreover,

e−2π(λ̄−λ)|k(t−τ)+ℓτ ′| e−2π(µ̄−µ)|ℓ| ≤ e−2π(λ̄−λ)|k(t−τ)+ℓτ | e2π(λ̄−λ)|τ ′−τ | |ℓ| e−2π(µ̄−µ)|ℓ|

≤ e−2π(λ̄−λ)|k(t−τ)+ℓτ | e−2π
(
(µ̄−µ)−(λ̄−λ)|τ ′−τ |

)
|ℓ|

≤ e−2π(λ̄−λ)|k(t−τ)+ℓτ | e−2π
(

(µ̄−µ)
2

)
|ℓ|

by using assumption (6.18). We conclude that

‖σ‖Ḟλt+µ ≤
∫ t

0

K1(t, τ)

1 + τ
‖Gτ‖Zλ+bλ,µ;1

τ− bt
1+b

‖Rτ‖Z((1+b)λ,λ−λ),(µ′,γ)

(τ− bt
1+b

,0)
dτ.

Finally, the contribution of ℓ = 0 is handled separately, as in Proposition 6.7, and
yields the first term in (6.19); this estimate is insensitive to γ. �

7. Control of the time-response

To motivate this section, let us start from (3.3), but now assume that f 0 depends
on t, x, v and that there is an extra source term S, decaying in time. Thus the
equation is

∂f

∂t
+ v · ∇xf − (∇W ∗ ρ) · ∇vf

0 = S,

and the equation for the density ρ, as in the proof of Theorem 3.1, is

(7.1)

ρ(t, x) =

∫

Rd

fi(x−vt, v) dv+
∫ t

0

∫

Rd

∇vf
0
(
τ, x−v(t−τ), v

)
·(∇W∗ρ)(τ, x−v(t−τ)) dv dτ

+

∫ t

0

∫

Rd

S(τ, x− v(t− τ), v) dv dτ.

Hopefully we may apply Theorem 6.9 to deduce from (7.1) an integral inequality
on ϕ(t) := ‖ρ(t)‖Fλt+µ, which will look like

(7.2) ϕ(t) ≤ A + c

∫ t

0

K(t, τ)ϕ(τ) dτ,

where a is the contribution of the initial datum and the source term, and K(t, τ) a
kernel looking like, say, (6.21).
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Then from (7.2) how do we proceed? Assume for a start that a smallness condition
of the form (a) in Proposition 2.1 is satisfied. Then the simple and natural way, as
in Section 3, would be to write

ϕ(t) ≤ A + c

(∫ t

0

K(t, τ) dτ

) (
sup

0≤τ≤t
ϕ(τ)

)
,

and deduce

(7.3) ϕ(t) ≤ A(
1 − c

∫ t

0
K(t, τ) dτ

)

(assuming of course the denominator to be positive). However, if K is given by

(6.21), it is easily seen that
∫ t

0
K(t, τ) dτ ≥ κ t as t → ∞, where κ > 0; then

(7.3) is useless. In fact (7.2) does not prevent ϕ from going to +∞ as t → ∞.
Nevertheless, its growth may be controlled under certain assumptions, as we shall
see in this section. Before embarking on cumbersome calculations, we shall start
with a qualitative discussion.

7.1. Qualitative discussion. The kernel K in (6.21) depends on the choice of
µ′ = µ(t, τ). How large µ′−µ can be depends in turn on the amount of regularization
offered by the convolution with the interaction ∇W . We shall distinguish two cases.

7.1.1. Analytic interaction. If ∇W is analytic, there is σ > 0 such that

∀ν ≥ 0, ‖ρ ∗ ∇W‖Fν+σ ≤ C ‖ρ‖Fν ;

then in (6.21) we can afford to choose, say, µ′ − µ = σ/2, and γ = 0. Thus K is
bounded by

(7.4) K
(α)

(t, τ) = (1 + τ) sup
k 6=0, ℓ 6=0

e−α|ℓ| e−α|k−ℓ| e−α|k(t−τ)+ℓτ |,

where α = 1
2
min{λ− λ ; µ− µ ; σ}. Let us work in dimension d = 1. The goal is to

estimate solutions of

(7.5) ϕ(t) ≤ a + c

∫ t

0

K
(α)

(t, τ)ϕ(τ) dτ.

Whenever τ/t is a rational number distinct from 0 or 1, there are k, ℓ ∈ Z such

that |k(t− τ) + ℓτ | = 0, and the size of K
(α)

(t, τ) mainly depends on the minimum
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admissible values of k and k − ℓ. Looking at values of τ/t of the form 1/(n+ 1) or
n/(n+ 1) suggests the approximation

(7.6) K
(α)

. (1 + τ) min
{
e−α( τ

t−τ ) e−2α ; e−2α( t−τ
τ ) e−α

}
,

which seems to be an exact upper bound for τ ≥ t/2. But this estimate is terrible:

the time-integral of the right-hand side is much larger than the integral of K
(α)

. In

fact, the fast variation and “wiggling” behavior of K
(α)

are essential to get decent
estimates.
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Figure 5. the kernel K
(α)

(t, τ), together with the approximate upper
bound in (7.6), for α = 0.5 and t = 10, t = 100, t = 1000.

To get a better feeling for K
(α)

, let us only retain the term in k = 1, ℓ = −1; this
looks reasonable since we have an exponential decay as k or ℓ go to infinity (anyway,
throwing away all other terms can only improve the estimates). So we look at

K̃(α)(t, τ) = (1+ τ) e−3α e−α|t−2τ |. Let us time-rescale by setting kt(θ) = t K̃(α)(t, tθ)
for θ ∈ [0, 1] (the t factor because dτ = t dθ); then it is not hard to see that

kt

t
−→ e−3α

2α
δ 1

2

This suggests the following baby model for (7.5):

(7.7) ϕ(t) ≤ a + c t ϕ

(
t

2

)
.

The important point in (7.7) is that, although the kernel has total mass O(t), this
mass is located far from the endpoint τ = t; this is what prevents the fast growth
of ϕ. Compare with the inequality ϕ(t) ≤ a + c t ϕ(t), which implies no restriction
at all on ϕ.
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To be slightly more quantitative, let us look for a power series Φ(t) =
∑

k ak t
k

achieving equality in (7.7). This yields a0 = a, ak+1 = c ak 2−k, so

(7.8) Φ(t) = a

∞∑

k=0

ck tk

2k(k−1)/2
.

The function Φ exhibits a truly remarkable behavior: it grows faster than any poly-
nomial, but slower than any fractional exponential exp(c tν), ν ∈ (0, 1); essentially

it behaves like A(log t)2 (as can also be seen directly from (7.7)). One may conjecture
that solutions of (7.5) exhibit a similar kind of growth.

7.1.2. Sobolev interaction. If ∇W only has Sobolev regularity, we cannot afford in
(6.21) to take µ′(t, τ) larger than µ + η(t − τ)/t (because the amount of regularity
transferred in the bilinear estimates is only O((t− τ)/t), recall the discussion at the
end of Subsection 6.3). On the other hand, we have γ > 0 such that

∀ν ≥ 0, ‖∇W ∗ ρ‖Fν,γ ≤ C ‖ρ‖Fν ,

and then we can choose this γ in (6.21). So K in (6.21) will be controlled by

(7.9) K(α),γ(t, τ) = (1 + τ) sup
k 6=0, ℓ 6=0

e−α|ℓ| e−α( t−τ
t )|k−ℓ| e−α|k(t−τ)+ℓτ |

1 + |k − ℓ|γ ,

where α = 1
2
min{λ− λ ; µ− µ ; η}. The equation we are considering now is

(7.10) ϕ(t) ≤ a+

∫ t

0

K(α),γ(t, τ)ϕ(τ) dτ.

For, say, τ ≤ t/2, we have K(α) ≤ K
(α/2)

, and the discussion is similar to that in
7.1.1. But when τ aproaches t, the term exp

(
−α( t−τ

t
) |k− ℓ|

)
hardly helps. Keeping

only k > 0 and ℓ = −1 (because of the exponential decay in ℓ) leads to consider the
kernel

Ǩ(α)(t, τ) = (1 + τ) sup
k 6=0

e−α|kt−(k+1)τ |

1 + (k + 1)γ
.

Once again we perform a time-rescaling, setting ǩt(θ) = t Ǩ(α)(t, tθ), and let t →
∞. In this limit each exponential exp(−α|kt − (k + 1)τ |) becomes localized in a
neighborhood of size O(1/k t) around θ = k/(k + 1), and contributes a Dirac mass
at θ = k/(k + 1), with amplitude 2/(α(k + 1));

ǩt

t
−−−→
t→∞

2

α

∑

k

1

1 + (k + 1)γ

k

(k + 1)2
δ1− 1

k+1
.
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This leads us to the following baby model for (7.10):

(7.11) ϕ(t) ≤ a+ c t
∑

k≥1

1

k1+γ
ϕ

((
1 − 1

k

)
t

)
.

If we search for
∑
ant

n achieving equality, this yields

a0 = a, an+1 = c

(∑

k≥1

1

k1+γ

(
1 − 1

k

)n
)
an.

To estimate the behavior of the
∑

k above, we compare it with
∫ ∞

1

1

t1+γ

(
1 − 1

t

)n

dt =

∫ t

0

uγ−1 (1 − u)n du = B(γ, n+ 1) (Beta function)

=
Γ(γ) Γ(n+ 1)

Γ(n + γ + 1)
= O

(
1

nγ

)
.

All in all, we may expect ϕ in (7.10) to behave qualitatively like

Φ(t) = a
∑

n≥0

cn tn

(n!)γ
.

Notice that Φ is subexponential for γ > 1 (it grows essentially like the fractional
exponential exp(t1/γ)) and exponential for γ = 1.

7.1.3. Physical implications. The kernel K in (6.21) takes into account possible “res-
onances” between spatial modes, whose control is crucial in the study of the non-
linear Vlasov equation. Then the growth of solutions to (7.2) hopefully provides
qualitative information about the disturbance by resonances; this depends on the
index γ of (Sobolev) regularity of ∇W .

• When γ > 1, we expect a subexponential growth of the disturbance, which
should be absorbed by the exponential damping. For this reason, one may now
— and only now — believe in nonlinear Landau damping for such potentials. The
case γ = 1 seems to be critical and requires a more careful discussion; as a matter
of fact, this is by far the most important case, since it corresponds to the electro-
static/gravitational potential used in physics!

• If we work in a setting of functions that are less smooth than analytic, the decay
due to phase mixing will not be as good as exponential; but rather O(t−∞) for C∞

data, or exp(−tβ) for Gevrey-β regularity, etc. On the other hand, the heuristics
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from 7.1.2 suggest a disturbance growing like exp(t1/γ). So one may doubt the reality
of the nonlinear Landau damping below Gevrey-(1/γ) regularity!

• Even in the extremely favorable case of an analytic interaction, one may doubt
the possibility of nonlinear Landau damping in C∞, since Φ in (7.8) grows faster than
any fixed power of t. This is all the more interesting that linear Landau damping
does hold in C∞, and even in Ck (modulo decay conditions at large velocities) for k
as low as 1 + ε; recall Remark 3.5.

The kind of resonances which we are chasing is at the basis of the plasma echo
phenomenon [30]: a plasma which has been excited by a first pulse and has subse-
quently damped, will react twice to a second pulse: first at the instant of the exci-
tation, and then at a later time which is determined by the frequences of the two
pulses, as well as the time interval between them. The question which we are eventu-
ally asking is whether self-induced echoes in the plasma slowly destroy the damping.
Our conjecture is that this highly depends on the regularity of the interaction and
of the distribution function: for analytic interaction the echoes are well-separated
and not very dangerous; but if the interaction is very rough, they become almost
instantaneous. Our analysis suggests that for Coulomb interaction, and data which
are not analytic, Landau damping may be drowned in a slow accumulation of such
echoes.

7.2. Exponential moments of the kernel. Now we start to estimate the kernel
K(α),γ from (7.9), without any approximation this time. The first step consists in
estimating exponential moments.

Proposition 7.1 (Exponential moments of the kernel). Let γ ∈ [1,∞] be given.
For any α ∈ (0, 1), let K(α),γ be defined by (7.9) for γ <∞, and by (7.4) if γ = ∞.
Then for any γ < ∞ there is α = α(γ) > 0 such that if α ≤ α and ε ∈ (0, 1), then
for any t > 0,

e−εt

∫ t

0

K(α),γ(t, τ) eετ dτ

≤ C

(
1

α εγ tγ−1
+

ln 1
α

α εγ tγ
+

1

α2 ε1+γ t1+γ
+

(
1

α3
+

ln 1
α

α2ε

)
e−

ε t
4 +

e−
α t
2

α3

)
,

where C = C(γ). In particular,

• If γ > 1 and ε ≤ α, then e−εt

∫ t

0

K(α),γ(t, τ) eετ dτ ≤ C(γ)

α3 ε1+γ tγ−1
;
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• If γ = 1 then e−εt

∫ t

0

K(α),γ(t, τ) eετ dτ ≤ C

α3

(
1

ε
+

1

ε2 t

)
.

Additionally,

• If γ = ∞, then e−εt

∫ t

0

K(α),γ(t, τ) eετ dτ ≤ C

(
1

α4
+

ln 1
α

α3ε

)
e−

εt
4 +

e−
α t
2

α3
.

Proof of Proposition 7.1. To simplify notation we shall not recall the dependence of
K on γ. We first assume γ <∞, and consider τ ≤ t/2, which is the favorable case.
We write

K(α)(t, τ) ≤ (1 + τ) sup
k 6=0

sup
ℓ
e−α|ℓ| e−

α
2
|k−ℓ| e−α|k(t−τ)+ℓτ |.

Since we got rid of the condition ℓ 6= 0, the right-hand side is now a nonincreasing
function of d. (To see this, pick up a nonzero component of k, and recall our norm
conventions from Appendix A.1.) So we assume d = 1. By symmetry we may also
assume k > 0.

Explicit computations yield

∫ t/2

0

e−α|k(t−τ)+ℓτ | (1+τ) dτ ≤





1

α (ℓ− k)
+

1

α2 (ℓ− k)2
if ℓ > k

e−αkt

(
t

2
+
t2

8

)
if ℓ = k

e−α( k+ℓ
2 )t

α|k − ℓ|

(
1 +

t

2

)
if −k ≤ ℓ < k

(
2

α|k − ℓ| +
2 kt

α|k − ℓ|2 +
1

α2|k − ℓ|2
)

if ℓ < −k.

In all cases,

∫ t/2

0

e−α|k(t−τ)+ℓτ | (1 + τ) dτ ≤
(

3

α|k − ℓ| +
1

α2|k − ℓ|2 +
2 t

α|k − ℓ|

)
1k 6=ℓ

+ e−αkt

(
t

2
+
t2

8

)
1ℓ=k.
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So

e−εt

∫ t/2

0

e−α|k(t−τ)+ℓτ | (1 + τ) eετ dτ

≤ e−
εt
2

(
3

α|k − ℓ| +
1

α2|k − ℓ|2 +
2 t

α|k − ℓ|

)
1k 6=ℓ + e−αkt

(
t

2
+
t2

8

)
1ℓ=k

≤ e−
εt
4

(
3

α|k − ℓ| +
1

α2|k − ℓ|2 +
8 z

αε|k − ℓ|

)
1k 6=ℓ + e−

tα
2

(
z

α
+

8 z2

α2

)
1ℓ=k,

where z = sup(xe−x) = e−1. Then

eεt

∫ t/2

0

K(α)(t, τ) eετ dτ

≤ e−
εt
4

∑

k 6=0

∑

ℓ 6=k

e−α|ℓ| e−
α
2
|k−ℓ|

(
3

α|k − ℓ| +
1

α2|k − ℓ|2 +
8 z

αε|k − ℓ|

)

+ e−
tα
2

∑

ℓ

e−α|ℓ|
(
z

α
+

8z2

α2

)
.

Using the bounds (for α ∼ 0+)

∑

ℓ

e−αℓ = O

(
1

α

)
,
∑

ℓ

e−αℓ

ℓ
= O

(
ln

1

α

)
,
∑

ℓ

e−αℓ

ℓ2
= O(1),

we end up, for α ≤ 1/4, with a bound like

C e−
εt
4

(
1

α2
ln

1

α
+

1

α3
+

1

α2ε
ln

1

α

)
+ C e−

αt
2

(
1

α2
+

1

α3

)

≤ C

[
e−

εt
4

(
1

α3
+

1

α2ε
ln

1

α

)
+
e−

αt
2

α3

]
.

(Note that the last term is O(t−3), so it is anyway negligible in front of the other
terms if γ ≤ 4; in this case the restriction ε ≤ α can be dispended with.)

• Next we turn to the more delicate contribution of τ ≥ t/2. For this case we
write

(7.12) K(α)(t, τ) ≤ (1 + τ) sup
ℓ 6=0

e−α|ℓ| sup
k

e−α|k(t−τ)+ℓτ |

1 + |k − ℓ|γ ,
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and the upper bound is a nonincreasing function of d, so we assume d = 1. Without
loss of generality we restrict the supremum to ℓ > 0.

The function x 7−→ (1+ |x− ℓ|γ)−1 e−α|x(t−τ)+ℓτ | is decreasing for x ≥ ℓ, increasing
for x ≤ −ℓτ/(t − τ); and on the interval [− ℓτ

t−τ
, ℓ] its logarithmic derivative goes

from 
−α +

γ
ℓt

1 +
(

(t−τ)
ℓt

)γ


 (t− τ) to − α(t− τ).

So if t ≥ γ/α there is a unique maximum at x = −ℓτ/(t− τ), and the supremum in
(7.12) is achieved for k equal to either the lower integer part, or the upper integer
part of −ℓτ/(t − τ). Thus a given integer k occurs in the supremum only for some
times τ satisfying k − 1 < −ℓτ/(t − τ) < k + 1. Since only negative values of k
occur, let us change the sign so that k is nonnegative. The equation

k − 1 <
ℓτ

t− τ
< k + 1

is equivalent to (
k − 1

k + ℓ− 1

)
t < τ <

(
k + 1

k + ℓ+ 1

)
t.

Moreover, τ > t/2 implies k ≥ ℓ. Thus, for t ≥ γ/α we have
(7.13)

e−εt

∫ t

t/2

K(α)(t, τ) eετ dτ ≤ e−εt
∑

ℓ≥1

e−αℓ
∑

k≥ℓ

∫ ( k+1
k+ℓ+1)t

( k−1
k+ℓ−1)t

(1 + τ)
e−α|k(t−τ)−ℓτ | eετ

1 + (k + ℓ)γ
dτ.

For t ≤ γ/α we have the trivial bound

e−εt

∫ t

t/2

K(α)(t, τ) eετ dτ ≤ γ

2α
;

so in the sequel we shall just focus on the estimate of (7.13).

To evaluate the integral in the right-hand side of (7.13), we separate according to
whether τ is smaller or larger than kt/(k + ℓ); we use trivial bounds for eετ inside
the integral, and in the end we get the explicit bounds

e−εt

∫ ( k
k+ℓ)t

( k−1
k+ℓ−1)t

(1 + τ) e−α|k(t−τ)−ℓτ | eετ dτ ≤ e−
εℓt
k+ℓ

[
1

α(k + ℓ)
+

kt

α(k + ℓ)2

]
,
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e−εt

∫ ( k+1
k+ℓ+1)t

( k
k+ℓ)t

(1+τ) e−α|k(t−τ)−ℓτ | eετ dτ ≤ e−
εℓt

k+ℓ+1

[
1

α(k + ℓ)
+

kt

α(k + ℓ)2
+

1

α2(k + ℓ)2

]
.

All in all, there is a numeric constant C such that (7.13) is bounded above by

(7.14) C
∑

ℓ≥1

e−αℓ
∑

k≥ℓ

(
1

α2(k + ℓ)2+γ
+

1

α(k + ℓ)1+γ
+

kt

α(k + ℓ)2+γ

)
e−

ε ℓ t
k+ℓ ,

together with an additional similar term where e−εℓt/(k+ℓ) is replaced by e−εℓt/(k+ℓ+1),
and which will satisfy similar estimates.

We consider separately the three contributions in the right-hand side of (7.14).
The first one is

1

α2

∑

ℓ≥1

e−αℓ
∑

k≥ℓ

e−
ε ℓt
k+ℓ

(k + ℓ)2+γ
.

To evaluate the behavior of this sum, we compare it to the two-dimensional integral

I(t) =
1

α2

∫ ∞

1

e−αx

∫ ∞

x

e−
ε xt
x+y

(x+ y)2+γ
dy dx.

We change variables (x, y) → (x, u), where u(x, y) = εxt/(x+y). This has Jacobian
determinant (dx dy)/(dx du) = (εxt)/u2, and we find

I(t) =
1

α2 ε1+γ t1+γ

∫ ∞

1

e−αx

x1+γ
dx

∫ εt/2

0

e−u uγ du = O

(
1

α2 ε1+γ t1+γ

)
.

The same computation for the second integral in the right-hand side of (7.14)
yields

1

α εγ tγ

∫ ∞

1

e−αx

xγ
dx

∫ εt/2

0

e−u uγ−1 du = O

(
ln 1

α

α εγ tγ

)
.

(The logarithmic factor arises only for γ = 1.)
The third exponential in the right-hand side of (7.14) is the worse. It yields a

contribution

(7.15)
t

α

∑

ℓ≥1

e−αℓ
∑

k≥ℓ

e−
ε ℓt
k+ℓ k

(k + ℓ)2+γ
.

We compare this with the integral

t

α

∫ ∞

1

e−αx

∫ ∞

x

e−
ε xt
x+y y

(x+ y)2+γ
dx dy,
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and the same change of variables as before equates this with

1

α εγ tγ−1

∫ ∞

1

e−αx

xγ
dx

∫ εt/2

0

e−u uγ−1 du − 1

α ε1+γ tγ

∫ ∞

1

e−αx

xγ
dx

∫ εt/2

0

e−u uγ du

= O

(
ln 1

α

α εγ tγ−1

)
.

(Again the logarithmic factor arises only for γ = 1.)
The proof of Proposition 7.1 in the case γ < ∞ follows by collecting all these

bounds and keeping only the worse.

We now consider the case γ = ∞ (that is, for analytic interaction). The analysis
for τ ≤ t/2 is just the same as in the case γ <∞. On the other hand, for τ ≥ t/2, the
analysis is much more favorable and, as we shall see, almost similar to the symmetric
case τ ≤ t/2. We first write

K(α) ≤ (1 + τ) sup
ℓ 6=0

sup
k
e−α|ℓ| e−α|k−ℓ| e−α|k(t−τ)+ℓτ |

≤ (1 + τ) sup
ℓ 6=0

sup
k
e−α|k|/2 e−α|k−ℓ|/2 e−α|k(t−τ)+ℓτ |.

Next we note that for ℓ 6= 0 and t ≥ 1,
∫ t

t/2

e−α|k(t−τ)+ℓτ | τ dτ

≤
∫ t

t/2

|ℓ|τ e−α|k(t−τ)+ℓτ | dτ

≤
∫ t

t/2

(|k(t− τ) + ℓτ | + |k(t− τ)|) e−α|k(t−τ)+ℓτ | dτ

≤ 2z

α

∫ t

t/2

e−
α
2
|k(t−τ)+ℓτ | dτ + |k|

∫ t

t/2

(t− τ) e−α|k(t−τ)+ℓτ | dτ.

In particular,

e−α|k|/2 e−α|k−ℓ|/2

∫ t

t/2

e−α|k(t−τ)+ℓτ | τ dτ

≤ 6z

α
e−α|k|/4 e−α|k−ℓ|/2

∫ t

t/2

e−
α
2
|k(t−τ)+ℓτ | [1 + (t− τ)] dτ.
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Exchanging k and ℓ on one hand, τ and t − τ on the other, brings us back to
the computations in the case τ ≤ t/2, up to a factor O(1/α). The result follows
immediately. �

Remark 7.2. The fact that these estimates boil down to a one-dimensional analysis
is not surprising: the interaction between waves is strongest when their wave vectors
are parallel; so higher dimension should neither help, nor harm.

Remark 7.3. It is disappointing that the case γ = 1 yields no decay as t → ∞,
even logarithmic. However, our bounds are essentially optimal. For ℓ = 1, the
exponential exp(−α((t− τ)/τ)|k+ ℓ|) is of order 1 (not small) when τ ≃ kt/(k+1).
A more precise computation, using the identities

k + 1

k + ℓ+ 1
− k

k + ℓ
=

ℓ

(k + ℓ) (k + ℓ+ 1)
,

k

k + ℓ
− k − 1

k + ℓ− 1
=

ℓ

(k + ℓ) (k + ℓ− 1)
,

yields a dominant term like

2 e−
ε ℓt
k+ℓ t

α(k + ℓ)

(
k

k + ℓ

) [(
1 − e−

(α(k+ℓ)+ε)ℓt
(k+ℓ)(k+ℓ−1)

)
+
(
1 − e−

(α(k+ℓ)−ε)ℓt
(k+ℓ)(k+ℓ+1)

)]

for the time-integral between (k − 1)/(k + ℓ− 1) to (k + 1)/(k + ℓ + 1). But then,
discarding negligible error terms, we are led to estimate

t
∑

ℓ≥1

e−αℓ
∑

k≥ℓ

e−
ε ℓt
k+ℓ

k

(k + ℓ)3

(
1 − e−

αℓt
k+ℓ

)
,

which in turn leads to the integral

t

∫ ∞

1

e−αx

∫ ∞

x

e−
ε xt
x+y

y

(x+ y)3

(
1 − e−

α xt
x+y
)
dx dy.

To get the asymptotics t→ ∞ we may replace y/(x+ y)3 by 1/(x+ y)2, and obtain
after change of variables

(∫ ∞

1

e−αx

x
dx

) (
1

ε

∫ εt/2

0

e−u du− 1

ε+ α

∫ (ε+α)t/2

0

e−u du

)

−−−→
t→∞

α

ε(ε+ α)

(∫ ∞

1

e−αx

x
dx

)
;

so there is still no decay.
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Remark 7.4. It is not easy to catch (say numerically) the behavior of (7.15), be-
cause it comes as a superposition of exponentially decaying modes; any truncation
in k would lead to a radically different time-asymptotics. This is probably the rea-
son why plasma echoes were apparently never considered as a possible source of
unstability (this eventuality is not mentioned e.g. in [1, Section 12.7], although the
nonlinear nature of the echo phenomenon is clearly pointed out).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  5000  10000  15000  20000  25000

K = 0005
K = 0010
K = 0100
K = 1000

Figure 6. The function (7.15) truncated at k = 5, k = 10, k = 100,
k = 1000. The decay is slower and slower, but still exponential; how-
ever, the maximum value (on the extreme left of the graph, because it
occurs with a much faster rate than the decay) slowly increases with
the truncation parameter.

From Proposition 7.1 we deduce L2 exponential bounds:

Corollary 7.5 (L2 exponential moments of the kernel). With the same notation as
in Proposition 7.1,

(7.16) e−2εt

∫ t

0

e2ετ K
(α),γ
1 (t, τ)2 dτ ≤





C(γ)

α4 ε1+2γ t2(γ−1)
if γ > 1

C

(
1

α3 ε2
+

1

α2 ε3 t

)
if γ = 1

C e−εt/4

α4 ε
if γ = ∞.
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Proof of Corollary 7.5. This follows easily from Proposition 7.1 and the obvious
bound

K
(α),γ
1 (t, τ)2 ≤ C (1 + t)K

(2α),2γ
1 (t, τ).

�

7.3. Dual exponential moments.

Proposition 7.6. With the same notation as in Proposition 7.1, for any γ ≥ 1 we
have

(7.17) sup
τ≥0

eετ

∫ ∞

τ

e−εtK(α),γ(t, τ) dt ≤ C(γ)

(
1

α2 ε
+

ln 1
α

α εγ

)
.

Remark 7.7. The corresponding computation for the baby model considered before
is

eετ

(
1 + τ

α

) ∑

k≥1

e−ε( k+1
k )τ

k1+γ
≃
(

1 + τ

α

)∫ ∞

1

e−ετ/x

x1+γ
dx

=

(
1 + τ

τγ

) (
1

α εγ

)∫ ετ

0

e−u uγ−1 du.

So we expect the dependence upon ε in (7.17) to be sharp for γ → 1.

Proof of Proposition 7.6. We first reduce to d = 1, and split the integral as

eετ

∫ ∞

τ

e−εtK(α),γ(t, τ) dt = eετ

∫ ∞

2τ

e−εtK(α),γ(t, τ) dt+ eετ

∫ 2τ

τ

e−εtK(α),γ(t, τ) dt

=: I1 + I2.

The first term I1 is easy: for 2τ ≤ t ≤ +∞ we have

K(α),γ(t, τ) ≤ (1 + τ)
∑

k>1, ℓ 6=0

e−α|ℓ|−α
2
|k−ℓ| ≤ C (1 + τ)

α2
,

and thus

eετ

∫ ∞

2τ

e−εtK(α),γ(t, τ) dt ≤ C (1 + τ)

α2
e−ετ ≤ C

εα2
.
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We treat the second term I2 as in the proof of Proposition 7.1:

eετ

∫ 2τ

τ

K(α),γ(t, τ) e−εt dt

≤ eετ (1 + τ)
∑

ℓ≥1

e−αℓ
∑

k≥ℓ

∫ ( k+ℓ−1
k−1 )τ

( k+ℓ+1
k+1 )τ

e−α|k(t−τ)−ℓτ |

1 + (k + ℓ)γ
e−εt dt

≤ (1 + τ)
∑

ℓ≥1

e−αℓ
∑

k≥ℓ

e−ε ℓ
k
τ

kγ

(
2

kα

)
.

We compare this with

2 (1 + τ)

α

∫ ∞

1

e−αx

∫ ∞

x

e−ε x
y
τ

y1+γ
dy dx

=
2

α εγ

(
1 + τ

τγ

)∫ ∞

1

e−αx

xγ

∫ ετ

0

e−u uγ−1 du dx

≤ C ln(1/α)

α εγ
,

where we used the change of variables u = εxτ/y. The desired conclusion follows.
Note that as before the term ln(1/α) only occurs when γ = 1, and that for γ > 1,
one could improve the estimate above into a time decay of the form O(τ−(γ−1)). �

7.4. Growth control. To state the main result of this section we shall write Zd
∗ =

Zd \ {0}; and if a sequence of functions Φ(k, t) (k ∈ Zd
∗, t ∈ R) is given, then

‖Φ(t)‖λ =
∑

k e
2πλ|k| |Φ(k, t)|. We shall useK(s) Φ(t) as a shorthand for (K(k, s) Φ(k, t))k∈Zd

∗
,

etc.

Theorem 7.8 (Growth control via integral inequalities). Let f 0 = f 0(v) and W =
W (x) satisfy

sup
η∈Rd

|f̃ 0(η)| e2πλ|η| ≤ C0,
∑

k∈Zd
∗

|Ŵ (k)| ≤ CW , sup
k∈Zd

∗

|k| |Ŵ (k)| ≤ CW ,

together with condition (L) from Subsection 2.2 with constants λ, κ > 0. Let A ≥ 0,
µ ≥ 0, λ ∈ (0, λ∗] with 0 < λ∗ < λ. Let (Φ(k, t))k∈Zd

∗, t≥0 be a continuous function
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of t ≥ 0, valued in CZd
∗, such that

(7.18) ∀t ≥ 0,

∥∥∥∥Φ(t) −
∫ t

0

K0(t, τ) Φ(τ) dτ

∥∥∥∥
λt+µ

≤ A +

∫ t

0

[
K0(t, τ) +K1(t, τ) +

c0
(1 + τ)m

]
‖Φ(τ)‖λτ+µ dτ,

where c0 ≥ 0, m > 1 and K0(t, τ), K1(t, τ) are nonnegative kernels. Let ϕ(t) =
‖Φ(t)‖λt+µ. Then

(i) Assume 1 < γ < ∞ and K1 = cK(α),γ for some c > 0, α ∈ (0, α(γ)),
where K(α),γ is defined by (7.9), and α(γ) appears in Proposition 7.1. Then there
are positive constants C and χ, depending only on γ, λ∗, λ, κ, C0, CW , m, uniform as
γ → 1, such that if

(7.19) sup
t≥0

∫ t

0

K0(t, τ) dτ ≤ χ

and

(7.20) c0 + sup
t≥0

∫ t

0

K0(t, τ)
2 dτ + sup

τ≥0

∫ ∞

τ

K0(t, τ) dt ≤ 1,

then for any ε ∈ (0, α),

(7.21) ∀ t ≥ 0, ϕ(t) ≤ C AeCT
(
1 +

c

α ε3/2

)
eC c (1+T 2) eεt,

where

(7.22) T = C max

{(
c+ c2

α5 ε2+γ

) 1
γ−1

;

(
c20
ε

) 1
2m−1

}
.

(ii) Assume K1 = cK
(α)

for some c > 0, α ∈ (0, α), where K
(α)

is defined by
(7.4) (case “γ = +∞” of analytic interactions), and α appears in Proposition 7.1.
Then the same result as above holds for ε ∈ (0, α) with

T = max

{
4

ε
log

(
α6ε3

2 c2C

)
;

(
c20
ε

) 1
2m−1

}
.
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(iii) Assume K1 =
∑

1≤i≤N ciK
(αi),1 for some αi ∈ (0, α(1)), where α(1) appears

in Proposition 7.1; then there is a numeric constant Γ > 0 such that whenever

1 ≥ ε ≥ Γ
N∑

i=1

ci
α3

i

,

one has, with the same notation as in (i),

(7.23) ∀ t ≥ 0, ϕ(t) ≤ C A
eCT

√
ε
eC c (1+T 2) eεt,

where

c =

N∑

i=1

ci, T = C max

{
1

ε2

(
N∑

i=1

ci
α3

i

)
;

(
c20
ε

) 1
2m−1

}
.

(iii’) Assume K1 =
∑

1≤i≤N ciK
(αi),1 for some αi ∈ (0, α(1)), where α(1) appears

in Proposition 7.1; then there is a numeric constant Γ′ > 0 such that whenever

1 ≥ ε ≥ Γ′ max

{( N∑

i=1

ci
α3

i

)
;

( N∑

i=1

ci
α3

i

)1/2
}
,

one has, with the same notation as in (i),

(7.24) ∀ t ≥ 0, ϕ(t) ≤ C A
eεt

√
ε
.

Remark 7.9. Other estimates can be made, depending on the restrictions on γ and
ε; also in case (ii) one could quantify the degree of analyticity of the interaction.
But the important point to note is that for γ = 1 we are not allowed to choose ε
arbitrarily small.

Remark 7.10. Let apart the term c0/(1+ τ)m which will appear as a technical cor-
rection, there are three different kernels appearing in Theorem 7.8: the kernel K0,
which is associated with the linearized Landau damping; the kernel K1, describing
nonlinear echoes (due to interaction between differing Fourier modes); and the ker-
nel K0, describing the instantaneous response (due to interaction between identical
Fourier modes).

We shall first prove Theorem 7.8 assuming

(7.25) c0 = 0
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and

(7.26)

∫ ∞

0

sup
k

|K0(k, t)| e2πλ|k|t dt ≤ 1 − κ, κ ∈ (0, 1),

which is a reinforcement of condition (L). Under these assumptions the proof of
Theorem 7.8 is much simpler, and its conclusion can be substantially simplified too:
χ depends only on κ; condition (7.20) on K0 can be dropped; and the factor eCT (1+

c/(α ε3/2)) in (7.21) can be omitted. If Ŵ ≤ 0 (as for gravitational interaction)

and f̃ 0 ≥ 0 (as for Maxwellian background), these additional assumptions do not
constitute a loss of generality, since (7.26) becomes essentially equivalent to (L),
and for c0 small enough the term c0(1 + τ)−m can be incorporated inside K0.

Proof of Theorem 7.8 under (7.20) and (7.26). We have

(7.27) ϕ(t) ≤ A +

∫ t

0

(
|K0|(t, τ) +K0(t, τ) +K1(t, τ)

)
ϕ(τ) dτ,

where |K0(t)| = supk |K0(k, t)|. We shall estimate ϕ by a maximum principle
argument. Let ψ(t) = B eεt, where B will be chosen later. If ψ satisfies, for some
T ≥ 0,
(7.28)




ϕ(t) < ψ(t) for 0 ≤ t ≤ T ,

ψ(t) ≥ A+

∫ t

0

(
|K0|(t, τ) +K0(t, τ) +K1(t, τ)

)
ψ(τ) dτ for t ≥ T ,

then u(t) := ψ(t) − ϕ(t) is positive for t ≤ T , and satisfies u(t) ≥
∫ t

0
K(t, τ) u(τ) dτ

for t ≥ T , with K = |K0| + K0 + K1 > 0; this prevents u from vanishing at later
times, so u ≥ 0 and ϕ ≤ ψ. Thus it is sufficient to establish (7.28).

Case (i): By Proposition 7.1, and since
∫

(|K0| +K0) dτ ≤ 1 − κ/2 (for χ ≤ κ/2),

(7.29) A+

∫ t

0

[
|K0|(t, τ) +K0(t, τ)

]
ψ(τ) dτ + c

∫ t

0

K(α),γ(t, τ)ψ(τ) dτ

≤ A +

[(
1 − κ

2

)
+

c C(γ)

α3 ε2+γ tγ−1

]
B eεt.

For t ≥ T := (4c C/(α3 ε2+γκ))1/(γ−1), this is bounded above by A+ (1− κ/4)B eεt,
which in turn is bounded by B eεt as soon as B ≥ 4A/κ.
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On the other hand, from the inequality

ϕ(t) ≤ A +
(
1 − κ

2

)
sup

0≤τ≤t
ϕ(τ) + c (1 + t)

∫ t

0

ϕ(τ) dτ

we deduce

ϕ(t) ≤
(

2A

κ

)
(1 + t) e

2c
κ

“

t+ t2

2

”

In particular, if

4A

κ
ec′(T+T 2) ≤ B

with c′ = c′(c, κ) large enough, then for 0 ≤ t ≤ T we have ϕ(t) ≤ ψ(t)/2, and (7.28)
holds.

Case (ii): K1 = cK
(α)

. The computation is similar, replacing the right-hand side
in (7.29) by

A +

[(
1 − κ

2

)
+
c C

α4 ε
e−εt/4

]
B eεt,

according to the last estimate in Proposition 7.1.

Case (iii)-(iii’): K1 =
∑
ciK

(αi),1. We use the same reasoning, replacing the
right-hand side in (7.29) by

A+

[(
1 − κ

2

)
+ C

(
N∑

i=1

ci
α3

i ε
+

N∑

i=1

ci
α3

i ε
2 t

)]
B eεt.

To conclude the proof, we may first impose a lower bound on ε to ensure

(7.30) C

N∑

i=1

ci
α3

i ε
≤ κ

8
,

and then choose t large enough to guarantee

(7.31) C
N∑

i=1

ci
α3

i ε
2 t

≤ κ

8
;

this yields (iii). Alternatively, one may ensure both (7.30) and (7.31) by using just
a lower bound on ε, and this leads to (iii’). �
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Proof of Theorem 7.8 in the general case. We only treat (i), since the reasoning for
the other cases is rather similar; and we only establish the conclusion as an a priori
estimate, skipping the continuity/approximation argument needed to turn it into a
rigorous estimate. Then the proof is done in three steps.

Step 1: Crude pointwise bounds. From (7.18) we have

ϕ(t) =
∑

k∈Zd
∗

|Φ(k, t)| e2π(λt+µ)|k|(7.32)

≤ A+
∑

k

∫ t

0

∣∣K0(k, t− τ)
∣∣ e2π(λt+µ)|k| |Φ(t, τ)| dτ

+

∫ 1

0

[
K0(t, τ) +K1(t, τ) +

c0
(1 + τ)m

]
ϕ(τ) dτ

≤ A+

∫ t

0

[(
sup

k

∣∣K0(k, t− τ)
∣∣ e2πλ(t−τ)|k|

)

+K1(t, τ) +K0(t, τ) +
c0

(1 + τ)m

]
ϕ(τ) dτ.

We note that for any k ∈ Zd
∗ and t ≥ 0,

∣∣K0(k, t− τ)
∣∣ e2πλ|k|(t−τ) ≤ 4π2 |Ŵ (k)|C0 e

−2π(λ−λ)|k|t |k|2 t

≤ C C0

λ− λ

(
sup
k 6=0

|k| |Ŵ (k)|
)

≤ C C0CW

λ− λ
,

where (here as below) C stands for a numeric constant which may change from line
to line. Assuming

∫
K0(t, τ) dτ ≤ 1/2, we deduce from (7.32)

ϕ(t) ≤ A+
1

2

(
sup

0≤τ≤t
ϕ(τ)

)
+ C

∫ t

0

(
C0CW

λ− λ
+ c (1 + t) +

c0
(1 + τ)m

)
ϕ(τ) dτ,

and by Gronwall’s lemma

(7.33) ϕ(t) ≤ 2Ae
C

“

C0 CW
λ−λ

t+C(t+t2)+c0 Cm

”

,

where Cm =
∫∞
0

(1 + τ)−m dτ .

Step 2: L2 bound. This is the step where the smallness assumption will be most
important. For all k ∈ Zd

∗, t ≥ 0, we define

(7.34) Ψk(t) = e−εt Φ(k, t) e2π(λt+µ)|k|,
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(7.35) K0
k(t) = e−εtK0(k, t) e2π(λt+µ)|k|,

Rk(t) = e−εt

(
Φ(k, t) −

∫ t

0

K0(k, t− τ) Φ(k, τ) dτ

)
e2π(λt+µ)|k|(7.36)

=
(
Ψk − Ψk ∗ K0

k

)
(t),

and we extend all these functions by 0 for negative values of t. Taking Fourier

transform in the time variable yields R̂k = (1 − K̂0
k) Ψ̂k; since condition (L) implies

|1 − K̂0
k| ≥ κ, we deduce ‖Ψ̂k‖L2 ≤ κ−1 ‖R̂k‖L2 , i.e.,

(7.37) ‖Ψk‖L2(dt) ≤
‖Rk‖L2(dt)

κ
.

(Note: In the absence of any smoothness bound on K0, which anyway is discontinu-
ous at t = 0, this L2 bound is about the best we can hope to deduce from the Fourier
identity, at least without further work.) Plugging (7.37) into (7.36), we deduce

(7.38) ∀k ∈ Zd
∗,

∥∥Ψk −Rk

∥∥
L2(dt)

≤ ‖K0
k‖L1(dt)

κ
‖Rk‖L2(dt).

Then
∥∥ϕ(t) e−εt

∥∥
L2(dt)

=
∥∥∥
∑

k

|Ψk|
∥∥∥

L2(dt)
(7.39)

≤
∥∥∥
∑

k

|Rk|
∥∥∥

L2(dt)
+
∑

k

‖Rk − Ψk‖L2(dt)

≤
∥∥∥
∑

k

|Rk|
∥∥∥

L2(dt)


1 +

1

κ

∑

ℓ∈Zd
∗

‖K0
ℓ‖L1(dt)


 .

(Note: We bounded ‖Rℓ‖ by ‖
∑

k |Rk|‖, which seems very crude; but the decay of
K0

k as a function of k will save us.) Next, we note that

‖K0
k‖L1(dt) ≤ 4π2 |Ŵ (k)|

∫ ∞

0

C0 e
−2π(λ−λ)|k|t |k|2 t dt

≤ 4π2 |Ŵ (k)| C0

(λ− λ)2
,

so
∑

k

‖K0
k‖L1(dt) ≤ 4π2

(∑

k

|Ŵ (k)|
)

C0

(λ− λ)2
.
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Plugging this in (7.39) and using (7.18) again, we obtain

∥∥ϕ(t) e−εt
∥∥

L2(dt)
≤
(

1 +
C C0CW

κ (λ− λ)2

) ∥∥∥
∑

k

|Rk|
∥∥∥

L2(dt)

(7.40)

≤
(

1 +
C C0CW

κ (λ− λ)2

) {∫ ∞

0

e−2εt

(
A+

∫ t

0

[
K1 +K0 +

c0
(1 + τ)m

]
ϕ(τ) dτ

)2

dt

} 1
2

.

We separate this (by Minkowski’s inequality) into various contributions which we
estimate separately. First, of course

(7.41)

(∫ ∞

0

e−2εtA2 dt

) 1
2

≤ A√
2ε
.

Next, for any T ≥ 1, by Step 1 and
∫ t

0
K1(t, τ) dτ ≤ Cc(1 + t)/α,

{∫ T

0

e−2εt

(∫ t

0

K1(t, τ)ϕ(τ) dτ

)2

dt

} 1
2

(7.42)

≤
[

sup
0≤t≤T

ϕ(t)

](∫ T

0

e−2εt

(∫ t

0

K1(t, τ) dτ

)2

dt

) 1
2

≤ C Ae
C

h

C0 CW
λ−λ

T+c (T+T 2)
i

c

α

(∫ ∞

0

e−2εt(1 + t)2 dt

) 1
2

≤ C A
c

α ε3/2
e

C
h

C0 CW
λ−λ

T+c (T+T 2)
i

.
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Invoking Jensen and Fubini, we also have

{∫ ∞

T

e−2εt

(∫ t

0

K1(t, τ)ϕ(τ) dτ

)2

dt

} 1
2

(7.43)

≤
{∫ ∞

T

(∫ t

0

K1(t, τ) e
−ε(t−τ) e−ετ ϕ(τ) dτ

)2

dt

} 1
2

≤
{∫ ∞

T

(∫ t

0

K1(t, τ) e
−ε(t−τ) dτ

)(∫ t

0

K1(t, τ) e
−ε(t−τ) e−2ετϕ(τ)2 dτ

)
dt

} 1
2

≤
(

sup
t≥T

∫ t

0

e−εtK1(t, τ) e
ετ dτ

) 1
2
(∫ ∞

T

∫ t

0

K1(t, τ) e
−ε(t−τ) e−2ετϕ(τ)2 dτ dt

) 1
2

=

(
sup
t≥T

∫ t

0

e−εtK1(t, τ) e
ετ dτ

) 1
2
(∫ ∞

0

∫ +∞

max{τ ; T}
K1(t, τ) e

−ε(t−τ) e−2ετ ϕ(τ)2 dt dτ

) 1
2

≤
(

sup
t≥T

∫ t

0

e−εtK1(t, τ) e
ετ dτ

) 1
2
(

sup
τ≥0

∫ ∞

τ

eετ K1(t, τ) e
−εt dt

) 1
2
(∫ ∞

0

e−2ετ ϕ(τ)2 dτ

) 1
2

.

(Basically we copied the proof of Young’s inequality.) Similarly,

{∫ ∞

0

e−2εt

(∫ t

0

K0(t, τ)ϕ(τ) dτ

)2

dt

} 1
2

(7.44)

≤
(

sup
t≥0

∫ t

0

e−εtK0(t, τ) e
ετ dτ

) 1
2
(

sup
τ≥0

∫ ∞

τ

eετ K0(t, τ) e
−εt dt

) 1
2
(∫ ∞

0

e−2ετ ϕ(τ)2 dτ

) 1
2

≤
(

sup
t≥0

∫ t

0

K0(t, τ) dτ

) 1
2
(

sup
τ≥0

∫ ∞

τ

K0(t, τ) dt

) 1
2
(∫ ∞

0

e−2ετ ϕ(τ)2 dτ

) 1
2

.
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The last term is also split, this time according to τ ≤ T or τ > T :

{∫ ∞

0

e−2εt

(∫ T

0

c0 ϕ(τ)

(1 + τ)m
dτ

)2

dt

} 1
2

(7.45)

≤ c0

(
sup

0≤τ≤T
ϕ(τ)

){∫ ∞

0

e−2εt

(∫ T

0

dτ

(1 + τ)m

)2

dt

} 1
2

≤ c0
C A√
ε
e

C
h“

C0 CW
λ−λ

”

T+c (T+T 2)
i

Cm,

and
{∫ ∞

0

e−2εt

(∫ t

T

c0 ϕ(τ)

(1 + τ)m

)2

dt

} 1
2

(7.46)

≤ c0

{∫ ∞

0

(∫ t

T

e−ε(t−τ) e
−ετ ϕ(τ)

(1 + τ)m
dτ

)2

dt

} 1
2

≤ c0

{∫ ∞

0

(∫ t

T

e−2ε(t−τ)

(1 + τ)2m
dτ

)(∫ t

T

e−2ετ ϕ(τ)2 dτ

)
dt

} 1
2

≤ c0

(∫ ∞

0

e−2εt ϕ(t)2 dt

) 1
2
(∫ ∞

0

∫ t

T

e−2ε(t−τ)

(1 + τ)2m
dτ dt

) 1
2

= c0

(∫ ∞

0

e−2εt ϕ(t)2 dt

) 1
2
(∫ ∞

T

1

(1 + τ)2m

(∫ ∞

τ

e−2ε(t−τ) dt

)
dτ

) 1
2

= c0

(∫ ∞

0

e−2εt ϕ(t)2 dt

) 1
2
(∫ ∞

T

dτ

(1 + τ)2m

) 1
2
(∫ ∞

0

e−2εs ds

)1
2

=
C

1/2
2m c0√

ε Tm−1/2

(∫ ∞

0

e−2εt ϕ(t)2 dt

) 1
2

.

Gathering estimates (7.41) to (7.46), we deduce from (7.40)

(7.47)
∥∥ϕ(t) e−εt

∥∥
L2(dt)

≤
(

1 +
C C0CW

κ (λ− λ)

)
C A√
ε

[
1 +

( c

α ε
+ c0Cm

)]
e

C
h

C0 CW
λ−λ

T+c (T+T 2)
i

+ a
∥∥ϕ(t) e−εt

∥∥
L2(dt)

,
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where

a =

(
1 +

C C0CW

κ (λ− λ)

) [(
sup
t≥T

∫ t

0

e−εtK1(t, τ) e
ετ dτ

) 1
2
(

sup
τ≥0

∫ ∞

τ

eετ K1(t, τ) e
−εt dt

) 1
2

+

(
sup
t≥0

∫ t

0

K0(t, τ) dτ

) 1
2
(

sup
τ≥0

∫ ∞

τ

K0(t, τ) dt

) 1
2

+
C

1/2
2m c0√

ε Tm−1/2

]
.

Using Propositions 7.1 (case γ > 1) and 7.6(i), as well as assumptions (7.19) and
(7.20), we see that a ≤ 1/2 for χ small enough and T satisfying (7.22). Then from
(7.47) follows

∥∥ϕ(t) e−εt
∥∥

L2(dt)
≤
(

1 +
C C0CW

κ (λ− λ)

)
C A√
ε

[
1 +

( c

α ε
+ c0Cm

)]
e

C
h

C0 CW
λ−λ

T+c (T+T 2)
i

.

Step 3: Refined pointwise bounds. Let us use (7.18) a third time, now for t ≥ T :

e−εt ϕ(t) ≤ Ae−εt +

∫ t

0

(
sup

k
|K0(k, t− τ)| e2πλ(t−τ)|k|

)
ϕ(τ) e−ετ dτ

(7.48)

+

∫ t

0

[
K0(t, τ) +

c0
(1 + τ)m

]
ϕ(τ) e−ετ dτ

+

∫ t

0

(
e−εtK1(t, τ) e

ετ
)
ϕ(τ) e−ετ dτ

≤ Ae−εt +

[(∫ t

0

(
sup
k∈Zd

∗

|K0(k, t− τ)| e2πλ(t−τ)|k|
)2

dτ

) 1
2

+

(∫ t

0

K0(t, τ)
2 dτ

) 1
2

+

(∫ ∞

0

c20
(1 + τ)2m

dτ

) 1
2

+

(∫ t

0

e−2εtK1(t, τ)
2 e2ετ dτ

) 1
2
] (∫ ∞

0

ϕ(τ)2 e−2ετ dτ

) 1
2

.



118 C. MOUHOT AND C. VILLANI

We note that, for any k ∈ Zd
∗,

(
|K0(k, t)| e2πλ|k|t

)2

≤ 16 π4 |Ŵ (k)|2
∣∣f̃ 0(kt)

∣∣2 |k|4 t2 e4πλ|k|t

≤ C C2
0 |Ŵ (k)|2 e−4π(λ−λ)|k|t |k|4 t2

≤ C C2
0

(λ− λ)2
|Ŵ (k)|2 e−2π(λ−λ)|k|t |k|2

≤ C C2
0

(λ− λ)2
C2

W e−2π(λ−λ)|k|t

≤ C C2
0

(λ− λ)2
C2

W e−2π(λ−λ)t;

so
∫ t

0

(
sup
k∈Zd

∗

∣∣K0(k, t− τ)
∣∣ e2πλ(t−τ)|k|

)2

dτ ≤ C C2
0 C

2
W

(λ− λ)3
.

Then the conclusion follows from (7.48), Corollary 7.5, conditions (7.22) and (7.20),
and Step 2. �

Remark 7.11. Theorem 7.8 leads to enormous constants, and it is legitimate to ask
about their sharpness, say with respect to the dependence in ε. In the case γ = ∞,
we find a constant of order O(eC/ε). The expected behavior is given by (7.8); so the
behavior of the optimal constant might be well captured by

sup
k,t

cktk e−εt

2k2 = sup
k

(
c k

2k ε

)k

,

which is roughly like (ln 1/ε)ln 1/ε; this is much smaller than our exponential bound,
but still grows faster than any inverse power of 1/ε. As for the case γ < ∞, we
expect the constant to be roughly of the order of

sup
t

(
e(ct)

1/γ

e−εt
)
≃ exp

(
ε−

1
γ−1

)
.

Our bound is roughly like exp(ε−(4+2γ)/(γ−1)); this is worse, but displays the expected
behavior as an exponential of an inverse power of ε, with a power that diverges like
O((1 − γ)−1) as γ → 1.
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8. Approximation schemes

Having defined a functional setting (Section 4) and identified several mathemati-
cal/physical mechanisms (Sections 5 to 7), we are prepared to fight Landau damping
problem. For that we need an approximation scheme solving the nonlinear Vlasov
equation. The problem is not to prove the existence of solutions (this is much eas-
ier), but to devise the scheme in such a way that it leads to relevant estimates for
our study.

Because analytic norms are so sensitive to composition, and because kinetic equa-
tions act by composition with characteristics (trajectories in phase space), we expect
an unavoidable loss of regularity; this seems to dismiss the classical Picard iteration.
Instead, a Newton iteration will provide more flexibility in the regularity indices,
while at the same time yielding an extremely fast rate of convergence (something
like O(ε2n

)) which will be most welcome to absorb the gigantic constants coming
from Theorem 7.8.

8.1. The natural Newton scheme. Let us adapt the abstract Newton scheme to
an abstract evolution equation in the form

∂f

∂t
= Q(f),

around a stationary solution f 0 (so Q(f 0) = 0). Write the Cauchy problem with
initial datum fi ≃ f 0 in the form

Φ(f) :=
(
∂tf −Q(f), f(0, · )

)
= (0, fi).

Starting from f 0, the Newton iteration consists in solving inductively Φ(fn−1) +
Φ′(fn−1) · (fn − fn−1) = 0 for n ≥ 1. More explicitly, writing hn = fn − fn−1, we
should solve {

∂th
1 = Q′(f 0) · h1

h1(0, · ) = fi = f 0

∀n ≥ 1,

{
∂th

n+1 = Q′(fn) · hn+1 −
[
∂tf

n −Q(fn)
]

hn+1(0, · ) = 0.

By induction, for n ≥ 1 this is the same as



∂th

n+1 = Q′(fn) · hn+1 +
[
Q(fn−1 + hn) −Q(fn−1) −Q′(fn−1) · hn

]

hn+1(0, · ) = 0.
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This is easily applied to the nonlinear Vlasov equation, for which the nonlinear-
ity is quadratic. So we define the natural Newton scheme for the nonlinear
Vlasov equation as follows:

f 0 = f 0(v) is given (homogeneous stationary state)

fn = f 0 + h1 + . . .+ hn, where

(8.1)

{
∂th

1 + v · ∇xh
1 + F [h1] · ∇vf

0 = 0

h1(0, · ) = fi − f 0

(8.2)

∀n ≥ 1,

{
∂th

n+1 + v · ∇xh
n+1 + F [fn] · ∇vh

n+1 + F [hn+1] · ∇vf
n = −F [hn] · ∇vh

n

hn+1(0, · ) = 0.

Here F [f ] is the force field created by the particle distribution f , namely

(8.3) F [f ](t, x) = −
∫∫

Td×Rd

∇W (x− y) f(t, y, w) dy dw.

Note also that all the ρn =
∫
hn dv for n ≥ 1 have zero spatial average.

8.2. Battle plan. The treatment of (8.1) was performed in Subsection 4.12. Now
the problem is to handle all equations appearing in (8.2). This is much more com-
plicated, because for n ≥ 1 the background density fn depends on t and x, instead
of just v; as a consequence,

(a) Equation (8.2) cannot be considered as a perturbation of free transport, be-
cause of the presence of ∇vh

n+1 in the left-hand side;

(b) The reaction term F [hn+1] · ∇vf
n no longer has the simple product structure

(function of x)×(function of v), so it becomes harder to get hands on the homoge-
nization phenomenon;

(c) Because of spatial inhomogeneities, echoes will appear; they are all the more
dangerous that ∇vf

n “filaments” and becomes unbounded as t→ ∞, even in gliding
regularity.

The estimates in Sections 5 to 7 have been designed precisely to overcome these
problems; however we still have a few conceptual difficulties to solve before applying
these tools.
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Recall the discussion in Subsection 4.11: the natural strategy is to propagate the
bound

(8.4) sup
τ≥0

‖fτ‖Zλ,µ;1
τ

< +∞

along the scheme; this estimate contains in particular two crucial pieces of informa-
tion:
• a control of ρτ =

∫
fτ dv in Fλτ+µ norm;

• a control of 〈fτ 〉 =
∫
fτ dx in Cλ;1 norm.

So the plan would be to try to get inductively estimates of each hn in a norm like
the one in (8.4), in such a way that hn is extremely small as n→ ∞, and allowing a
slight deterioration of the indices λ, µ as n → ∞. Let us try to see how this would
work: assuming

∀ 0 ≤ k ≤ n, sup
τ≥0

‖hk
τ‖Zλk,µk ;1

τ
≤ δk,

we should try to bound hn+1
τ . To “solve” (8.2), we apply the classical method of

characteristics: as in Section 5 we define (Xn
τ,t, V

n
τ,t) as the solution of





d

dt
Xn

τ,t(x, v) = V n
τ,t(x, v),

d

dt
V n

τ,t(x, v) = F [fn]
(
t, Xn

τ,t(x, v)
)

Xn
τ,τ(x, v) = x, V n

τ,τ (x, v) = v.

Then (8.2) is equivalent to

(8.5)
d

dt
hn+1

(
t, Xn

0,t, V
n
0,t(x, v)

)
= Σn+1

(
τ,Xn

0,τ (x, v), V
n
0,τ(x, v)

)
,

where

(8.6) Σn+1(t, x, v) = −F [hn+1] · ∇vf
n − F [hn] · ∇vh

n.

Integrating (8.5) in time and recalling that hn+1(0, ·) = 0, we get

hn+1
(
t, Xn

0,t(x, v), V
n
0,t(x, v)

)
=

∫ t

0

Σn+1
(
τ,Xn

0,τ (x, v), V
n
0,τ(x, v)

)
dτ.

Composing with (Xn
t,0, V

n
t,0) and using (5.2) yields

hn+1(t, x, v) =

∫ t

0

Σn+1
(
τ,Xn

t,τ (x, v), V
n
t,τ (x, v)

)
dτ.

We rewrite this using the “scattering transforms”

Ωn
t,τ (x, v) = (Xn

t,τ , V
n
t,τ )(x+ v(t− τ), v) = Sn

t,τ ◦ S0
τ,t;
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then we finally obtain

hn+1(t, x, v) =

∫ t

0

(
Σn+1

τ ◦ Ωn
t,τ

)
(x− v(t− τ), v) dτ(8.7)

= −
∫ t

0

[(
F [hn+1

τ ] ◦ Ωn
t,τ

)
·
((

∇vf
n
τ

)
◦ Ωn

t,τ

)]
(x− v(t− τ), v) dτ

−
∫ t

0

[(
F [hn

τ ] ◦ Ωn
t,τ

)
·
((

∇vh
n
τ

)
◦ Ωn

t,τ

)]
(x− v(t− τ), v) dτ.

Since the unknown hn+1 appears on both sides of (8.7), we need to get a self-
consistent estimate. For this we have little choice but to integrate in v and get an
integral equation on ρ[hn+1] =

∫
hn dv, namely

(8.8) ρ[hn+1](t, x) =

∫ t

0

∫ [((
ρ[hn+1

τ ] ∗ ∇W
)
◦ Ωn

t,τ

)
·Gn

τ,t

]
◦ S0

τ−t(x, v) dv dτ

+ (stuff from stage n),

where Gn
τ,t = ∇vf

n
τ ◦ Ωn

t,τ . By induction hypothesis Gn
τ,t is smooth with regularity

indices roughly equal to λn, µn; so if we accept to lose just a bit more on the regu-
larity we may hope to apply the long-term regularity extortion and decay estimates
from Section 6, and then time-response estimates of Section 7, and get the desired
damping.

However, we are facing a major problem: composition of ρ[hn+1
τ ] ∗ ∇W by Ωn

t,τ

implies a loss of regularity in the right-hand side with respect to the left-hand side,
which is of course unacceptable if one wants a closed estimate. The short-term
regularity extortion from Section 6 remedies this, but the price to pay is that Gn

should now be estimated at time τ ′ = τ − bt/(1 + b) instead of τ , and with index of
gliding analytic regularity roughly equal to λn(1+ b) rather than λn. Now the catch
is that the error induced by composition by Ωn depends on the whole distribution
fn, not just hn; thus, if the parameter b should control this error it should stay of
order 1 as n→ ∞, instead of converging to 0.

So it seems we are sentenced to lose a fixed amount of regularity (or rather of radius
of convergence) in the transition from stage n to stage n + 1; this is reminiscent of
the “Nash–Moser syndrom” [3]. The strategy introduced by Nash [63] to remedy
such a problem (in his case arising in the construction of C∞ isometric imbeddings)
consisted in combining a Newton scheme with regularization; his method was later
developed by Moser [59] for the C∞ KAM theorem (see [60, pp. 19–21] for some
interesting historical comments). The Nash–Moser technique is arguably the most
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powerful perturbation technique known to this day. However, despite significant
effort, we were unable to set up any relevant regularization procedure (in gliding
regularity, of course) which could be used in Nash–Moser style, because of three
serious problems:

• The convergence of the Nash–Moser scheme is no longer as fast as that of the
“raw” Newton iteration; instead, it is determined by the regularity of the data, and
the resulting rates would be unlikely to be fast enough to win over the gigantic
constants coming from Section 7.

• Analytic regularization in the v variable is extremely costly, especially if we
wish to keep a good localization in velocity space, as the one appearing in Theo-
rem 4.20(iii), that is exponential integrability in v; then the uncertainty principle

basically forces us to pay O(eC/ε2
), where ε is the strength of the regularization.

• Regularization comes with an increase of amplitude (there is as usual a trade-
off between size and regularity); if we regularize before composition by Ωn, this will
devastate the estimates, because the analytic regularity of f ◦ g depends not only
on the regularity of f and g, but also on the amplitude of g − Id .

Fortunately, it turned out that a “raw” Newton scheme could be used; but this
required to give up the natural estimate (8.4), and replace it by the pair of estimates

(8.9)





sup
τ≥0

‖ρτ‖Fλτ+µ < +∞;

sup
t≥τ≥0

∥∥∥fτ ◦ Ωt,τ

∥∥∥
Zλ(1+b),µ;1

τ− bt
1+b

< +∞.

Here b = b(t) takes the form const./(1 + t), and is kept fixed all along the scheme;
moreover λ, µ will be slightly larger than λ, µ, so that none of the two estimates
in (8.9) implies the other one. Note carefully that there are now two times (t, τ)
explicitly involved, so this is much more complex than (8.4). Let us explain why
this strategy is nonetheless workable.

First, the density ρn =
∫
fn dv determines the characteristics at stage n, and

therefore the associated scattering Ωn. If ρn
τ is bounded in Fλnτ+µ, then by Theorem

5.2 we can estimate Ωn
t,τ in Zλ′

n,µ′
n

τ ′ , as soon as (essentially) λ′n τ
′ + µ′

n ≤ λn τ + µn,
λ′n < λn, and these bounds are uniform in t.

Of course, we cannot apply this theorem in the present context, because λn(1+b) is
not bounded above by λn. However, for large times t we may afford λn(1+b(t)) < λn,
while λn(1 + b)(τ − bt/(1 + b)) ≤ λnτ for all times; this will be sufficient to repeat
the arguments in Section 5, getting uniform estimates in a regularity which depends
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on t. (The constants are uniform in t; but the index of regularity goes down with
t.) We can also do this while preserving the other good properties from Theorem
5.2, namely exponential decrease in τ , and vanishing near τ = t.

Figure 7 below summarizes schematically the way we choose and estimate the
gliding regularity indices.

.

t

λn

λn(1 + b)

λ∞ = λ∞

λn+1

λn+1(1 + b)..

Figure 7. Indices of gliding regularity appearing throughout our
Newton scheme, respectively in the norm of ρ[hτ ] and in the norm
of hτ ◦ Ωt,τ , plotted as functions of t

Besides being uniform in t, our bounds need to be uniform in n. For this we shall
have to stratify all our estimates, that is decompose ρ[fn] = ρ[h1] + · · ·+ ρ[hn], and
consider separately the influence of each term in the equations for characteristics.
This can work only if the scheme converges very fast.

Once we have estimates on Ωn
t,τ in a time-varying regularity, we can work with

the kinetic equation to derive estimates on hn
τ ◦ Ωn

t,τ ; and then on all hk
τ ◦ Ωn

t,τ , also
in a norm of time-varying regularity. We can also estimate their spatial average, in

a norm Cλ(1+b);1; thanks to the exponential convergence of the scattering transform
as τ → ∞ these estimates will turn out to be uniform in τ . Then we can use all this
information, in conjunction with Theorem 6.9, to get an integral inequality on the
norm of ρ[hn+1

τ ] in Fλτ+µ, where λ and µ are only slightly smaller than λn and µn.
Then we can go through the response estimates of Section 7; for potentials which

are just a bit better behaved than Coulomb, this gives us an arbitrarily small loss in
the decay rate, at the price of a huge constant which will eventually be wiped out by
the fast convergence of the scheme. So we have an estimate on ρ[hn+1], and we are in
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business to continue the iteration. (To ensure the propagation of the linear damping
condition, or equivalently of the smallness of K0 in Theorem 7.8, throughout the
scheme, we shall have to stratify the estimates once more.)

Remark 8.1. Any reformulation of the nonlinear Vlasov equation yields a distinc-
tive Newton iteration. An interesting scheme arises when we first rewrite the equa-
tion in integral form via composition by characteristics, and then run the Newton
algorithm with the function

Φ(f) =
(
f(t, X0,t(x, v), V0,t(x, v)) − fi(x, v)

)
t≥0
.

We will not pursue in this direction.

9. Local in time iteration

Before working out the core of the proof of Theorem 2.5 in Section 10, we shall
need a short-time estimate, which will act as an “initial regularity layer” for the
Newton scheme. (This will give us room later to allow the regularity index to
depend on t.) So we run the whole scheme once in this section, and another time in
the next section.

Short-time estimates in the analytic class are not new for the nonlinear Vlasov
equation: see in particular the work of Benachour [8] on Vlasov–Poisson. His ar-
guments can probably be adapted for our purpose; also the Cauchy–Kowalevskaya
method could certainly be applied. We shall provide here an alternative method,
based on the analytic function spaces from Section 4, but not needing the apparatus
from Sections 5 to 7. Unlike the more sophisticated estimates which will be per-
formed in Section 10, these ones are “almost” Eulerian (the only characteristics are
those of free transport). The main tool is the

Lemma 9.1. Let f be an analytic function, λ(t) = λ − K t, µ(t) = µ − K t; let
T > 0 be so small that λ(t), µ(t) > 0 for 0 ≤ t ≤ T . Then for any τ ∈ [0, T ] and
any p ≥ 1,

(9.1)
d

dt

+
∣∣∣∣
t=τ

‖f‖Zλ(t),µ(t);p
τ

≤ − K

1 + τ
‖∇f‖Zλ(τ),µ(τ);p

τ
,

where (d+/dt) stands for the upper right derivative.

Remark 9.2. Time-differentiating Lebesgue integrability exponents is common prac-
tice in certain areas of analysis; see e.g. [31]. Time-differentiation with respect to
regularity exponents is less common; however, as pointed out to us by Strain, Lemma
9.1 is strongly reminiscent of a method recently used by Chemin [17] to derive local
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analytic regularity bounds for the Navier–Stokes equation. We expect that simi-
lar ideas can be applied to more general situations of Cauchy–Kowalevskaya type,
especially for first-order equations, and maybe this has already been done.

Proof of Lemma 9.1. For notational simplicity, let us assume d = 1. The left-hand
side of (9.1) is

∑

n,k

e2πµ(τ)|k| 2πµ̇(τ) |k| λ
n(τ)

n!

∥∥∥
(
∇v + 2iπkτ

)n
f̂(k, v)

∥∥∥
Lp(dv)

+
∑

n,k

e2πµ(τ)|k| λ̇(τ)
λn−1(τ)

(n− 1)!

∥∥∥
(
∇v + 2iπkτ

)n
f̂(k, v)

∥∥∥
Lp(dv)

≤ −K
∑

n,k

e2πµ(τ)|k| 2π |k| λ
n(τ)

n!

∥∥∥
(
∇v + 2iπkτ

)n
f̂(k, v)

∥∥∥
Lp(dv)

−K
∑

n,k

e2πµ(τ)|k| λ
n(τ)

n!

∥∥∥
(
∇v + 2iπkτ

)n+1
f̂(k, v)

∥∥∥
Lp(dv)

≤ −K
∑

n,k

e2πµ(τ)|k| λ
n(τ)

n!

∥∥∥
(
∇v + 2iπkτ

)n∇̂xf(k, v)
∥∥∥

Lp(dv)

+
Kτ

1 + τ

∑

n,k

e2πµ(τ)|k| λ
n(τ)

n!

∥∥∥
(
∇v + 2iπkτ

)n∇̂xf(k, v)
∥∥∥

Lp(dv)

− K

1 + τ

∑

n,k

e2πµ(τ)|k| λ
n(τ)

n!

∥∥∥
(
∇v + 2iπkτ

)n∇̂vf(k, v)
∥∥∥

Lp(dv)
,

where in the last step we used ‖(∇v + 2iπkτ)h‖ ≥ (1/(1 + τ))(‖∇vh‖ − τ‖2iπkh‖).
The conclusion follows. �

Now let us see how to propagate estimates through the Newton scheme described
in Section 10. The first stage of the iteration (h1 in the notation of (8.1)) was
considered in Subsection 4.12, so we only need to care about higher orders. For any

k ≥ 1 we solve ∂th
k+1 + v · ∇xh

k+1 = Σ̃k+1, where

Σ̃k+1 = −
(
F [hk+1] · ∇vf

k + F [fk] · ∇vh
k+1 + F [hk] · ∇vh

k
)

(note the difference with (8.5)–(8.6)). Recall that fk = f 0 + h1 + . . . + hk. We
define λk(t) = λk − 2K t, µk(t) = µk −K t, where (λk)k∈N, (µk)k∈N are decreasing
sequences of positive numbers.
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We assume inductively that at stage n of the iteration, we have constructed
(λk)k≤n, (µk)k≤n, (δk)k≤n such that

∀k ≤ n, sup
0≤t≤T

∥∥hk(t, · )
∥∥
Zλk(t),µk(t);1

t

≤ δk,

for some fixed T > 0. The issue is to construct λn+1, µn+1 and δn+1 so that the
induction hypothesis is satisfied at stage n+ 1.

At t = 0, hn+1 = 0. Then we estimate the time-derivative of ‖hn+1‖Zλn+1(t),µn+1(t);1

t

.

Let us first pretend that the regularity indices λn+1 and µn+1 do not depend on t;

then hn+1(t) =
∫ t

0
Σ̃n+1 ◦ S0

−(t−τ) dτ , so by Proposition 4.19

‖hn+1‖Zλn+1,µn+1;1

t

≤
∫ t

0

∥∥Σ̃n+1
τ ◦ S0

−(t−τ)

∥∥
Zλn+1,µn+1;1

t

dτ

≤
∫ t

0

∥∥Σ̃n+1
τ ‖Zλn+1,µn+1;1

τ
dτ,

and thus
d+

dt
‖hn+1‖Zλn+1,µn+1;1

t

≤ ‖Σ̃n+1
t ‖Zλn+1,µn+1;1

t

.

Finally, according to Lemma 9.1, to this estimate we should add a negative multiple
of the norm of ∇hn+1 to take into account the time-dependence of λn+1, µn+1.

All in all, after application of Proposition 4.24, we get

d+

dt

∥∥hn+1(t, · )
∥∥
Zλn+1(t),µn+1(t);1

t

≤
∥∥F [hn+1

t ]‖Fλn+1t+µn+1 ‖∇vf
n
t ‖Zλn+1,µn+1;1

t

+
∥∥F [fn

t ]‖Fλn+1t+µn+1 ‖∇vh
n+1
t ‖Zλn+1,µn+1;1

t

+
∥∥F [hn

t ]‖Fλn+1t+µn+1 ‖∇vh
n
t ‖Zλn+1,µn+1;1

t

−K
∥∥∇xh

n+1
t ‖Zλn+1,µn+1;1

t

−K ‖∇vh
n+1
t ‖Zλn+1,µn+1;1

t

,

where K > 0, t is sufficiently small, and all exponents λn+1 and µn+1 in the right-
hand side actually depend on t.

From Proposition 4.15 (iv) we easily get ‖F [h]‖Fλt+µ ≤ C ‖∇h‖Zλ,µ;1
t

. Moreover,

by Proposition 4.10,

‖∇fn‖Zλn+1,µn+1;1

t

≤
∑

k≤n

‖∇hk‖Zλk+1,µk+1;1

t

≤ C
∑

k≤n

‖hk‖Zλk+1,µk+1;1

t

min
{
λk − λn+1 ; µk − µn+1

} .
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We end up with the bound

d+

dt

∥∥hn+1(t, · )
∥∥
Zλn+1(t),µn+1(t);1

t

≤
[
C

(∑

k≤n

δk

min
{
λk − λn+1 ; µk − µn+1

}
)

−K

]
∥∥∇hn+1

∥∥
Zλn+1(t),µn+1(t);1

t

+
δ2
n

min
{
λn − λn+1 ; µn − µn+1

} .

We conclude that if

(9.2)
∑

k≤n

δk

min
{
λk − λn+1 ; µk − µn+1

} ≤ K

C
,

then we may choose

(9.3) δn+1 =
δ2
n

min
{
λn − λn+1 ; µn − µn+1

} .

This is our first encounter with the principle of “stratification” of errors, which
will be crucial in the next section: to control the error at stage n+1, we use not only
the smallness of the error from stage n, but also an information about all previous
errors; namely the fact that the convergence of the size of the error is much faster
than the convergence of the regularity loss. Let us see how this works. We choose
λk − λk+1 = µk − µk+1 = Λ/k2, where Λ > 0 is arbitrarily small. Then for k ≤ n,
λk − λn+1 ≥ Λ/k2, and therefore δn+1 ≤ δ2

n n
2/Λ. The problem is to check

(9.4)

∞∑

n=1

n2 δn < +∞.

Indeed, then we can choose K large enough for (9.2) to be satisfied, and then T
small enough that, say λ∗ − 2KT ≥ λ♯, µ∗ −KT ≥ µ♯, where λ♯ < λ∗, µ♯ < µ∗ have
been fixed in advance.

If δ1 = δ, the general term in the series of (9.4) is

n2 δ
2n

Λn
(22)2n−1

(32)2n−2

(42)2n−2

. . . ((n− 1)2)2 n2.

To prove the convergence for δ small enough, we assume by induction that δn ≤ zan
,

where a is fixed in the interval (1, 2) (say a = 1.5); and we claim that this condition
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propagates if z > 0 is small enough. Indeed,

δn+1 ≤
z2 an

Λ
n2 ≤ zan+1

(
z(2−a)an

n2

Λ

)
,

and this is bounded above by zan+1
if z is so small that

∀n ∈ N, z(2−a) an ≤ Λ

n2
.

This concludes the iteration argument. Note that the convergence is still extremely
fast — in O(zan

) for any a < 2. (Of course, when a approaches 2, the constants
become huge, and the restriction on the size of the perturbation becomes more and
more stringent.)

10. Global in time iteration

Now let us implement the scheme described in Section 8, with some technical
modifications. If f is a given kinetic distribution, we write ρ[f ] =

∫
f dv and F [f ] =

−∇W ∗ ρ[f ]. We let

(10.1) fn = f 0 + h1 + . . .+ hn,

where the hk are defined by the natural Newton scheme introduced in Section 8. As
in Section 5 we define Ωk

t,τ as the scattering from time t to time τ , generated by the

force field F [fk] = −∇W ∗ ρ[fk]. (Note that Ω0 = Id .)

10.1. The statement of the induction. We shall fix p ∈ [1,∞] and make the
following assumptions:
• Regularity of the background: there are λ > 0 and C0 > 0 such that

∀p ∈ [1, p], ‖f 0‖Cλ;p ≤ C0.

• Linear damping condition: The stability condition (L) from Subsection 2.2 holds
with parameters λ (the same as above) and κ > 0.

• Regularity of the interaction: There are γ > 1 and CF > 0 such that for any
ν > 0,

(10.2)
∥∥∇W ∗ ρ

∥∥
Fν,γ ≤ CF ‖ρ‖Ḟν .
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• Initial layer of regularity: Having chosen λ♯ < λ, µ♯ < µ, we assume that for all
p ∈ [1, p]

(10.3) ∀ k ≥ 1, sup
0≤t≤T

(
‖hk

t ‖Zλ♯,µ♯;p + ‖ρ[hk
t ]‖Fµ♯

)
≤ ζk,

where T is some positive time, and ζk converges to zero extremely fast: ζk = O(z
ak

I
I ),

zI ≤ C δ < 1, 1 < aI < 2 (aI chosen in advance, arbitrarily close to 2).

• Smallness of the solution of the linearized equation: Given λ1 < λ♯, µ1 < µ♯, we
assume

(10.4) ∀ p ∈ [1, p],





sup
τ≥0

∥∥ρ[h1
τ ]
∥∥
Fλ1τ+µ1

≤ δ1

sup
t≥τ≥0

∥∥h1
τ

∥∥
Zλ1(1+b),µ1;p

τ− bt
1+b

≤ δ1,

where δ1 ≤ C δ.

Then we prove the following induction: for any n ≥ 1,

(10.5) ∀ k ∈ {1, . . . , n}, ∀ p ∈ [1, p],





sup
τ≥0

∥∥ρ[hk
τ ]
∥∥
Fλkτ+µk

≤ δk

sup
t≥τ≥0

∥∥∥hk
τ ◦ Ωk−1

t,τ

∥∥∥
Zλk(1+b),µk;p

τ− bt
1+b

≤ δk,

where

• (δk)k∈N is a sequence satisfying 0 < CF ζk ≤ δk, and δk = O(zak
), z < zI ,

1 < a < aI (a arbitrarily close to aI),

• (λk, µk) are decreasing to (λ∞, µ∞), where (λ∞, µ∞) are arbitrarily close to
(λ1, µ1); in particular we impose

(10.6) λ♯ − λ∞ ≤ min
{

1 ;
λ∞
2

}
, µ♯ − µ∞ ≤ min

{
1 ;

µ∞
2

}
.

• T is some small positive time in (10.3); we impose

(10.7) λ# T ≤ µ♯ − µ1

2
.

• b = b(t) =
B

1 + t
, where B ∈ (0, T ) is a (small) constant.
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10.2. Preparatory remarks. We shall propagate the following “primary” controls
on the density and distribution:

(10.8) (En

ρ ) ∀ k ∈ {1, . . . , n}, sup
τ≥0

∥∥ρ[hk
τ ]
∥∥
Fλkτ+µk

≤ δk

and

(10.9) (En

h
) ∀ k ∈ {1, . . . , n}, ∀ p ∈ [1, p], sup

t≥τ≥0

∥∥∥hk
τ ◦Ωk−1

t,τ

∥∥∥
Zλk(1+b),µk ;p

τ− bt
1+b

≤ δk.

(We denote by δk various small constants which appear at stage k, not necessarily
equal but all of the same order.)

Estimate (En

ρ ) obviously implies, via (10.2), up to a multiplicative constant,

(10.10) (Ẽn

ρ ) ∀ k ∈ {1, . . . , n}, sup
τ≥0

∥∥F [hk
τ ]
∥∥
Fλkτ+µk,γ ≤ δk.

Before we can go from there to stage n+1, we need an additional set of estimates
on the scattering maps (Ωk)k=1,...,n, which will be used to

(1) update the control on Ωk
t,τ − Id

(2) establish the needed control along the characteristics for the background
(∇vf

n
τ ) ◦ Ωn

t,τ (same index for the distribution and the scattering);

(3) update some technical controls allowing to exchange (asymptotically) gradi-
ent and composition by Ωk

t,τ ; this will be crucial to handle the contribution
of the zero mode of the background after composition by characteristics.

This set of scattering estimates falls into three categories. The first group ex-
presses the closeness of Ωk to Id :
(10.11)

(En

Ω
) ∀ k ∈ {1, . . . , n},





sup
t≥τ≥0

∥∥∥ΩkXt,τ − Id
∥∥∥
Z

λ∗
k
(1+b),(µ∗

k
,γ)

τ− bt
1+b

≤ 2Rk
2(τ, t),

sup
t≥τ≥0

∥∥∥ΩkVt,τ − Id
∥∥∥
Z

λ∗
k
(1+b),(µ∗

k
,γ)

τ− bt
1+b

≤ Rk
1(τ, t),

with λk > λ∗k > λk+1, µk > µ∗
k > µk+1, and

(10.12)





Rk
1(τ, t) =

(
k∑

j=1

δj e
−2π(λj−λ∗

j )τ

2π(λj − λ∗j)

)
min {(t− τ) ; 1}

Rk
2(τ, t) =

(
k∑

j=1

δj e
−2π(λj−λ∗

)
τ

(2π(λj − λ∗j))
2

)
min

{
(t− τ)2

2
; 1

}
.
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The second group of estimates expresses the fact that Ωn −Ωk is very small when
k is large:
(10.13)

(Ẽn

Ω
) ∀ k ∈ {0, . . . , n−1},





sup
t≥τ≥0

∥∥∥ΩnXt,τ − ΩkXt,τ

∥∥∥
Zλ∗

n(1+b),(µ∗
n,γ)

τ− bt
1+b

≤ 2Rk,n
2 (τ, t),

sup
t≥τ≥0

∥∥∥ΩnVt,τ − ΩkVt,τ

∥∥∥
Zλ∗

n(1+b),(µ∗
n,γ)

τ− bt
1+b

≤ Rk,n
1 (τ, t) + Rk,n

2 (τ, t),

sup
t≥τ≥0

∥∥∥(Ωk
t,τ )

−1 ◦ Ωn
t,τ − Id

∥∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ 4
(
Rk,n

1 (τ, t) + Rk,n
2 (τ, t)

)
,

with

(10.14)





Rk,n
1 (τ, t) =

(
n∑

j=k+1

δj e
−2π(λj−λ∗

j )τ

2π(λj − λ∗j)

)
min {(t− τ) ; 1}

Rk,n
2 (τ, t) =

(
n∑

j=k+1

δj e
−2π(λj−λ∗

j )τ

(2π(λj − λ∗j))
2

)
min

{
(t− τ)2

2
; 1

}

(Choosing k = 0 brings us back to the previous estimates (En

Ω
).)

The last group of estimates expresses the fact that the differential of the scattering
is uniformly close to the identity (in a way which is more precise than what would
follow from the first group of estimates):
(10.15)

(En

∇Ω
) ∀ k = 1, . . . , n,





sup
t≥τ≥0

∥∥∥∇ΩkXt,τ − I
∥∥∥
Z

λ∗
k
(1+b),µ∗

k

τ− bt
1+b

≤ 2Rk
2(τ, t),

sup
t≥τ≥0

∥∥∥∇ΩkVt,τ − I
∥∥∥
Z

λ∗
k
(1+b),µ∗

k

τ− bt
1+b

≤ Rk
1(τ, t) + Rk

2(τ, t),

where the gradient ∇ denotes either ∇x or ∇v, and I is the identity matrix.

All these estimates are very robust and can accommodate not only with Sobolev
corrections, but also with additional time shifts as in Subsection 4.10: for instance,
in (10.11) and (10.13) we could add

(10.16) sup
t≥τ≥0

∥∥∥ΩkXt,τ − Id
∥∥∥
Z

(bλk(1+b),λ∗
k
−bλk),(µ∗

k
,γ)

(τ− bt
1+b

,0)

≤ 2Rk
2(τ, t),

(10.17) sup
t≥τ≥0

∥∥∥ΩnXt,τ − ΩkXt,τ

∥∥∥
Z(bλn(1+b),λ∗

n−bλn),(µ∗
n,γ)

(τ− bt
1+b

,0)

≤ 2
(
Rk,n

1 (τ, t) + Rk,n
2 (τ, t)

)
,
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where λk > λ∗k > λ̂k > λk+1. The additional time-shift can be dispended with for the
proof of Theorem 2.5, but we mention it since it is not too difficult to incorporate,
it played a key role in a previous version of our proof, and we suspect that it can be
useful in rougher problems where the interaction does not depend only on positions.

An important property of the functions Rk,n
1 (τ, t), Rk,n

2 (τ, t) is their fast decay as
τ → ∞ and as k → ∞, uniformly in n ≥ k; this is due to the fast convergence of
the sequence (δk)k∈N. Eventually, if r ∈ N is given, we shall have

(10.18) ∀ r ≥ 1, Rk,n
1 (τ, t) ≤ ωr,1

k,n(τ, t), Rk,n
2 (τ, t) ≤ ωr,2

k,n(τ, t)

with

ωr,1
k,n(τ, t) := Cr

ω

(
n∑

j=k+1

δj
(2π(λj − λ∗j ))

1+r

)
min {(t− τ) ; 1}

(1 + τ)r
,

and

ωr,2
k,n(τ, t) := Cr

ω

(
n∑

j=k+1

δj
(2π(λj − λ∗j ))

2+r

)
min {(t− τ)2/2 ; 1}

(1 + τ)r

for some absolute constant Cr
ω depending only on r (we denote also ωr,1

0,n = ωr,1
n and

ωr,2
0,n = ωr,2

n ).
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From the estimates on the characteristics and (En

h
) will follow the following “sec-

ondary controls” on the distribution function:

(10.19) (Ẽn

h
) ∀ k ∈ {1, . . . , n}, ∀ p ∈ [1, p],




sup
t≥τ≥0

∥∥∥(∇xh
k
τ ) ◦ Ωk−1

t,τ

∥∥∥
Zλk(1+b),µk ;p

τ− bt
1+b

≤ δk

sup
t≥τ≥0

∥∥∥∇x

(
hk

τ ◦ Ωk−1
t,τ

)∥∥∥
Zλk(1+b),µk ;p

τ− bt
1+b

≤ δk

∥∥∥
(
(∇v + τ∇x

)
hk

τ ) ◦ Ωk−1
t,τ

∥∥∥
Zλk(1+b),µk ;p

τ− bt
1+b

≤ δk

∥∥∥(∇v + τ∇x)
(
hk

τ ◦ Ωk−1
t,τ

)∥∥∥
Zλk(1+b),µk ;p

τ− bt
1+b

≤ δk

sup
t≥τ≥0

1

(1 + τ)2

∥∥∥
(
∇∇hk

τ

)
◦ Ωk−1

t,τ

∥∥∥
Zλk(1+b),µk ;1

τ− bt
1+b

≤ δk

sup
t≥τ≥0

(1 + τ)2
∥∥∥(∇hk

τ ) ◦ Ωk−1
t,τ −∇

(
hk

τ ◦ Ωk−1
t,τ

)∥∥∥
Zλk(1+b),µk ;1

τ− bt
1+b

≤ δk.

The transition from stage n to stage n+ 1 can be summarized as follows:

(Ẽn

ρ )
(An)
=⇒

[
(En

Ω
) + (Ẽn

Ω
) + (En

∇Ω
)
]

[
(En

ρ ) + (En

Ω
) + (Ẽn

Ω
) + (En

∇Ω
) + (En

h
) + (Ẽn

h
)
]

(Bn)
=⇒

[
(En+1

ρ ) + (Ẽn+1

ρ ) + (En+1

h
) + (Ẽn+1

h
)
]
.

The first implication (An) is proven by an amplification of the technique used
in Section 5; ultimately, it relies on repeated application of Picard’s fixed point
theorem in analytic norms. The second implication (Bn) is the harder part; it
uses the machinery from Sections 6 and 7, together with the idea of propagating
simultaneously a shifted Z norm for the kinetic distribution and an F norm for the
density.

In both implications, the stratification of error estimates will prevent the blow up
of constants. So we shall decompose the force field F n generated by fn as

F n = F [fn] = E1 + . . .+ En,

where Ek = F [hk] = −∇W ∗ ρ[hk].
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The plan of the estimates is as follows. We shall construct inductively a sequence
of constant coefficients

λ♯ > λ1 > λ∗1 > λ2 > . . . > λn > λ∗n > λn+1 > . . .

µ♯ > µ1 > µ∗
1 > µ2 > . . . > µn > µ∗

n > µn+1 > . . .

converging respectively to λ∞ and µ∞, and a sequence (δk)k∈N decreasing very fast
to zero. For simplicity we shall let

Rn(τ, t) = Rn
1 (τ, t) + Rn

2 (τ, t), Rk,n(τ, t) = Rk,n
1 (τ, t) + Rk,n

2 (τ, t),

and assume 2π(λj − λ∗j ) ≤ 1; so
(10.20)

Rk,n(τ, t) ≤ Cr
ω

(
n∑

j=k+1

δj
(2π(λj − λ∗j))

2+r

)
min{t− τ ; 1}

(1 + τ)r
, R0,n = Rn.

It will be sufficient to work with some fixed r, large enough (as we shall see, r = 4
will do).

To go from stage n to stage n+ 1, we shall do as follows:

- Implication (An) (subsection 10.3):

Step 1. estimate Ωn − Id (the bound should be uniform in n);

Step 2. estimate Ωn − Ωk (k ≤ n− 1; the error should be small when k → ∞);

Step 3. estimate ∇Ωn − I;

Step 4. estimate (Ωk)−1 ◦ Ωn;

- Implication (Bn) (subsection 10.4):

Step 5. estimate hk and its derivatives along the composition by Ωn;

Step 6. estimate ρ[hn+1], using Sections 6 and 7;

Step 7. estimate F [hn+1] from ρ[hn+1];

Step 8. estimate hn+1 ◦ Ωn;

Step 9. estimate derivatives of hn+1 composed with Ωn;

Step 10. show that for hn+1, ∇ and composition by Ωn asymptotically commute.
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10.3. Estimates on the characteristics. In this subsection, we suppose that esti-

mates (En

ρ ) is proven, and we establish (En

Ω
)+(Ẽn

Ω
)+(En

∇Ω
). Let λ∗n < λn, µ∗

n < µn

to be fixed later on.
For the reasons alluded to above, we shall perform the first two steps in hybrid

norms with two time-shifts, to show how this works; then for all the rest we shall
stick to just one time-shift.

10.3.1. Step 1: Estimate of Ωn − Id . This is the first and archetypal estimate. Let

λ̂n < λ∗n; we shall estimate ΩnXt,τ−Id in the two-shift hybrid norm Z(bλn(1+b),λ∗
n−bλn),(µ∗

n,γ)

(τ− bt
1+b

,0)
.

(To convert the proofs for a single time-shift, just take λ̂n → λ∗n.)
The Sobolev correction γ will play no role here in the proofs, and for simplicity

we shall forget it in the computations. (Use Proposition 4.32 whenever needed.)
Since we expect the characteristics for the force field F n to be close to the free

transport characteristics, it is natural to write

(10.21) Xn
t,τ (x, v) = x− v(t− τ) + Zn

t,τ (x, v),

where Zn
t,τ solves

(10.22)





∂2

∂τ 2
Zn

t,τ (x, v) = F n
(
τ, x− v(t− τ) + Zn

t,τ (x, v)
)

Zn
t,t(x, v) = 0, ∂τZ

n
t,τ

∣∣∣
t=τ

(x, v) = 0.

(With respect to Section 5 we have dropped the parameter ε, to take advantage of
the “stratified” nature of F n; anyway this parameter was cosmetic.) So if we fix
t > 0, (Zn

t,τ ) is a fixed point of the map

Ψ : (Wt,τ )0≤τ≤t 7−→ (Zt,τ )0≤τ≤t

defined by

(10.23)





∂2

∂τ 2
Zt,τ = F n

(
τ, x− v(t− τ) +Wt,τ

)

Zt,t = 0, ∂τZt,τ

∣∣∣
τ=t

= 0.

We shall estimate Zn
t,τ in the two-shift norm Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(t− bt
1+b

,t−τ)
.

We first bound (Zn
0 )t,τ = Ψ(0). Explicitly,

(Zn
0 )t,τ (x, v) =

∫ t

τ

(s− τ)F n
(
s, x− v(t− s)

)
ds.
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By Proposition 4.36 (i)(iii) [Propositions 4.15 (i) and 4.19 for one shift], for any
σ ∈ [0, τ ],

∥∥(Zn
0 )t,τ

∥∥
Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(t− bt
1+b

,t−σ)
(10.24)

≤
∫ t

τ

(s− τ)
∥∥∥F n

(
s, x− v(t− s)

)∥∥∥
Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(t− bt
1+b

,t−σ)

ds

=

∫ t

τ

(s− τ) ‖F n(s, · )‖
Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(s− bt
1+b

,s−σ)
ds

=

∫ t

τ

(s− τ) ‖F n(s, · )‖Fν(s,t,σ) ds,

where

ν(s, t, σ) = λ̂n

∣∣s− b(t− s)
∣∣+ (λ∗n − λ̂n)(s− σ) + µ∗

n.(10.25)

First case: If s ≥ bt/(1 + b), then

ν(s, t, σ) = λ̂n

(
s− b(t− s)

)
+ (λ∗n − λ̂n)(s− σ) + µ∗

n(10.26)

≤ λ∗ns−
[
λ̂n b (t− s) + (λ∗n − λ̂n) σ

]
+ µ∗

n.

In particular,

(10.27) ν(s, t, σ) ≤ λ∗ns + µ∗
n ≤ λk s+ µk − (λk − λ∗n)s (1 ≤ k ≤ n).

Second case: If s < bt/(1+ b), then necessarily s ≤ B ≤ T . Taking into account
(10.6), we have

ν(s, t, σ) = λ̂n bt+
(
λ∗n − 2λ̂n − λ̂nb)s− (λ∗n − λ̂n)σ + µ∗

n(10.28)

≤ λ̂nB + µ∗
n − (λk − λ∗n)s.(10.29)

(Of course, the assumption λ♯ − λ∞ ≤ min{1, λ∞/2} implies λ∗n − 2λ̂n ≤ 0.) In
particular, by (10.7),

(10.30) ν(s, t, σ) ≤ µ♯ − (λk − λ∗n)s (1 ≤ k ≤ n).
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We plug these bounds into (10.24), then use Êk(s, 0) = 0 and the bounds (10.10)
and (10.27) (for large times), and (10.3) and (10.30) (for short times). This yields

‖(Zn
0 )t,τ‖Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(t− bt
1+b

,t−σ)

(10.31)

≤
n∑

k=1

(∫ t

τ∨ bt
1+b

(s− τ) ‖Ek(s, · )‖Fλks+µk−(λk−λ∗
n)s ds

+

∫ τ∨ bt
1+b

τ

(s− τ) ‖Ek(s, · )‖Fµ♯−(λk−λ∗
n)s ds

)

≤
n∑

k=1

(∫ t

τ∨ bt
1+b

(s− τ) e−2π(λk−λ∗
n)s ‖Ek(s, · )‖Fλks+µk ds

+

∫ τ∨ bt
1+b

τ

(s− τ) e−2π(λk−λ∗
n)s ‖Ek(s, · )‖Fµ♯ ds

)

≤
n∑

k=1

δk

∫ t

τ

(s− τ) e−2π(λk−λ∗
n)s ds

≤
n∑

k=1

δk e
−2π(λk−λ∗

n)τ min

{
(t− τ)2

2
;

1

(2π(λk − λ∗n))2

}
≤ Rn

2 (τ, t).

Let us define the norm

∥∥∥∥
∥∥∥∥(Zt,τ)0≤τ≤t

∥∥∥∥
∥∥∥∥

n

:= sup
0≤σ≤τ≤t

‖Zt,τ‖Z(bλn(1+b),λ∗
n−bλn),µ∗

n

(t− bt
1+b

,t−σ)

Rn
2 (τ, t)

.

(Note the difference with Section 5: now the regularity exponents depend on time(s).)
Inequality (10.31) means that ‖‖Ψ(0)‖‖n ≤ 1. We shall check that Ψ is (1/2)-
Lipschitz on the ball B(0, 2) in the norm ‖‖ · ‖‖n. This will be subtle: the uniform
bounds on the size of the force field, coming from the preceding steps, will allow to
get good decaying exponentials, which in turn will imply uniform error bounds at
the present stage.
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So let W, W̃ ∈ B(0, 2), and let Z = Ψ(W ), Z̃ = Ψ(W̃ ). As in Section 5, we write

Zt,τ − Z̃t,τ =

∫ 1

0

∫ t

τ

(s− τ)∇xF
n
(
s, x− v(t− s) +

(
θWt,s + (1 − θ) W̃t,s

))

· (Wt,s − W̃t,s) ds dθ,

and deduce ∥∥∥∥
∥∥∥∥
(
Zt,τ − Z̃t,τ

)
0≤τ≤t

∥∥∥∥
∥∥∥∥

n

≤ A(t)

∥∥∥∥
∥∥∥∥
(
Wt,s − W̃t,s

)
0≤s≤t

∥∥∥∥
∥∥∥∥

n

,

where

A(t) = sup
0≤σ≤τ≤s≤t

Rn
2 (s, t)

Rn
2 (τ, t)

×
∫ 1

0

∫ t

τ

(s−τ)
∥∥∥∇xF

n
(
s, x−v(t−s)+

(
θWt,s+(1−θ) W̃t,s

))∥∥∥
Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(t− bt
1+b

,t−σ)

ds dθ.

(Note: this works because the condition σ ≤ τ automatically implies σ ≤ s.) For
τ ≤ s we have Rn

2 (s, t) ≤ Rn
2 (τ, t). Also, by Proposition 4.36(v) (applied with

V = 0, b = −(t− s) and σ, σ′ = 0 in that statement) and (iii) [or Propositions 4.25
and 4.15 for one time-shift], we find

A(t) ≤ sup
0≤τ≤t

∫ t

τ

(s− τ) ‖∇xF
n(s, · )‖Fν(s,t,σ)+e(s,t,σ) ds,

where ν is defined by (10.25) and the “error” e(s, t, τ) arising from composition is
given by

e(s, t, σ) = sup
0≤θ≤1

∥∥∥θWt,s + (1 − θ) W̃t,s

∥∥∥
Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(t− bt
1+b

,t−σ)

≤ 2Rn
2(s, t).

(Again this works because σ ≤ τ ≤ s.)
Since

Rn
2 (s, t) ≤ ω1,2

n (s, t) := C1
ω

(
n∑

k=1

δk
(2π(λk − λ∗k))

3

)
min {(t− s)2/2 ; 1}

(1 + s)

we have, for all 0 ≤ s ≤ t,

(10.32) 2Rn
2 (s, t) ≤ λ̂n

2
b (t− s) 1s≥bt/(1+b) +

µ♯ − µ∗
n

2
1s≤bt/(1+b),
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as soon as
(10.33)

(C1) ∀n ≥ 1, 2C1
ω

(
n∑

k=1

δk
(2π(λk − λ∗n))3

)
≤ min

{
1

3

λ̂n

2
B ;

µ♯ − µ∗
n

2

}
.

We shall check later in Subsection 10.5 the feasibility of this condition (as well as
a number of other forthcoming ones).

The extra error term in the exponent is sufficiently small to be absorbed by what
we throw away in (10.26)–(10.27) or (10.28)-(10.29)-(10.30). So we obtain, as in the
estimate of Zn

0 , for any k ∈ {1, . . . , n},

(ν + e)(s, t, σ)




≤ λk s+ µk − (λk − λ∗n) s for s ≥ bt/(1 + b)

≤ µ♯ − (λk − λ∗n) s for s ≤ bt/(1 + b),

and we deduce (using (10.10) and the fact that γ is greater than 1)

A(t) ≤ sup
0≤τ≤t

n∑

k=1

(∫ t

τ∨ bt
1+b

(s− τ) ‖∇xE
k(s, · )‖Fλks+µk−(λk−λ∗

n) s ds

+

∫ τ∨ bt
1+b

τ

(s− τ) ‖∇xE
k(s, · )‖Fµ♯−(λk−λ∗

n)s ds

)

≤ sup
0≤τ≤t

n∑

k=1

δk

∫ t

τ

(s− τ) e−(λk−λ∗
n) s ds ≤ sup

0≤τ≤t
Rn

2 (τ, t) = Rn
2 (0, t)

≤
n∑

k=1

δk
(2π(λk − λ∗n))2

.

If the latter quantity is bounded above by 1/2, then Ψ is (1/2)-Lipschitz and we
may apply the fixed point result from Theorem A.2. Therefore, under the condition
(whose feasibility will be checked later)

(10.34) (C2) ∀n ≥ 1,

n∑

k=1

δk
(2π(λk − λ∗n))2

≤ 1

2

we deduce, choosing σ = τ ,

‖Zn
t,τ‖Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(t− bt
1+b

,t−τ)
≤ 2Rn

2 (τ, t).
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After that, the estimates on the scattering follow exactly as in Section 5: writing
Ωn

t,τ = (ΩnXt,τ ,Ω
nVt,τ ), recalling the dependence on γ again, we end up with

(10.35)





∥∥∥ΩnXt,τ − x
∥∥∥
Zλ∗

n(1+b),(µ∗
n,γ)

τ− bt
1+b

≤ 2Rn
2 (τ, t)

∥∥∥ΩnVt,τ − v
∥∥∥
Zλ∗

n(1+b),(µ∗
n,γ)

τ− bt
1+b

≤ Rn
1 (τ, t);

(10.36)





∥∥∥ΩnXt,τ − x
∥∥∥
Z(bλn(1+b),λ∗

n−bλn),(µ∗
n,γ)

(τ− bt
1+b

,0)

≤ 2Rn
2 (τ, t)

∥∥∥ΩnVt,τ − v
∥∥∥
Z(bλn(1+b),λ∗

n−bλn),(µ∗
n,γ)

(τ− bt
1+b

,0)

≤ Rn
1 (τ, t).

10.3.2. Step 2: Estimate of Ωn − Ωk. In this step our goal is to estimate Ωn − Ωk

for 1 ≤ k ≤ n− 1. The point is that the error should be small as k → ∞, uniformly
in n, so we can’t just write ‖Ωn − Ωk‖ ≤ ‖Ωn − Id ‖ + ‖Ωk − Id ‖. Instead, we start
again from the differential equation satisfied by Zk and Zn:

∂2

∂τ 2

(
Zn

t,τ − Zk
t,τ

)
(x, v)

= F n
(
τ, x− v(t− τ) + Zn

t,τ (x, v)
)
− F k

(
τ, x− v(t− τ) + Zk

t,τ (x, v)
)

=

[
F n
(
τ, x− v(t− τ) + Zn

t,τ

)
− F n

(
τ, x− v(t− τ) + Zk

t,τ

)]

+ (F n − F k)
(
τ, x− v(t− τ) + Zk

t,τ

)
.

This, together with the boundary conditions Zn
t,t − Zk

t,t = 0, ∂τ (Z
n
t,τ − Zk

t,τ )|τ=t = 0,
implies

Zn
t,τ − Zk

t,τ

=

∫ 1

0

∫ t

τ

(s− τ)∇xF
n
(
s, x− v(t− s) +

(
θ Zk

t,s + (1 − θ)Zn
t,s

))
· (Zn

t,s − Zk
t,s) ds dθ

+

∫ t

τ

(s− τ) (F n − F k)
(
s, x− v(t− s) + Zk

t,s(x, v)
)
ds.
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We fix t and define the norm

∥∥∥∥
∥∥∥∥(Zt,τ )0≤τ≤t

∥∥∥∥
∥∥∥∥

k,n

:= sup
0≤σ≤τ≤t

‖Zt,τ‖Z(bλn(1+b),λ∗
n−bλn),µ∗

n

(t− bt
1+b

,t−σ)

Rk,n
2 (τ, t)

,

where Rk,n
2 is defined in (10.14). Using the bounds on Zn, Zk in

∥∥∥∥ ·
∥∥∥∥

n
(since∥∥∥∥ ·

∥∥∥∥
n
≤
∥∥∥∥ ·
∥∥∥∥

k
by using the fact that Rk

2 ≤ Rn
2 ) and proceeding as before, we get

(10.37)
∥∥∥
∥∥∥
(
Zn

t,τ − Zk
t,τ

)
0≤τ≤t

∥∥∥
∥∥∥

k,n
≤ 1

2

∥∥∥∥
∥∥∥∥
(
Zn

t,τ − Zk
t,τ

)
0≤τ≤t

∥∥∥∥
∥∥∥∥

k,n

+
∥∥∥
∥∥∥
(∫ t

τ

(s− τ) (F n − F k)
(
s, x− v(t− s) + Zk

t,s

)
ds

)

0≤τ≤t

∥∥∥
∥∥∥

k,n
.

We estimate, for 0 ≤ σ ≤ τ∥∥∥(F n − F k)
(
s, x− v(t− s) + Zk

t,s

)∥∥∥
Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(t− bt
1+b

,t−σ)

=
∥∥∥(F n − F k)(s,Xk

t,s)
∥∥∥
Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(t− bt
1+b

,t−σ)

=
∥∥∥(F n − F k)(s,Ωk

t,s)
∥∥∥
Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(s− bt
1+b

,s−σ)

≤
∥∥∥(F n − F k)(s, · )

∥∥∥
Fν(s,t,τ)+e(s,t,τ)

,

where the last inequality follows from Proposition 4.36, ν is again given by (10.25),
and

e(s, t, σ) =
∥∥ΩkXt,s − Id

∥∥
Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(s− bt
1+b

,s−σ)

≤ 2Rk
2(s, t) ≤ 2Rn

2(s, t).

The same reasoning as in Step 1 yields, under assumptions (C1)-(C2), for k+1 ≤
j ≤ n:

(ν + e)(s, t, σ)




≤ λj s+ µj − (λj − λ∗n) s for s ≥ bt/(1 + b)

≤ µ♯ − (λj − λ∗n) s for s ≤ bt/(1 + b),

and so
∥∥F n

s − F k
s

∥∥
Fν+e ≤

n∑

j=k+1

δj e
−2π(λj−λ∗

n) s.
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For any 0 ≤ σ ≤ τ , by integrating in time we find
∥∥∥
∫ t

τ

(s− τ) (F n − F k)
(
s, x− v(t− s) + Zk

t,s

)
ds
∥∥∥
Z(bλn(1+b),λ∗

n−bλn),µ∗
n

(t− bt
1+b

,t−σ)

≤
∫ t

τ

(s− τ)

n∑

j=k+1

δj e
−2π(λj−λ∗

n) s ds ≤ Rk,n
2 (τ, t).

Therefore∥∥∥∥
∥∥∥∥
(∫ t

τ

(s− τ) (F n − F k)
(
s, x− v(t− s) + Zk

t,s

)
ds

)

0≤τ≤t

∥∥∥∥
∥∥∥∥

k,n

≤ 1

and by (10.37) ∥∥∥∥
∥∥∥∥
(
Zn

t,τ − Zk
t,τ

)
0≤τ≤t

∥∥∥∥
∥∥∥∥

k,n

≤ 2.

Picking σ = τ and recalling the Sobolev correction, we deduce

(10.38)
∥∥ΩnXt,τ − ΩkXt,τ

∥∥
Z(bλn(1+b),λ∗

n−bλn),(µ∗
n,γ)

(τ− bt
1+b

,0)
≤ 2Rk,n

2 (τ, t).

For the velocity component, say U , we write

∂

∂τ

(
Un

t,τ − Uk
t,τ

)
(x, v)

= F n
(
τ, x− v(t− τ) + Zn

t,τ (x, v)
)
− F k

(
τ, x− v(t− τ) + Zk

t,τ (x, v)
)

=

[
F n
(
τ, x− v(t− τ) + Zn

t,τ

)
− F n

(
τ, x− v(t− τ) + Zk

t,τ

)]

+ (F n − F k)
(
τ, x− v(t− τ) + Zk

t,τ

)
.

where Zn, Zk were estimated above, and the boundary conditions are Un
t,t −Uk

t,t = 0.
Thus

Un
t,τ − Uk

t,τ

=

∫ 1

0

∫ t

τ

∇xF
n
(
s, x− v(t− s) +

(
θ Zk

t,s + (1 − θ)Zn
t,s

))
· (Zn

t,s − Zk
t,s) ds dθ

+

∫ t

τ

(F n − F k)
(
s, x− v(t− s) + Zk

t,s(x, v)
)
ds,
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and from this one easily derives the similar estimate

(10.39)
∥∥ΩnVt,τ − ΩkVt,τ

∥∥
Z(bλn(1+b),λ∗

n−bλn),(µ∗
n,γ)

(τ− bt
1+b

,0)
≤ Rk,n

1 (τ, t) + Rk,n
2 (τ, t),

as well as 



∥∥ΩnXt,τ − ΩkXt,τ

∥∥
Z(λ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ 2Rk,n
2 (t, τ)

∥∥ΩnVt,τ − ΩkVt,τ

∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ Rk,n
1 (t, τ) + Rk,n

2 (t, τ).

10.3.3. Step 3: Estimate of ∇Ωn. Now we establish a control on the derivative of
the scattering. Of course, we could deduce such a control from the bound on Ωn−Id
and Proposition 4.32(vi): for instance, if λ∗∗n < λ∗n, µ∗∗

n < µ∗
n, then

(10.40)
∥∥∇Ωn

t,τ − I
∥∥
Zλ∗∗

n (1+b),(µ∗∗
n ,γ)

τ− bt
1+b

≤ CRn
2 (τ, t)

min
{
λ∗ − λ∗∗ ; µ∗ − µ∗∗

} .

But this bound involves very large constants, and is useless in practice. Better
estimates can be obtained by using again the equation (10.22). Writing

(Ωn
t,τ − Id )(x, v) =

(
Zn

t,τ

(
x+ v(t− τ), v

)
, Żn

t,τ

(
x+ v(t− τ), v

))
,

where the dot stands for ∂/∂τ , we get by differentiation

∇xΩ
n
t,τ − (Id , 0) =

(
∇xZ

n
t,τ

(
x+ v(t− τ), v

)
, ∇xŻ

n
t,τ

(
x+ v(t− τ), v

))
,

∇vΩ
n
t,τ−(0, Id ) =

(
(∇v+(t−τ)∇x)Z

n
t,τ

(
x+v(t−τ), v

)
, (∇v+(t−τ)∇x)Ż

n
t,τ

(
x+v(t−τ), v

))
.

Let us estimate for instance ∇xΩ − (Id , 0), or equivalently ∇xZ
n
t,τ . By differenti-

ating (10.22), we obtain

∂2

∂τ 2
∇xZ

n
t,τ (x, v) = ∇xF

n
(
τ, x− v(t− τ) + Zn

t,τ (x, v)
)
· (Id + ∇xZ

n
t,τ ).

So ∇xZ
n
t,τ is a fixed point of Ψ : W 7−→ Q, where W and Q are functions of τ ∈ [0, t]

satisfying 



∂2Q

∂τ 2
= ∇xF

n
(
τ, x− v(t− τ) + Zn

t,τ

)
(I +W ),

Q(t) = 0, ∂τQ(t) = 0.

We treat this in the same way as in Steps 1 and 2, and find on Qx (the x component
of Q) the same estimates as we had previously on the x component of Ω. For
the velocity component, a direct estimate from the integral equation expressing the
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velocity in terms of F yields a control by Rn
1 + Rn

2 . Finally for ∇vΩ this is similar,
noting that (∇v + (t − τ)∇x)(x − v(t − τ)) = 0, the differential equation being for
instance:

∂2

∂τ 2
(∇v+(t−τ)∇x)Z

n
t,τ (x, v) = ∇xF

n
(
τ, x−v(t−τ)+Zn

t,τ (x, v)
)
·((∇v+(t−τ)∇x)Z

n
t,τ ).

In the end we obtain

(10.41)





sup
t≥τ≥0

∥∥∥∇ΩnXt,τ − I
∥∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ 2Rn
2 (τ, t),

sup
t≥τ≥0

∥∥∥∇ΩnVt,τ − I
∥∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ Rn
1 (τ, t) + Rn

2 (τ, t).

10.3.4. Step 4: Estimate of (Ωk)−1 ◦ Ωn. We do this by applying Proposition 4.28
with F = Ωk, G = Ωn. (Note: we cannot exchange the roles of Ωk and Ωn in this
step, because we have a better information on the regularity of Ωk.) Let ε = ε(d)
be the small constant appearing in Proposition 4.28. If

(10.42) (C3) ∀ k ≥ 1, 3Rk
2(τ, t) + Rk

1(τ, t) ≤ ε,

then ‖∇Ωk
t,τ − I‖

Z
λ∗

k
(1+b),µ∗

k
τ−bt/(1+b)

≤ ε; if in addition

(10.43) (C4) ∀ k ∈ {1, . . . , n− 1}, ∀ t ≥ τ,

2(1 + τ) (1 +B)
(
3Rk,n

2 + Rk,n
1

)
(τ, t) ≤ max

{
λ∗k − λ∗n ; µ∗

k − µ∗
n

}
,

then 



λ∗n(1 + b) + 2 ‖Ωn − Ωk‖Zλ∗
n(1+b),µ∗

n

τ− bt
1+b

≤ λ∗k(1 + b)

µ∗
n + 2

(
1 +

∣∣∣∣τ −
bt

1 + b

∣∣∣∣
)

‖Ωn − Ωk‖Zλ∗
n(1+b),µ∗

n

τ− bt
1+b

≤ µ∗
k.

(Once again, short times should be treated separately. Further note that the need for
the factor (1+τ) in (C4) ultimately comes from the fact that we are composing also
in the v variable, see the coefficient σ in the last norm of (4.29).) Then Proposition
4.28 (ii) yields∥∥∥(Ωk

t,τ )
−1 ◦ Ωn

t,τ − Id
∥∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ 2
∥∥Ωk

t,τ − Ωn
t,τ

∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ 4 (Rk,n
1 + Rk,n

2 )(τ, t).

10.3.5. Partial conclusion. At this point we have established (En

Ω
) + (Ẽn

Ω
) + (En

∇Ω
).
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10.4. Estimates on the density and distribution along characteristics. In

this subsection we establish (En+1

ρ ) + (Ẽn+1

ρ ) + (En+1

h
) + (Ẽn+1

h
).

10.4.1. Step 5: Estimate of hk ◦ Ωn and (∇hk) ◦ Ωn (k ≤ n). Let k ∈ {1, . . . , n}.
Since

hk
τ ◦ Ωn

t,τ =
(
hk

τ ◦ Ωk−1
t,τ

)
◦
(
(Ωk−1

t,τ )−1 ◦ Ωn
t,τ

)
,

the control on hk ◦ Ωn will follow from the control on hk ◦ Ωk−1 in (En

h
), together

with the control on (Ωk−1)−1 ◦ Ωn in (Ẽn

Ω
). If

(10.44) (1 + τ)
∥∥(Ωk−1

t,τ )−1 ◦ Ωn
t,τ − Id

∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ min
{
(λk − λ∗n) ; (µk − µ∗

n)
}
,

then we can apply Proposition 4.25 and get, for any p ∈ [1, p], and t ≥ τ ≥ 0,

(10.45)
∥∥∥hk

τ ◦ Ωn
t,τ

∥∥∥
Zλ∗

n(1+b),µ∗
n;p

τ− bt
1+b

≤
∥∥∥hk

τ ◦ Ωk−1
t,τ

∥∥∥
Zλk(1+b),µk;p

τ− bt
1+b

≤ δk.

In turn, (10.44) is satisfied if

(10.46) (C5) ∀ k ∈ {1, . . . , n}, ∀ τ ∈ [0, t],

4 (1 + τ)
(
Rk,n

1 (τ, t) + Rk,n
2 (τ, t)

)
≤ min

{
λk − λ∗n ; µk − µ∗

n

}
;

we shall check later the feasibility of this condition.
Then, by the same argument, we also have

∀ k ∈ {1, . . . , n}, ∀ p ∈ [1, p],

sup
t≥τ≥0

∥∥∥(∇xh
k
τ ) ◦ Ωn

t,τ

∥∥∥
Zλ∗

n(1+b),µ∗
n;p

τ− bt
1+b

+
∥∥∥
(
(∇v + τ∇x)h

k
τ

)
◦ Ωn

t,τ

∥∥∥
Zλ∗

n(1+b),µ∗
n;p

τ− bt
1+b

≤ δk.

10.4.2. Step 6: estimate on ρ[hn+1]. This step is the first where we shall use the
Vlasov equation. Starting from (8.2), we apply the method of characteristics to get,
as in Section 8,

(10.47) hn+1
(
t, Xn

0,t(x, v), V
n
0,t(x, v)

)
=

∫ t

0

Σn+1
(
τ,Xn

0,τ(x, v), V
n
0,τ (x, v)

)
dτ,

where

Σn+1 = −
(
F [hn+1] · ∇vf

n + F [hn] · ∇vh
n
)
.

We compose this with (Xn
t,0, V

n
t,0) and apply (5.2) to get

hn+1(t, x, v) =

∫ t

0

Σn+1
(
τ,Xn

t,τ (x, v), V
n
t,τ (x, v)

)
dτ,
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and so, by integration in the v variable,

ρ[hn+1](t, x) =

∫ t

0

∫

Rd

Σn+1
(
τ,Xn

t,τ (x, v), V
n
t,τ(x, v)

)
dv dτ(10.48)

= −
∫ t

0

∫

Rd

(Rn+1
τ,t ·Gn

τ,t)(x− v(t− τ), v) dv dτ

−
∫ t

0

∫

Rd

(Rn
τ,t ·Hn

τ,t)(x− v(t− τ), v) dv dτ,

where (with a slight inconsistency in the notation)

(10.49)




Rn+1

τ,t = F [hn+1] ◦ Ωn
t,τ , Rn

τ,t = F [hn] ◦ Ωn
t,τ ,

Gn
τ,t = (∇vf

n) ◦ Ωn
t,τ , Hn

τ,t = (∇vh
n) ◦ Ωn

t,τ .

Since the free transport semigroup and Ωn
t,τ are measure-preserving,

∀ 0 ≤ τ ≤ t,

∫

Td

∫

Rd

(Rn+1
τ,t ·Gn

τ,t)(x− v(t− τ), v) dv dx

=

∫ ∫
Rn+1

τ,t ·Gn
τ,t dv dx

=

∫ ∫
F [hn+1] · ∇vf

n dv dx

=

∫ ∫
∇v ·

(
F [hn+1] fn

)
dv dx = 0,

and similarly

∀ 0 ≤ τ ≤ t,

∫

Td

∫

Rd

(Rn
τ,t ·Hn

τ,t)(x− v(t− τ), v) dv dx = 0.

This will allow us to apply the inequalities from Section 6.

Substep a. Let us first deal with the source term

(10.50) σn,n(t, x) :=

∫ t

0

∫
(Rn

τ,t ·Hn
τ,t)(x− v(t− τ), v) dv dτ.

By Proposition 6.2,

(10.51)
∥∥σn,n(t, · )

∥∥
Fλ∗

nt+µ∗
n
≤
∫ t

0

‖Rn
τ,t‖Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

‖Hn
τ,t‖Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

dτ.
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On the one hand, we have from Step 5

‖Hn
τ,t‖Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

≤ 2 (1 + τ) δn.

On the other hand, under condition (C1), we may apply Proposition 4.25 (choos-
ing σ = 0 in that proposition) to get

‖Rn
τ,t‖Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤
∥∥F [hn

τ ]
∥∥
Fνn

,

where

νn(t, τ) = µ∗
n + λ∗n(1 + b)

∣∣∣∣τ −
bt

1 + b

∣∣∣∣+
∥∥ΩnXt,τ − Id

∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ µ∗
n + λ∗n(1 + b)

∣∣∣∣τ −
bt

1 + b

∣∣∣∣ + 2Rn
2 (τ, t).

Proceeding as in Step 1 (treating small times separately), we deduce

‖Rn
τ,t‖Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ ‖F [hn
τ ]‖Fνn ≤ e−2π(λn−λ∗

n)τ ‖F [hn
τ ]‖F ν̄n

≤ CF e
−2π(λn−λ∗

n)τ ‖ρ[hn
τ ]‖F ν̄n ≤ CF e

−2π(λn−λ∗
n)τ δn,

with

(10.52)




ν̄n(τ, t) := µ♯ when 0 ≤ τ ≤ bt/(1 + b)

ν̄n(τ, t) := λnτ + µn when τ ≥ bt/(1 + b).

(We have used the gradient structure of the force to convert (gliding) regularity into
decay.) Thus

∫ t

0

‖Rn
τ,t‖Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

‖Hn
τ,t‖Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

dτ(10.53)

≤ 2CF δ
2
n

∫ t

0

e−2π(λn−λ∗
n)τ (1 + τ) dτ

≤ 2CF δ
2
n

(π (λn − λ∗n))2
.

(Note: This is the power 2 which is responsible for the very fast convergence of the
Newton scheme.)
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Substep b. Now let us handle the term

(10.54) σn,n+1(t, x) :=

∫ t

0

∫ (
Rn+1

τ,t ·Gn
τ,t

)
(x− v(t− τ), v) dv dτ.

This is the focal point of all our analysis, because it is in this term that the self-
consistent nature of the Vlasov equation appears. In particular, we will make crucial
use of the time-cheating trick to overcome the loss of regularity implied by composi-
tion; and also the other bilinear estimates (regularity extortion) from Section 6, as
well as the time-response study from Section 7. Particular care should be given to the
zero spatial mode of Gn, which is associated with instantaneous response (no echo).
In the linearized equation we did not see this problem because the contribution of
the zero mode was vanishing!

We start by introducing

(10.55) G
n

τ,t = ∇vf
0 +

n∑

k=1

∇v

(
hk

τ ◦ Ωk−1
t,τ

)
,

and we decompose σn,n+1 as

(10.56) σn,n+1 = σn,n+1 + E + E ,

where

(10.57) σn,n+1(t, x) =

∫ t

0

∫
F [hn+1

τ ] ·Gn

τ,t

(
x− v(t− τ), v

)
dv dτ

and the error terms E and E are defined by

(10.58) E(t, x) =

∫ t

0

∫ ((
F [hn+1

τ ] ◦ Ωn
t,τ − F [hn+1

τ ]
)
·Gn

)(
τ, x− v(t− τ), v

)
dv dτ,

(10.59) E(t, x) =

∫ t

0

∫ (
F [hn+1

τ ] ·
(
Gn −G

n))(
τ, x− v(t− τ), v

)
dv dτ.

We shall first estimate E and E .
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Control of E : This is based on the time-cheating trick from Section 6, and the
regularity of the force. By Proposition 6.2,

(10.60)
∥∥E(t, · )

∥∥
Fλ∗

nt+µ∗
n
≤
∫ t

0

∥∥∥F [hn+1
τ ] ◦ Ωn

t,τ − F [hn+1
τ ]

∥∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

×

‖Gn‖Zλ∗
n(1+b),µ∗

n ;1

τ− bt
1+b

dτ.

From (10.1) and Step 5,

‖Gn‖Zλ∗
n(1+b),µ∗

n;1

τ− bt
1+b

≤
∥∥∇vf

0 ◦ Ωn
t,τ

∥∥
Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

+

n∑

k=1

∥∥∇vh
k
τ ◦ Ωn

t,τ

∥∥
Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

(10.61)

≤ C ′
0 +

(
n∑

k=1

δk

)
(1 + τ),

where C ′
0 comes from the contribution of f 0.

Next, by Propositions 4.24 and 4.25 (with V = 0, τ = σ, b = 0),

∥∥∥F [hn+1
τ ] ◦ Ωn

t,τ − F [hn+1
τ ]

∥∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

(10.62)

≤



∫ 1

0

∥∥∥∇F [hn+1
τ ] ◦

(
Id + θ(Ωn

t,τ − Id )
)∥∥∥

Zλ∗
n(1+b),µ∗

n

τ− bt
1+b

dθ


 ∥∥Ωn

t,τ − Id
∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤
∥∥∇F [hn+1

τ ]
∥∥
Fνn

∥∥Ωn
t,τ − Id

∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

,

where

νn = µ∗
n + λ∗n(1 + b)

∣∣∣∣τ −
bt

1 + b

∣∣∣∣+
∥∥ΩnXt,τ − Id

∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

.

Small times are taken care of, as usual, by the initial regularity layer, so we only
focus on the case τ ≥ bt/(1 + b); then

νn ≤
(
λ∗nτ + µ∗

n

)
− λ∗n b(t− τ) + 2Rn(τ, t)

≤
(
λ∗nτ + µ∗

n

)
− λ∗n

B (t− τ)

1 + t
+ 4C1

ω

(
n∑

k=1

δk
(2π(λk − λ∗k))

3

)
min{t− τ ; 1}

1 + τ
.
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To make sure that νn ≤ λ∗nτ + µ∗
n, we assume that

(10.63) (C6) 4C1
ω

n∑

k=1

δk
(2π(λk − λ∗k))

3
≤ λ∗∞B

3
,

and we note that

min{t− τ ; 1}
1 + τ

≤ 3

(
t− τ

1 + t

)
.

(This is easily seen by separating four cases: (a) t ≤ 2, (b) t ≥ 2 and t− τ ≤ 1, (c)
t ≥ 2 and t− τ ≥ 1 and τ ≤ t/2, (d) t ≥ 2 and t− τ ≥ 1 and τ ≥ t/2.)

Then, since γ ≥ 1, we have
∥∥∇F [hn+1

τ ]
∥∥
Fνn

≤
∥∥∇F [hn+1

τ ]
∥∥
Fλ∗

nτ+µ∗
n

≤
∥∥F [hn+1

τ ]
∥∥
Fλ∗

nτ+µ∗
n,γ

≤ CF

∥∥ρ[hn+1
τ ]

∥∥
Fλ∗

nτ+µ∗
n
.

(Note: Applying Proposition 4.10 instead of the regularity coming from the interac-
tion would consume more regularity than we can afford to.)

Plugging this back into (10.62), we get
∥∥∥F [hn+1

τ ] ◦ Ωn
t,τ − F [hn+1

τ ]
∥∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ 2Rn(τ, t)CF ‖ρ[hn+1
τ ]‖Fλ∗

nτ+µ∗
n

≤ 2C3
ω CF

(
n∑

k=1

δk
(2π(λk − λ∗k))

5

)
1

(1 + τ)3

∥∥ρ[hn+1
τ ]

∥∥
Fλ∗

nτ+µ∗
n
.

Recalling (10.58) and (10.61), applying Proposition 4.24, we conclude that

(10.64)
∥∥E(t, · )

∥∥
Fλ∗

nt+µ∗
n
≤ 2C3

ω CF

(
C ′

0 +
n∑

k=1

δk

)(
n∑

k=1

δk
(2π(λk − λ∗k))

5

)

∫ t

0

∥∥ρ[hn+1
τ ]

∥∥
Fλ∗

nτ+µ∗
n

dτ

(1 + τ)2
.

(We could be a bit more precise; anyway we cannot go further since we do not yet
have an estimate on ρ[hn+1].)
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Control of Ē: This will use the control on the derivatives of hk. We start again from
Proposition 6.2:

(10.65)
∥∥E(t, · )

∥∥
Fλ∗

nt+µ∗
n
≤
∫ t

0

∥∥Gn −G
n∥∥

Zλ∗
n(1+b),µ∗

n;1

τ− bt
1+b

‖F [hn+1
τ ]‖Fνn dτ,

where νn = λ∗n(1+ b)|τ − bt/(1+ b)|+µ∗
n. We focus again on the case τ ≥ bt/(1+ b),

so that (with crude estimates)

‖F [hn+1
τ ]‖Fνn ≤ ‖F [hn+1

τ ]‖Fλ∗
nτ+µ∗

n ≤ CF ‖ρ[hn+1
τ ]‖Fλ∗

nτ+µ∗
n ,

and the problem is to control Gn −G
n
:

(10.66)
∥∥Gn −G

n∥∥
Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

≤
∥∥∥(∇vf

0) ◦ Ωn
t,τ −∇vf

0
∥∥∥
Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

+
n∑

k=1

∥∥∥(∇vh
k
τ )◦Ωn

t,τ−(∇vh
k
τ )◦Ωk−1

t,τ

∥∥∥
Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

+
n∑

k=1

∥∥∥(∇vh
k
τ )◦Ωk−1

t,τ −∇v

(
hk

τ◦Ωk−1
t,τ

)∥∥∥
Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

.

By induction hypothesis (Ẽn

h
), and since the Zλ,µ

τ norms are increasing as a func-
tion of λ, µ,

n∑

k=1

∥∥∥(∇vh
k
τ ) ◦ Ωk−1

t,τ −∇v

(
hk

τ ◦ Ωk−1
t,τ

)∥∥∥
Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

≤
(

n∑

k=1

δk

)
1

(1 + τ)2
.

It remains to treat the first and second terms in the right-hand side of (10.66).
This is done by inversion/composition as in Step 5; let us consider for instance the
contribution of hk, k ≥ 1:
∥∥∥∇vh

k
τ ◦ Ωn

t,τ −∇vh
k
τ ◦ Ωk−1

t,τ

∥∥∥
Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

≤
∫ 1

0

∥∥∥∇∇vh
k
τ ◦
(
(1 − θ)Ωn

t,τ + θΩk−1
t,τ

)∥∥∥
Zλ∗

n(1+b),µ∗
n;1

τ− bt
1+b

∥∥∥Ωn
t,τ − Ωk−1

t,τ

∥∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

dθ

≤ 2
∥∥∥∇∇vh

k
τ ◦ Ωk−1

t,τ

∥∥∥
Z

λ∗
k
(1+b),µ∗

k
;1

τ− bt
1+b

∥∥∥Ωn
t,τ − Ωk−1

t,τ

∥∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

≤ 4 δk (1 + τ)2 Rk−1,n(τ, t)

≤ 4C4
ω δk

(
n∑

j=k

δj
(2π(λj − λ∗j ))

6

)
1

(1 + τ)2
,
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where in the but-to-last step we used (Ẽn

Ω
), (Ẽn

ρ ), Propositions 4.24 and 4.28, Con-
dition (C5) and the same reasoning as in Step 5.

Summing up all contributions and inserting in (10.65) yields

(10.67)
∥∥E(t, · )

∥∥
Fλ∗

nt+µ∗
n

≤ 4CF

[
C4

ω

(
C ′

0 +
n∑

k=1

δk

)(
n∑

j=1

δj
(2π(λj − λ∗n))

6

)
+

n∑

k=1

δk

]∫ t

0

‖ρ[hn+1
τ ]‖Fλ∗

nτ+µ∗
n

dτ

(1 + τ)2
.

Main contribution: Now we consider σn,n+1, which we decompose as

σn,n+1
t = σn,n+1

t,0 +
n∑

k=1

σn,n+1
t,k ,

where

σn,n+1
t,0 (x) =

∫ t

0

∫
F [hn+1]

(
τ, x− v(t− τ), v

)
· ∇vf

0(v) dv dτ,

σn,n+1
t,k (x) =

∫ t

0

∫ (
F [hn+1

τ ] · ∇v

(
hk

τ ◦ Ωk−1
t,τ

))(
τ, x− v(t− τ), v

)
dv dτ.

Note that their zero mode vanishes. For any k ≥ 1, we apply Theorem 6.9 to get

∥∥σn,n+1
t,k

∥∥
Fλ∗

nt+µ∗
n
≤
∫ t

0

Kn,hk

1 (t, τ)
∥∥F [hn+1

τ ]
∥∥
Fν′n,γ dτ

+

∫ t

0

Kn,hk

0 (t, τ)
∥∥F [hn+1

τ ]
∥∥
Fν′n,γ dτ,

where

• ν ′n = λ∗n(1 + b)

∣∣∣∣τ −
bt

1 + b

∣∣∣∣+ µ′
n

• Kn,hk

1 (t, τ) = sup
0≤τ≤t




∥∥∥∇v

(
hk

τ ◦ Ωk−1
t,τ

)
−
〈
∇v

(
hk

τ ◦ Ωk−1
t,τ

)〉∥∥∥
Zλk+bλ∗

n,µk
τ−bt/(1+b)

1 + τ


 Kn,k

1 ,

• Kn,k
1 (t, τ) = (1+τ) sup

k 6=0, ℓ 6=0
e
−2π

“

µk−µ∗
n

2

”

|ℓ|
(
e−2π(µ′

n−µ∗
n)|k−ℓ|

1 + |k − ℓ|γ
)
e−2π(λk−λ∗

n) |k(t−τ)+ℓτ |,

• Kn,hk

0 (t, τ) =

(
sup

0≤τ≤t

∥∥∥∇v

〈
hk

τ ◦ Ωk−1
t,τ

〉∥∥∥
Cλk(1+b);1

)
Kn,k

0 ,
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• Kn,k
0 (t, τ) = e

−2π
“

λk−λ∗
n

2

”

(t−τ)
.

We assume

(10.68) µ′
n = µ∗

n + η

(
t− τ

1 + t

)
, η > 0 small,

and check that ν ′n ≤ λ∗nτ + µ∗
n. Leaving apart the small-time case, we assume

τ ≥ bt/(1 + b), so that

ν ′n =
(
λ∗nτ + µ∗

n

)
− B λ∗n (t− τ)

1 + t
+ η

(
t− τ

1 + t

)
,

which is indeed bounded above by λ∗nτ + µ∗
n as soon as

(10.69) η ≤ B λ∗∞.

Then, with the notation (7.9),

(10.70) Kn,k
1 (t, τ) ≤ K

(αn,k),γ
1 (t, τ),

with

(10.71) αn,k = min

{
µk − µ∗

n

2
; λk − λ∗n ; η

}
.

From the controls on hk (assumption (Ẽn

h
)) we have

∥∥∥∇v

(
hk

τ ◦ Ωk−1
t,τ

)
−
〈
∇v

(
hk

τ ◦ Ωk−1
t,τ

)〉∥∥∥
Zλk(1+b),µk;1

τ− bt
1+b

≤
∥∥∥∇v

(
hk

τ ◦ Ωk−1
t,τ

)∥∥∥
Zλk(1+b),µk;1

τ− bt
1+b

≤ δk (1 + τ);

and
∥∥∥
〈
∇v

(
hk

τ ◦ Ωk−1
t,τ

)〉∥∥∥
Cλk(1+b);1

=
∥∥∥
〈
(∇v + τ∇x)

(
hk

τ ◦ Ωk−1
t,τ

)〉∥∥∥
Cλk(1+b);1

≤
∥∥∥(∇v + τ∇x)

(
hk

τ ◦ Ωk−1
t,τ

)∥∥∥
Zλk(1+b);1

τ− bt
1+b

≤ δk.
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After controlling F [hn+1] by ρ[hn+1], we end up with

(10.72)
∥∥σn,n+1

t,k

∥∥
Fλ∗

nt+µ∗
n
≤ CF

∫ t

0

(
n∑

k=1

δk K
(αn,k),γ
1 (t, τ)

)
∥∥ρ[hn+1

τ ]
∥∥
Fλ∗

nτ+µ∗
n
dτ

+ CF

∫ t

0

(
n∑

k=1

δk e
−2π

“

λk−λ∗
n

2

”

(t−τ)

)
∥∥ρ[hn+1

τ ]
∥∥
Fλ∗

nτ+µ∗
n
dτ,

with αn,k defined by (10.71).

Substep c. Gathering all previous controls, we obtain the following integral inequality
for ϕ = ρ[hn+1]:

(10.73)

∥∥∥∥ϕ(t, x) −
∫ t

0

∫
(∇W ∗ ϕ)(τ, x− v(t− τ)) · ∇vf

0(v) dv dτ

∥∥∥∥
Fλ∗

nt+µ∗
n

≤ An +

∫ t

0

[
Kn

1 (t, τ) +Kn
0 (t, τ) +

cn0
(1 + τ)2

]
‖ϕ(τ, · )‖Fλ∗

nτ+µ∗
n ,

where, by (10.53), (10.64) and (10.67),

(10.74) An = sup
t≥0

∥∥σn,n(t, · )
∥∥
Fλ∗

nt+µ∗
n
≤ 2CF δ

2
n

(π(λn − λ∗n))
2
,

Kn
1 (t, τ) =

(
CF

n∑

k=1

δk

)
K

(αn),γ
1 , αn = αn,n = min

{
µn − µ∗

n

2
; λn − λ∗n ; η

}
,

Kn
0 (t, τ) = CF

n∑

k=1

δk e
−2π

“

λk−λ∗
n

2

”

(t−τ)
,

cn0 = 3CF C
4
ω

(
C ′

0 +

n∑

k=1

δk

) (
n∑

k=1

δk
(2π(λk − λ∗k))

6

)
+

n∑

k=1

δk.

(We are cheating a bit when writing (10.73), because in fact one should take into
account small times separately; but this does not cause any real difficulty.)

We easily estimate Kn
0 :
∫ t

0

Kn
0 (t, τ) dτ ≤ CF

n∑

k=1

δk
π(λk − λ∗n)

,
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∫ ∞

τ

Kn
0 (t, τ) dt ≤ CF

n∑

k=1

δk
π(λk − λ∗n)

,

(∫ t

0

Kn
0 (t, τ)2 dτ

)1/2

≤ CF

n∑

k=1

δk√
2π(λk − λ∗n)

.

Let us assume that αn is smaller than α(γ) appearing in Theorem 7.8, and that

(10.75) (C7) 3CF C
4
ω

(
C ′

0 +

n∑

k=1

δk + 1

) (
n∑

k=1

δk
(2π(λk − λ∗k))

6

)
≤ 1

4
,

(10.76) (C8) CF

n∑

k=1

δk√
2π(λk − λ∗k)

≤ 1

2
,

(10.77) (C9) CF

n∑

k=1

δk
π(λk − λ∗k)

≤ max

{
1

4
; χ

}
,

(note that in these conditions we have strenghtened the inqualities by replacing
λk − λ∗n by λk − λ∗k where χ > 0 is also defined by Theorem 7.8. Applying that
theorem, we deduce that for any ε ∈ (0, αn) and t ≥ 0,

(10.78) ‖ρn+1
t ‖Fλ∗

nt+µ∗
n ≤ C An e

C Tε,n

(
1 +

cn
αn ε3/2

)
eC cn (1+T 2

ε,n) eε t,

where cn = 2CF

(
n∑

k=1

δk

)
and Tε,n = Cγ max

{(
cn + c2n
α5

n ε
2+γ

)1/(γ−1)

;
1

ε1/3

}
.

Pick up λ†n < λ∗n and choose ε = 2π(λ∗n −λ†n); recalling that ρ̂n+1(t, 0) = 0, and that
our conditions imply an upper bound on cn, we deduce the uniform control

‖ρn+1
t ‖Fλ

†
nt+µ∗

n
≤ e−2π(λ∗

n−λ†
n)t ‖ρn+1

t ‖Fλ∗
nt+µ∗

n(10.79)

≤ C An

(
1 +

cn

αn (2π(λ∗n − λ†n))3/2

)
eC (1+T 2

n),

where

(10.80) Tn = C

(
cn

α5
n (2π(λ∗n − λ†n))2+γ

) 1
γ−1

.
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10.4.3. Step 7: estimate on F [hn+1]. As an immediate consequence of (10.2) and
(10.79), we have

(10.81) sup
t≥0

∥∥F [ρn+1
t ]

∥∥
Fλ

†
nt+µ∗

n,γ
≤ CAn

(
1 +

cn

αn (2π(λ∗n − λ†n))3/2

)
eC(1+T 2

n).

10.4.4. Step 8: estimate of hn+1 ◦ Ωn. In this step we shall use again the Vlasov
equation. We rewrite (10.47) as

hn+1
(
τ,Xn

0,τ (x, v), V
n
0,τ(x, v)

)
=

∫ τ

0

Σn+1
(
s,Xn

0,s(x, v), V
n
0,s(x, v)

)
ds;

but now we compose with (Xn
t,0, V

n
t,0), where t ≥ τ is arbitrary. This gives

hn+1
(
τ,Xn

t,τ (x, v), V
n
t,τ(x, v)

)
=

∫ τ

0

Σn+1
(
s,Xn

t,s(x, v), V
n
t,s(x, v)

)
ds.

Then for any p ∈ [1, p] and λ♭
n < λ†n, using Propositions 4.19 and 4.24, and the

notation (10.49), we get

∥∥hn+1
τ ◦ Ωn

t,τ

∥∥
Z(1+b)λ♭

n,µ∗
n;p

τ− bt
1+b

=
∥∥∥hn+1

τ ◦
(
Xn

t,τ , V
n
t,τ

)∥∥∥
Z(1+b)λ♭

n,µ∗
n;p

t− bt
1+b

≤
∫ τ

0

∥∥∥Σn+1
(
s,Xn

t,s, V
n
t,s

)∥∥∥
Z(1+b)λ♭

n,µ∗
n;p

t− bt
1+b

ds =

∫ τ

0

∥∥Σn+1(s,Ωn
t,s)
∥∥
Z(1+b)λ♭

n,µ∗
n;p

s− bt
1+b

ds

≤
∫ τ

0

∥∥Rn+1
s,t

∥∥
Z(1+b)λ♭

n,µ∗
n

s− bt
1+b

‖Gn
s,t‖Z(1+b)λ♭

n,µ∗
n;p

s− bt
1+b

ds

+

∫ τ

0

‖Rn
s,t‖Z(1+b)λ♭

n,µ∗
n

s− bt
1+b

‖Hn
s,t‖Z(1+b)λ♭

n,µ∗
n;p

s− bt
1+b

ds.

Then (proceeding as in Step 6 to check that the exponents lie in the appropriate
range)

‖Rn+1
s,t ‖

Z(1+b)λ♭
n,µ∗

n

s− bt
1+b

≤ CF e
−2π(λ†

n−λ♭
n)s ‖ρn+1

s ‖F ν̄n(s)

and

‖Rn
s,t‖Z(1+b)λ♭,µ∗

s− bt
1+b

≤ CF e
−2π(λ†

n−λ♭
n)s ‖ρn

s‖F ν̄n(s) ≤ CF e
−2π(λ†

n−λ♭
n)s δn
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with 


ν̄n(s, t) := µ♯ when s ≤ bt/(1 + b)

ν̄n(s, t) := λ†n s+ µ∗
n when s ≥ bt/(1 + b).

On the other hand, from the induction assumption (En

h
)-(Ẽn

h
) (and again control

of composition via Proposition 4.25. . . ),

‖Hn
s,t‖Z(1+b)λ♭

n,µ∗
n;p

s− bt
1+b

≤ 2 (1 + s) δn

and

‖Gn
s,t‖Z(1+b)λ♭

n,µ∗
n;p

s− bt
1+b

≤ 2 (1 + s)

(
n∑

k=1

δk

)
.

We deduce that

y(t, τ) :=
∥∥hn+1

τ ◦ Ωn
t,τ

∥∥
Z(1+b)λ♭

n,µ∗
n;p

τ− bt
1+b

satisfies

y(t, τ) ≤ 2CF

(
n∑

k=1

δk

) ∫ τ

0

e−2π(λ†
n−λ♭

n)s ‖ρn+1
s ‖F ν̄n(s) (1 + s) ds

+ 2CF δ
2
n

∫ τ

0

e−2π(λ†
n−λ♭

n)s (1 + s) ds;

so

(10.82) ∀ t ≥ τ ≥ 0,

∥∥hn+1
τ ◦ Ωn

t,τ

∥∥
Z(1+b)λ♭

n,µ∗
n;p

τ− bt
1+b

≤ 4CF max {(
∑n

k=1 δk) ; 1}
(2π
(
λ†n − λ♭

n)
)2

(
δ2
n + sup

s≥0
‖ρn+1

s ‖F ν̄n(s)

)
.

10.4.5. Step 9: Crude estimates on the derivatives of hn+1. Again we choose p ∈
[1, p]. From the previous step and Proposition 4.27 we deduce, for any λ‡n such that
λ‡n < λ♭

n < λ‡n, and any µ‡
n < µ∗

n,

(10.83)
∥∥∥∇x

(
hn+1

τ ◦ Ωn
t,τ

)∥∥∥
Zλ

‡
n(1+b),µ

‡
n;p

τ− bt
1+b

+
∥∥∥(∇v + τ∇x)

(
hn+1

τ ◦ Ωn
t,τ

)∥∥∥
Zλ

‡
n(1+b),µ

‡
n;p

τ− bt
1+b

≤ C(d)

min {λ♭
n − λ‡n ; µ∗

n − µ‡
n}
∥∥hn+1

τ ◦ Ωn
t,τ

∥∥
Zλ♭

n(1+b),µ∗
n;p

τ− bt
1+b

;
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and
(10.84)∥∥∥∇

(
hn+1

τ ◦ Ωn
t,τ

)∥∥∥
Zλ

‡
n(1+b),µ

‡
n;p

τ− bt
1+b

≤ C(d) (1 + τ)

min {λ♭
n − λ‡n ; µ∗

n − µ‡
n}
∥∥hn+1

τ ◦ Ωn
t,τ

∥∥
Zλ♭

n(1+b),µ∗
n;p

τ− bt
1+b

.

Similarly,
(10.85)∥∥∥∇∇

(
hn+1

τ ◦ Ωn
t,τ

)∥∥∥
Zλ

‡
n(1+b),µ

‡
n;p

τ− bt
1+b

≤ C(d) (1 + τ)2

min {λ♭
n − λ‡n ; µ∗

n − µ‡
n}2

∥∥hn+1
τ ◦ Ωn

t,τ

∥∥
Zλ♭

n(1+b),µ∗
n;p

τ− bt
1+b

.

10.4.6. Step 10: Chain-rule and refined estimates on derivatives of hn+1. From
Step 3 we have

(10.86)
∥∥∇Ωn

t,τ

∥∥
Zλ

‡
n(1+b),µ

‡
n

τ− bt
1+b

+
∥∥(∇Ωn

t,τ )
−1
∥∥
Zλ

‡
n(1+b),µ

‡
n

τ− bt
1+b

≤ C(d)

and (via Proposition 4.27)

∥∥∥∇∇Ωn
t,τ

∥∥∥
Zλ

‡
n(1+b),µ

‡
n

τ− bt
1+b

≤ C(d) (1 + τ)

min {λ∗n − λ‡n ; µ∗
n − µ‡

n}
∥∥∇Ωn

t,τ

∥∥
Zλ∗

n(1+b),µ∗
n

τ− bt
1+b

(10.87)

≤ C(d) (1 + τ)

min {λ∗n − λ‡n ; µ∗
n − µ‡

n}
.

Combining these bounds with Step 9, Proposition 4.24 and the identities

(10.88)

{
(∇h) ◦ Ω = (∇Ω)−1 ∇(h ◦ Ω)

(∇∇h) ◦ Ω = (∇Ω)−2 ∇∇(h ◦ Ω) − (∇Ω)−1 ∇2Ω (∇Ω)−1(∇h ◦ Ω),

we get

∥∥∥(∇hn+1
τ ) ◦ Ωn

t,τ

∥∥∥
Zλ

‡
n(1+b),µ

‡
n;1

τ− bt
1+b

≤ C(d)
∥∥∥∇
(
hn+1

τ ◦ Ωn
t,τ

)∥∥∥
Zλ

‡
n(1+b),µ

‡
n;1

τ− bt
1+b

(10.89)

≤ C(d) (1 + τ)

min{λ♭
n − λ‡n ; µ∗

n − µ‡
n}

∥∥∥hn+1
τ ◦ Ωn

t,τ

∥∥∥
Zλ♭

n(1+b),µ∗
n;1

τ− bt
1+b
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and

∥∥∥(∇2hn+1
τ ) ◦ Ωn

t,τ

∥∥∥
Zλ

‡
n(1+b),µ

‡
n;1

τ− bt
1+b

(10.90)

≤ C(d)



∥∥∥∇2

(
hn+1

τ ◦ Ωn
t,τ

)∥∥∥
Zλ

‡
n(1+b),µ

‡
n;1

τ− bt
1+b

+
∥∥∇2Ωn

t,τ

∥∥
Zλ

‡
n(1+b),µ

‡
n;1

τ− bt
1+b

∥∥(∇hn+1
τ ) ◦ Ωn

t,τ

∥∥
Zλ

‡
n(1+b),µ

‡
n;1

τ− bt
1+b




≤ C(d) (1 + τ)2

min {λ♭
n − λ‡n ; µ∗

n − µ‡
n}2

∥∥hn+1
τ ◦ Ωn

t,τ

∥∥
Zλ♭

n(1+b),µ∗
n;p

τ− bt
1+b

.

This gives us the bounds ‖(∇hn+1)◦Ωn‖ = O(1+τ), ‖(∇2hn+1)◦Ωn‖ = O((1+τ)2),
which are optimal if one does not distinguish between the x and v variables. We
shall now refine these estimates. First we write

∇(hn+1
τ ◦ Ωn

t,τ ) − (∇hn+1
τ ) ◦ Ωn

t,τ = ∇(Ωn
t,τ − Id ) ·

[
(∇hn+1

τ ) ◦ Ωn
t,τ

]
,

and we deduce (via Propositions 4.24 and 4.27)

∥∥∥∇
(
hn+1

τ ◦ Ωn
t,τ

)
− (∇hn+1

τ ) ◦ Ωn
t,τ

∥∥∥
Zλ

‡
n(1+b),µ

‡
n;p

τ− bt
1+b

(10.91)

≤
∥∥∇(Ωn

t,τ − Id )
∥∥
Zλ

‡
n(1+b),µ

‡
n

τ− bt
1+b

∥∥(∇hn+1
τ ) ◦ Ωn

t,τ

∥∥
Zλ

‡
n(1+b),µ

‡
n;p

τ− bt
1+b

≤ C(d)

(
1 + τ

min {λ♭
n − λ‡n ; µ∗

n − µ‡
n}

)2 ∥∥Ωn
t,τ − Id

∥∥
Zλ♭

n(1+b),µ∗
n

τ− bt
1+b

∥∥hn+1
τ ◦ Ωn

t,τ

∥∥
Zλ♭

n(1+b),µ∗
n;p

τ− bt
1+b

≤ C(d)C4
ω

min {λ♭
n − λ‡n ; µ∗

n − µ‡
n}2

(
n∑

k=1

δk
(2π(λk − λ∗k))

6

)
(1 + τ)−2

∥∥hn+1
τ ◦ Ωn

t,τ

∥∥
Zλ♭

n(1+b),µ∗
n;p

τ− bt
1+b

.

(Note: Ωn − Id brings the time-decay, while hn+1 brings the smallness.)
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This shows that (∇hn+1) ◦ Ωn ≃ ∇(hn+1 ◦ Ωn) as τ → ∞. In view of Step 9, this
also implies the refined gradient estimates

(10.92)
∥∥(∇xh

n+1
τ ) ◦ Ωn

t,τ

∥∥
Zλ

‡
n,µ

‡
n;p

τ− bt
1+b

+
∥∥∥
(
(∇v + τ∇x)h

n+1
τ

)
◦ Ωn

t,τ

∥∥∥
Zλ

‡
n,µ

‡
n;p

τ− bt
1+b

≤ C
∥∥hn+1

τ ◦ Ωn
t,τ

∥∥
Zλ♭

n(1+b),µ∗
n;p

τ− bt
1+b

,

with

C = C(d)

[
C4

ω

min {λ♭
n − λ‡n ; µ∗

n − µ‡
n}2

(
n∑

k=1

δk
(2π(λk − λ∗k))

6

)
+

1

min {λ♭
n − λ‡n ; µ∗

n − µ‡
n}

]
.

10.4.7. Conclusion. Given λn+1 < λ∗n, µn+1 < µ∗
n, we define

λn+1 = λ‡n, µn+1 = µ‡
n,

and we impose

λ∗n − λ†n = λ†n − λ♭
n = λ♭

n − λ‡n =
λ∗n − λn+1

3
,

µ∗
n − µ‡

n =
µ∗

n − µn+1

2
.

Then from (10.79), (10.81), (10.82), (10.83), (10.90), (10.91) and (10.92) we see that

(En+1

ρ ), (Ẽn+1

ρ ), (En+1

h
), (Ẽn+1

h
) have all been established in the present subsection,

with
(10.93)

δn+1 =
C(d)CF (1 + CF ) (1 + C4

ω) eC (1+T 2
n)

min {λ∗n − λn+1 ; µ∗
n − µn+1}4

(
1 +

n∑

k=1

δk
(2π(λk − λ∗k))

6

)
δ2
n

λn − λ∗n
.

10.5. Convergence of the scheme. For any n ≥ 1, we set

(10.94) λn − λ∗n = λ∗n − λn+1 = µn − µ∗
n = µ∗

n − µn+1 =
Λ

n2
,

for some Λ > 0. By choosing Λ small enough, we can make sure that the conditions
2π(λk−λ∗k) < 1, 2π(µk−µ∗

k) < 1 are satisfied for all k, as well as the other smallness
assumptions made throughout this section. Moreover, we have λk − λ∗k ≥ Λ/k2, so
conditions (C1) to (C9) will be satisfied if

n∑

k=1

k12 δk ≤ Λ6 ω,
n∑

j=k+1

j6 δj ≤ Λ3 ω

(
1

k2
− 1

n2

)
,
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for some small explicit constant ω > 0, depending on the other constants appearing
in the problem. Both conditions are satisfied if

(10.95)

∞∑

k=1

k12 δk ≤ Λ6 ω.

Then from (10.80) we have Tn ≤ Cγ n
14+2γ
γ−1 Λ− 7+γ

γ−1 , so the induction relation on δn
allows

(10.96) δ1 ≤ C δ, δn+1 = C
n10

Λ5
eC n

14+2γ
γ−1 /Λ

7+γ
γ−1

δ2
n.

To establish this relation we also assumed that δn is bounded below by CF ζn, the
error coming from the short-time iteration; but this follows easily by construction,
since the constraints imposed on δn are much worse than those on ζn.

Having fixed Λ, we will check that for δ small enough, (10.96) implies both the
fast convergence of (δk)k∈N, and the condition (10.95), which will justify a posteriori
the derivation of (10.96). (An easy induction is enough to turn this into a rigorous
reasoning.)

For this we fix a ∈ (1, aI), 0 < z < zI < 1, and we check by induction

(10.97) ∀n ≥ 1, δn ≤ ∆ zan

.

If ∆ is given, (10.97) holds for n = 1 as soon as δ ≤ (∆/C) za. Then, to go from
stage n to stage n + 1, we should check that

C n10

Λ5
eCn

14+2γ
γ−1 /Λ

7+γ
γ−1

∆2 z2 an ≤ ∆ zan+1

;

this is true if

1

∆
≥ C

Λ5
sup
n∈N

(
n10 eC n

14+2γ
γ−1 /Λ

7+γ
γ−1

z(2−a) an

)
.

Since a < 2, the supremum on the right-hand side is finite, and we just have to choose
∆ small enough. Then, reducing ∆ further if necessary, we can ensure (10.95). This
concludes the proof.

Remark 10.1. This argument almost fully exploits the bi-exponential convergence
of the Netwon scheme: a convergence like, say, O(e−n1000

), would not be enough to
treat values of γ which are close to 1.
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11. Convergence in large time

In this section we prove Theorem 2.5 as a simple consequence of the uniform
bounds established in Section 10.

So let f 0, L,W satisfy the assumptions of Theorem 2.5. To simplify notation we
assume L = 1.

The second part of Assumption (2.12) precisely means that f 0 ∈ Cλ;1. We shall
actually assume a slightly more precise condition, namely that for some p ∈ [1,∞],

(11.1)
∑

n∈Nd
0

λn

n!
‖∇n

vf
0‖Lp(Rd) ≤ C0 < +∞, ∀ p ∈ [1, p].

(It is sufficient to take p = 1 to get Theorem 2.5; but if this bound is available for
some p > 1 then it will be propagated by the iteration scheme, and result in more
precise bounds.) Then we pick up λ ∈ (0, λ), µ ∈ (0, µ), β > 0, β ′ ∈ (0, β). By
symmetry, we only consider nonnegative times.

If fi is an initial datum satisfying the smallness condition (2.13), then by Theorem
4.20, we have a smallness estimate on ‖fi−f 0‖Zλ′,µ′;p for all p ∈ [1, p], λ′ < λ, µ′ < µ.
Then, as in Subsection 4.12 we can estimate the solution h1 to the linearized equation

(11.2)




∂th

1 + v · ∇xh
1 + F [h1] · ∇vf

0 = 0

h1(0, · ) = fi − f 0,

and we recover uniform bounds in Zλ♯,µ♯;p spaces, for any λ♯ ∈ (λ, λ), µ♯ ∈ (µ, µ).
More precisely,

(11.3) sup
t≥0

‖ρ[h1
t ]‖Fλ♯t+µ♯ + sup

t≥0
‖h1(t, · )‖Zλ♯,µ♯;p

t

≤ C δ,

with C = C(d, λ′, λ♯, µ′, µ♯,W, f 0) (this is of course assuming ε in Theorem 2.5 to be
small enough).

We now set λ1 = λ′, λ1 = λ♯, and we run the iterative scheme of Sections 9–10
for all n ≥ 2. If ε is small enough, up to slightly lowering λ1, we may choose all
parameters in such a way that

λk, λk, λ
∗
k −−−→

k→∞
λ∞ > λ, µk, µk, µ

∗
k −−−→

k→∞
µ∞ > µ;

then we pick up B > 0 such that

µ∞ − λ∞(1 +B)B ≥ µ′
∞ > µ,

and we let b(t) = B/(1 + t).
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As a result of the scheme, we have, for all k ≥ 2,

(11.4) sup
t≥τ≥0

∥∥hk
τ ◦ Ωk−1

t,τ

∥∥
Zλ∞(1+b),µ∞;1

τ− bt
1+b

≤ δk,

where
∑∞

k=2 δk ≤ C δ and Ωk is the scattering associated to the force field generated
by h1 + . . .+ hk. Choosing t = τ in (11.4) yields

sup
t≥0

‖hk
t ‖Zλ∞(1+B),µ∞;1

t− Bt
1+B+t

≤ δk.

By Proposition 4.17, this implies

sup
t≥0

‖hk
t ‖Zλ∞(1+B),µ∞−λ∞(1+B)B;1

t
≤ δk.

In particular, we have a uniform estimate on hk
t in Zλ∞,µ′

∞;1
t . Summing up over k

yields for f = f 0 +
∑

k≥1 h
k the estimate

(11.5) sup
t≥0

∥∥f(t, · )
∥∥
Zλ∞,µ′

∞;1
t

≤ C δ.

Passing to the limit in the Newton scheme, one shows that f solves the nonlinear
Vlasov equation with initial datum fi. (Once again we do not check details; to
be rigorous one would need to establish moment estimates, locally in time, before
passing to the limit.) This implies in particular that f stays nonnegative at all times.

Applying Theorem 4.20 again, we deduce from (11.5)

sup
t≥0

∥∥f(t, · ) − f 0
∥∥
Yλ,µ

t

≤ C δ;

or equivalently, with the notation used in Theorem 2.5,

(11.6) sup
t≥0

∥∥f(t, x− vt, v) − f 0(v)
∥∥

λ,µ
≤ C δ.

Moreover, ρ =
∫
f dv satisfies similarly

sup
t≥0

‖ρ(t, · )‖Fλ∞t+µ∞ ≤ C δ.

It follows that |ρ̂(t, k)| ≤ C δ e−2πλ∞|k|t e−2πµ∞|k|, for any k 6= 0. On the one hand,
by Sobolev embedding, we deduce that for any r ∈ N,

‖ρ(t, · ) − 〈ρ〉‖Cr(Td) ≤ Cr δ e
−2πλ′t;

on the other hand, multiplying ρ̂ by the Fourier transform of ∇W , we see that the
force F = F [f ] satisfies

(11.7) ∀t ≥ 0, ∀k ∈ Zd, |F̂ (t, k)| ≤ C δ e−2πλ′|k|t e−2πµ′|k|,
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for some λ′ > λ, µ′ > µ.

Now, from (11.6) we have, for any (k, η) ∈ Zd × Rd, and any t ≥ 0,

(11.8)
∣∣∣f̃(t, k, η + kt) − f̃ 0(η)

∣∣∣ ≤ C δ e−2πµ′|k| e−2πλ′|η|;

so

(11.9) |f̃(t, k, η)| ≤
∣∣f̃ 0(η + kt)

∣∣ + C δ e−2πµ′|k| e−2πλ′|η+kt|.

In particular, for any k 6= 0, and any η ∈ Rd,

(11.10) f̃(t, k, η) = O(e−2πλ′t).

Thus f is asymptotically close (in the weak topology) to its spatial average g =
〈f〉 =

∫
f dx. Taking k = 0 in (11.8) shows that, for any η ∈ Rd,

(11.11) |g̃(t, η) − f̃ 0(η)| ≤ C δ e−2πλ′|η|.

Also, from the nonlinear Vlasov equation, for any η ∈ Rd we have

g̃(t, η) = f̃i(0, η) −
∫ t

0

∫

Td
L

∫

Rd

F (τ, x) · ∇vf(τ, x, v) e−2iπη·v dv dx dτ

= f̃i(0, η) − 2iπ
∑

ℓ∈Zd

∫ t

0

F̂ (τ, ℓ) · η f̃(τ,−ℓ, η) dτ.

Using the bounds (11.7) and (11.10), it is easily shown that the above time-integral
converges exponentially fast as t → ∞, with rate O(e−λ′′t) for any λ′′ < λ′, to its
limit

(11.12) g̃∞(η) = f̃i(0, η) − 2iπ
∑

ℓ∈Zd

∫ ∞

0

F̂ (τ, ℓ) · η f̃(τ,−ℓ, η) dτ.

By passing to the limit in (11.11) we see that

|g̃∞(η) − f̃ 0(η)| ≤ C δ e−2πλ′|η|,

and this concludes the proof of Theorem 2.5.

12. Coulomb/Newton interaction

In this section we establish Landau damping on exponentially long times for
Coulomb/Newton interactions (γ = 1), as stated in Theorem 2.6. This is obtained
by a slight modification of the proof of Theorem 2.5; rather than going through the
details again, we shall just give the reader the new ingredients.
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Sketch of Proof of Theorem 2.6. In the iteration scheme of Section 10, the only place
where we used γ > 1 (and not just γ ≥ 1) is in Step 6, when it comes to the echo
response via Theorem 7.8. Now, in the case γ = 1, the formula for Kn

1 should be

Kn
1 (t, τ) =

n∑

k=1

δk K
(αn,k),1
1 (t, τ),

with αn,k = min {(µk − µ∗
n)/2 ; λk − λ∗n ; η}. By Theorem 7.8 (iii) this induces, in

addition to other well-behaved factors, an uncontrolled exponential growth O(eǫnt),
with

ǫn = Γ
n∑

k=1

δk
α3

n,k

;

in particular ǫn will remain bounded and O(δ) throughout the scheme.
Let us replace (10.94) by

λn − λ∗n = λ∗n − λn+1 = µn − µ∗
n = µ∗

n − µn+1 =
Λ

n (log(e+ n))2
,

where Λ > 0 is very small. (This is allowed since the series
∑

1/(n(log(e + n))2)
converges — the power 2 could of course be replaced by any r > 1.) Then during the
first stages of the iteration we can absorb the O(eǫnt) factor by the loss of regularity
if, say,

ǫn ≤ Λ

2n (log(e+ n))2
.

Recalling that ǫn = O(δ), this is satisfied as soon as

(12.1) n ≤ N :=
K

δ (log(1/δ))2
,

whereK > 0 is a positive constant depending on the other parameters of the problem
but of course not on δ. So during these first stages we get the same long-time
estimates as in Section 10.

For n > N we cannot rely on the loss of regularity any longer; at this stage the
error is about

δN ≤ C δaN

,

where 1 < a < 2. To get the bounds for larger values of n, we use impose a restriction
on the time-interval, say 0 ≤ t ≤ Tmax. Allowing a degradation of the rate δan

into
δan

with a < a, we see that the new factor eǫnTmax can be eaten up by the scheme if

eǫnTmax δ(a−a) an ≤ 1, ∀n ≥ N.
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This is satisfied if

Tmax = O

(
aN log 1

δ

δ

)
.

Recalling (12.1), we see that the latter condition holds true if

Tmax = O

(
A

1
δ(log δ)2

log 1
δ

δ

)

for some well-chosen constant A > 1. Then we can complete the iteration, and end
up with a bound like

‖ft − fi‖Zλ′,µ′

t
≤ C δ ∀t ∈ [0, Tmax],

where C is another constant independent of δ. The conclusion follows easily. �

Remark 12.1. The constants involved in the preceding argument are somewhat
dreadful. If one is ready to relax the exponential bound (2.20) into a weaker bound

T ≤ eK/
√

δ, then much better constants can be obtained by using Theorem 7.8
(iii’) instead of Theorem 7.8 (iii). To summarize, there are three time scales in our
argument (discarding logarithmic corrections in the exponentials):

• t = O(δ−1): linearization provides a close approximation of the full solution;

• t = O(A1/
√

δ): nonlinear damping with very large but decent constants;

• t = O(A1/δ): nonlinear damping with crazy constants.

13. Expansions and counterexamples

A most important consequence of the proof of Theorem 2.5 is that the asymptotic
behavior of the solution of the nonlinear Vlasov equation can in principle be deter-
mined at arbitrary precision as the size of the perturbation goes to 0. Indeed, if we
define gk

∞(v) as the large-time limit of hk (say in positive time), then ‖gk‖ = O(δk),
so f 0 + g1

∞ + . . . + gn
∞ converges very fast to f∞. In other words, to investigate

the properties of the time-asymptotics of the system, we may freely exchange the
limits t → ∞ and δ → 0, perform expansions, etc. This at once puts on rigor-
ous grounds many asymptotic expansions used by various authors — who so far
implicitly postulated the possibility of this exchange.

With this in mind, let us estimate the first corrections to the linearized theory, in
the regime of a very small perturbation and small interaction strength (which can
be achieved by a proper scaling of physical quantities). We shall work in dimension
d = 1 and in a periodic box of length L = 1.
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13.1. Simple excitation. For a start, let us consider the case where the perturba-
tion affects only the first spatial frequency. We let

• f 0(v) = e−π v2
: the homogeneous (Maxwellian) distribution;

• ε ρi(x) = ε cos(2πx): the initial space density perturbation;

• ε ρi(x) θ(v): the initial perturbation of the distribution function; we denote by
ϕ the Fourier transform of θ;

• αW : the interaction potential, with W (−x) = W (x). We do not specify its
form, but it should satisfy the assumptions in Theorem 2.5.

We work in the asymptotic regime ε → 0, α → 0. We will not write norms ex-
plicitly, but all our computations can be made in the norms introduced in Section 4,
with small losses in the regularity indices — as we have done in all this paper.

The first-order correction h1 = O(ε) to f 0 is provided by the solution of the
linearized equation (3.3), here taking the form

∂th
1 + v · ∇xh

1 + F [h1] · ∇vf
0 = 0,

with initial datum h1(0, · ) = hi := fi − f 0. As in Section 3 we get a closed equation
for the associated density ρ[h1]:

ρ̂[h1](t, k) = h̃i(k, kt) − 4π2 α Ŵ (k)

∫ t

0

ρ̂[h1](τ, k) e−π(k(t−τ))2 (t− τ) k2 dτ.

It follows that ρ̂[h1](t, k) = 0 for k 6= ±1, so the behavior of ρ̂[h1] is entirely deter-
mined by u1(t) = ρ̂[h1](t, 1) and u−1(t) = ρ̂[h1](t,−1), which satisfy

u1(t) =
ε

2
ϕ(t) − 4π2α Ŵ (1)

∫ t

0

u1(τ) e
−π(t−τ)2 (t− τ) dτ(13.1)

=
ε

2

[
ϕ(t) +O(α)

]
.

u−1(t) =
ε

2
ϕ(−t) − 4π2α Ŵ (1)

∫ t

0

u−1(τ) e
−π(t−τ)2 (t− τ) dτ(13.2)

=
ε

2

[
ϕ(−t) +O(α)

]
.

The corresponding force, in Fourier transform, is given by F̂ 1(t, 1) = −2iπα Ŵ (1) u1(t)

and F̂ 1(t,−1) = 2iπα Ŵ (1) u−1(t).
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From this we also deduce the Fourier transform of h1 itself:
(13.3)

h̃1(t, k, η) = h̃i(k, η+kt)−4π2α Ŵ (k)

∫ t

0

ρ̂[h1](τ, k) e−π(η+k(t−τ))2
(
η+k(t−τ)

)
·k dτ ;

this is 0 if k 6= ±1, while

h̃1(t, 1, η) =
ε

2
ϕ(η + t) − 4π2α Ŵ (1)

∫ t

0

u1(τ) e
−π(η+(t−τ))2

(
η + (t− τ)

)
dτ(13.4)

=
ε

2

[
ϕ(η + t) +O(α)

]
,

h̃1(t,−1, η) =
ε

2
ϕ(η − t) + 4π2α Ŵ (1)

∫ t

0

u−1(τ) e
−π(η−(t−τ))2

(
η − (t− τ)

)
dτ

(13.5)

=
ε

2

[
ϕ(η − t) +O(α)

]
.

To get the next order correction, we solve, as in Section 10,

∂th
2 + v · ∇xh

2 + F [h1] · ∇vh
2 + F [h2] · (∇vf

0 + ∇vh
1) = −F [h1] · ∇vh

1,

with zero initial datum. Since h2 = O(ε2), we may neglect the terms F [h1] · ∇vh
2

and F [h2] · ∇vh
1 which are both O(αε3). So it is sufficient to solve

(13.6) ∂th
′
2 + v · ∇xh

′
2 + F [h′2] · ∇vf

0 = −F [h1] · ∇vh
1

with vanishing initial datum. As t → ∞, we know that the solution h′2(t, x, v) is
asymptotically close to its spatial average 〈h′2〉 =

∫
h′2 dx. Taking the integral over

Td in (13.6) yields

∂t〈h′2〉 = −
〈
F [h1] · ∇vh

1
〉
.

Since h1 converges to 〈hi〉, the deviation of f to 〈fi〉 is given, at order ε2, by

g(v) = −
∫ +∞

0

〈
F [h1] · ∇vh

1
〉
(t, v) dt

= −
∫ +∞

0

∑

k∈Z

F̂ [h1](t,−k) · ∇vĥ
1(t, k, v) dt.
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Applying the Fourier transform and using (13.1)-(13.2)-(13.4)-(13.5), we deduce

g̃(η) = −
∫ +∞

0

∑

k∈Z

F̂ [h1](t,−k) · ∇̃vh
1
(t, k, η) dt

= −
∫ +∞

0

F̂ [h1](t,−1) (2iπη) h̃1(t, 1, η) dt

−
∫ +∞

0

F̂ [h1](t, 1) (2iπη) h̃1(t,−1, η) dt

= π2ε2α Ŵ (1) η

(∫ +∞

0

ϕ(−t)ϕ(η + t) dt−
∫ +∞

0

ϕ(t)ϕ(η − t) dt+O(α)

)

= −π2ε2α Ŵ (1) η

(∫ +∞

−∞
ϕ(t)ϕ(η − t) sign (t) dt+O(α)

)
.

Summarizing:
(13.7)



lim
t→∞

f̃(t, k, η) = 0 if k 6= 0

lim
t→∞

f̃(t, 0, η) = f̃i(t, 0, η) − ε2 α
(
π2 Ŵ (1)

)
η

(∫ +∞

−∞
ϕ(t)ϕ(η − t) sign (t) dt+O(α)

)
.

Since ϕ is an arbitrary analytic profile, this simple calculation already shows that

• the asymptotic profile is not necessarily the spatial mean of the initial datum;

• the asymptotic profile in general depends on the interaction, and cannot be
predicted by a “statistical” recipe based only on the initial datum (e.g. maximum
of entropy given the constraints).

Assuming ε ≪ α, higher order expansions in α can be obtained by bootstrap on
the equations (13.1)-(13.2)-(13.4)-(13.5): for instance,

lim
t→∞

f̃(t, 0, η) = f̃i(0, η) − ε2 α
(
π2 Ŵ (1)

)
η

∫ +∞

−∞
ϕ(t)ϕ(η − t) sign (t) dt

− ε2 α2
(
2π2Ŵ (1)

)2
η

{∫ ∞

0

∫ t

0

(
ϕ(η + t)ϕ(−τ) − ϕ(η − t)ϕ(τ)

)
e−π(t−τ)2 (t− τ)

+ ϕ(τ)ϕ(−t) e−π(η+(t−τ))2
(
η + (t− τ)

)

+ ϕ(−τ)ϕ(t) e−π(η−(t−τ))2
(
η − (t− τ)

)}
dτ +O(ε2α3).
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What about the limit in negative time? Reversing time is equivalent to changing
f(t, x, v) into f(t, x,−v) and letting time go forward. So we define S(v) := −v,
T (ϕ)(η) := ε2 α π2 Ŵ (1) η

∫ +∞
−∞ ϕ(t)ϕ(η − t) sign (t) dt; then T (ϕ ◦ S) = T (ϕ) ◦ S,

which means that the solutions constructed above are always homoclinic at order
O(ε2α). The same is true for the more precise expansions at order O(ε2α2), and in
fact it can be checked that the whole distribution f 2 is homoclinic; in other words,
f is homoclinic up to possible corrections of order O(ε4). To exhibit heteroclinic
deviations, we shall consider more general perturbations.

13.2. General perturbation. Let us now consider a “general” initial datum fi(x, v)
close to f 0(v), and expand the solution f . We write ε ϕk(η) = (fi − f 0) f (k, η) and
ρm = ρ[hm]. The interaction potential is assumed to be of the form αW with α≪ 1
and W (x) = W (−x). The first equations of the Newton scheme are

(13.8) ρ̂1(t, k) = ε ϕk(kt) − 4π2α Ŵ (k)

∫ t

0

ρ̂1(τ, k) f̃ 0
(
k(t− τ)

)
|k|2 (t− τ) dτ,

(13.9)

h̃1(t, k, η) = ε ϕk(η+kt)−4π2α Ŵ (k)

∫ t

0

ρ̂1(τ, k) f̃ 0
(
η+k(t−τ)

)
k ·
(
η+k(t−τ)

)
dτ,

h̃2(t, k, η) = −4π2α Ŵ (k)

∫ t

0

ρ̂2(τ, k) f̃ 0
(
η + k(t− τ)

)
k ·
(
η + k(t− τ)

)
dτ

(13.10)

− 4π2α

∫ t

0

∑

ℓ

Ŵ (ℓ) ρ̂1(τ, ℓ) h̃1
(
τ, k − ℓ, η + k(t− τ)

)
ℓ ·
(
η + k(t− τ)

)
dτ

− 4π2α

∫ t

0

∑

ℓ

Ŵ (ℓ) ρ̂2(τ, ℓ) h̃1
(
τ, k − ℓ, η + k(t− τ)

)
ℓ ·
(
η + k(t− τ)

)
dτ

− 4π2α

∫ t

0

∑

ℓ

Ŵ (ℓ) ρ̂1(τ, ℓ) h̃2
(
τ, k − ℓ, η + k(t− τ)

)
ℓ ·
(
η + k(t− τ)

)
dτ,
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ρ̂2(t, k) = −4π2α Ŵ (k)

∫ t

0

ρ̂2(τ, k) f̃ 0
(
k(t− τ)

)
|k|2 (t− τ)

)
dτ(13.11)

− 4π2α

∫ t

0

∑

ℓ

Ŵ (ℓ) ρ̂1(τ, ℓ) h̃1
(
τ, k − ℓ, k(t− τ)

)
ℓ · k (t− τ) dτ

− 4π2α

∫ t

0

∑

ℓ

Ŵ (ℓ) ρ̂2(τ, ℓ) h̃1
(
τ, k − ℓ, k(t− τ)

)
ℓ · k (t− τ) dτ

− 4π2α

∫ t

0

∑

ℓ

Ŵ (ℓ) ρ̂1(τ, ℓ) h̃2
(
τ, k − ℓ, k(t− τ)

)
ℓ · k (t− τ) dτ.

Here k and ℓ run over Zd.
From (13.8)–(13.9) we see that ρ1 and h1 depend linearly on ε, and

(13.12) ρ̂1(t, k) = ε
[
ϕk(kt) +O(α)

]
, h̃1(t, k, η) = ε

[
ϕk(η + kt) +O(α)

]
.

Then from (13.10)–(13.11), ρ2 and h2 are O(ε2 α); so by plugging (13.12) in these
equations we obtain
(13.13)

ρ̂2(t, k) = −4π2ε2 α

∫ t

0

∑

ℓ

Ŵ (ℓ)ϕℓ(ℓτ)ϕk−ℓ(kt−ℓτ) ℓ·k (t−τ) dτ +O(ε2 α2)+O(ε3 α),

(13.14)

h̃2(t, k, η) = −4π2ε2 α

∫ t

0

∑

ℓ

Ŵ (ℓ)ϕℓ(ℓτ)ϕk−ℓ(η+kt−ℓτ) ℓ·
(
η+k(t−τ)

)
dτ +O(ε2 α2)+O(ε3 α).

We plug these bounds again in the right-hand side of (13.10) to find

(13.15) h̃2(t, 0, η) = (II)ε(t, η) + (III)ε(t, η) +O(ε3 α3),

where

(II)ε(t, η) = −4π2 α

∫ t

0

∑

ℓ

(ℓ · η) Ŵ (ℓ) ρ̂1(τ, ℓ) h̃1(τ,−ℓ, η) dτ
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is quadratic in ε, and (III)ε(t, η) is a third-order correction:

(III)ε(t, η) =16π4 ε3 α2
∑

m,ℓ∈Zd

Ŵ (ℓ) Ŵ (m)

(13.16)

∫ t

0

∫ τ

0

ϕm(ms)
{
ϕℓ−m(ℓτ −ms)ϕ−ℓ(η − ℓτ) (ℓ ·m) (τ − s)

+ ϕℓ(ℓτ)ϕ−ℓ−m(η − ℓτ −ms)m · (η − ℓ(τ − s))
}

(ℓ · η) ds dτ.

If f̃ 0 is even, changing ϕk into ϕk(− · ) and η into −η amounts to change k into
−k at the level of (13.8)–(13.9); but then (II)ε is invariant under this operation.
We conclude that f is always homoclinic at second order in ε, and we consider the
influence of the third-order term (13.16). Let

C[ϕ](η) := lim
t→∞

(III)ε(t, η).

After some relabelling, we find

(13.17) C[ϕ](η) = 16π4 ε3 α2
∑

k,ℓ∈Zd

Ŵ (k) Ŵ (ℓ)

∫ ∞

0

∫ t

0

ϕℓ(ℓτ)
{
ϕk−ℓ(kt− ℓτ)ϕ−k(η − kt) (k · ℓ) (t− τ)

+ ϕk(kt)ϕ−k−ℓ(η − kt− ℓτ) ℓ · (η − k(t− τ))
}

(k · η) dτ dt.

Now assume that ϕ−k = σ ϕk with σ = ±1. (σ = 1 means that the perturbation is
even in x; σ = −1 that it is odd.) Using the symmetry (k, ℓ) ↔ (−k,−ℓ) one can
check that

C[ϕ ◦ S] ◦ S = σ C[ϕ],

where S(z) = −z. In particular, if the perturbation is odd in x, then the third-order
correction imposes a heteroclinic behavior for the solution, as soon as C[ϕ] 6= 0.

To construct an example where C[ϕ] 6= 0, we set d = 1, f 0 = Gaussian, fi − f 0 =

sin(2πx) θ1(v)+sin(4πx) θ2(v), ϕ1 = −ϕ−1 = θ̃1/2, ϕ2 = −ϕ−2 = θ̃2/2. The six pairs
(k, ℓ) contributing to (13.17) are (−1, 1), (1,−1), (1, 2), (2, 1), (−1,−2), (−2,−1),

By playing on the respective sizes of Ŵ (1) and Ŵ (2) (which amounts in fact to
changing the size of the box), it is sufficient to consider the terms with coefficient
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Ŵ (1)2, i.e., the pairs (−1, 1) and (1,−1). Then the corresponding bit of C[ϕ](η) is

−16π4 ε3 α2 Ŵ (1)2 η

∫ ∞

0

∫ t

0

[
ϕ1(τ)ϕ1(η + t)ϕ2(−t+ τ) (t− τ)

+ ϕ1(τ)ϕ1(t)ϕ2(η + t− τ) (η + t− τ)

+ ϕ1(−τ)ϕ1(η − t)ϕ2(t+ τ) (t− τ)

+ ϕ1(−τ)ϕ1(t)ϕ2(η − t+ τ) (t− τ − η)
]
dτ dt.

If we let ϕ1 and ϕ2 vary in such a way that they become positive and almost con-
centrated on R+, the only remaining term is the one in ϕ1(τ)ϕ2(η+ t−τ)ϕ1(t), and
its contribution is negative for η > 0. So, at least for certain values of W (1) and
W (2) there is a choice of analytic functions ϕ1 and ϕ2, such that C[ϕ] 6= 0. This
demonstrates the existence of heteroclinic trajectories.

To summarize: At first order in ε, the convergence is to the spatial average; at
second order there is a homoclinic correction; at third order, if at least three modes
with zero sum are excited, there is possibility of heteroclinic behavior.

14. Beyond Landau damping

We conclude this paper with some general comments about the physical implica-
tions of Landau damping.

The counterexamples from Section 13 show in particular that there is no “univer-
sal” large-time behavior of the solution of the nonlinear Vlasov equation in terms of
just, say, conservation laws and the initial datum; the dynamics also have to enter
explicitly. One can also interpret this as a lack of ergodicity: the nonlinearity is
not sufficient to make the system explore the space of all “possible” distributions
and to choose the most favorable one, whatever this means. Failure of ergodicity for
a system of finitely many particles was already known to occur, in relation to the
KAM theorem; this is mentioned e.g. in [55, p. 257] for the vortex system. There it
is hoped that such behavior disappears as the dimension goes to infinity; but now we
see that it also exists even in the infinite-dimensional setting of the Vlasov equation
— at least for any interaction less singular than Coulomb/Newton.

At first, this seems to be bad news for the statistical theory of the Vlasov equation,
pioneered by Lynden-Bell [51] and explored by various authors [16, 58, 70, 78, 84],
since even the sophisticated variants of this theory try to predict the likely final
states in terms of just the characteristics of the initial data. In this sense, our
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results provide support for an objection raised by Isichenko [38, p. 2372] against the
statistical theory.

However, looking more closely at our proofs and results, proponents of the statis-
tical theory will have a lot to rejoice about.

To start with, our results are the first to rigorously establish that the nonlinear
Vlasov equation does enjoy some asymptotic “stabilization” property in large time,
without the help of any extra diffusion or ensemble averaging.

Next, the whole analysis is perturbative: each stable spatially homogeneous distri-
bution will have its small “basin of damping”, and it may be that some distributions
are “much more stable” than others, say in the sense of having a larger basin.

Even more importantly, in Section 7 we have crucially used the smoothness to
overcome the potentially destabilizing nonlinear effects; we have even explained why
the critical regularity for Coulomb or Newton interaction is analyticity. So any the-
ory based on nonsmooth, or even non-analytic, functions, might not be constrained
by Landau damping. This certainly applies to a statistical theory, for which analytic
functions should be a zero-probability set.

Finally, to overcome the nonlinearity, not only were we led to use the analytic
regularity, but we also had to cope with huge constants — even qualitatively larger
than those appearing in classical KAM theory — at least on very large time scales.
If one believes in the explanatory virtues of proofs, these large constants might be
the indication that Landau damping is a thin effect, which might be neglected when
it comes to predict the “final” state in a “turbulent” situation.

Further work needs to be done to understand whether these considerations apply
equally to the electrostatic and gravitational cases, or whether the electrostatic case
is favored in these respects.

Although the underlying mathematical and physical mechanisms differ, nonlinear
Landau damping (as defined by Theorem 2.5) may arguably be to the theory of
Vlasov equation what the KAM theorem is to the theory of Hamiltonian systems.
Like the KAM theorem, it might be conceptually important in theory and practice,
and still be severely limited.17

Beyond the range of application of KAM theory lies the softer, more robust weak
KAM theory developed by Fathi [24] in relation to Aubry–Mather theory. By a nice
coincidence, a Vlasov version of the weak KAM theory has just been developed by
Gangbo and Tudorascu [27], although with no relation to Landau damping. Making

17It is a well-known scientific paradox that the KAM theorem was at the same time tremendously
influential in the science of the twentieth century, and so restrictive that its assumptions are
essentially never satisfied in practice.
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the connection is just one of the many developments which may be explored in the
future.

Appendix

In this appendix we gather some elementary tools, our conventions, and some
reminders about calculus.

A.1. Calculus in dimension d. If n ∈ Nd
0 we define

n! = n1! . . . nd!

and ( n

m

)
=
( n1

m1

)
. . .
( nd

md

)
.

If z ∈ Cd and n ∈ Zd, we let

‖z‖ = |z1| + . . .+ |zd|; zn = zn1
1 . . . znd

n ∈ C; |z|n = |zn|.
In particular, if z ∈ Cd we have

e‖z‖ = e|z1|+...+|zd| =
∑

n∈Nd
0

‖z‖n

n!
.

We may occasionally write e|z| instead of e‖z‖.

A.2. Multi-dimensional differential calculus. The Leibniz formula for func-
tions f, g : R → R is

(fg)(n) =
∑

m≤n

( n

m

)
f (m)g(n−m),

where of course f (n) = dnf/dxn. The expression of derivatives of composed functions
is given by the Faà di Bruno formula:

(f ◦G)(n) =
∑

P

jmj=n

n!

m1! . . .mn!

(
f (m1+...+mn) ◦G

) n∏

j=1

(
G(j)

j!

)mj

.

These formulas remain valid in several dimensions, provided that one defines, for
a multi-index n = (n1, . . . , nd),

f (n) =
∂n1

∂xn1
1

. . .
∂nd

∂xnd
d

f.



ON LANDAU DAMPING 177

They also remain true if (∂1, . . . , ∂d) is replaced by a d-tuple of commuting deriva-
tion operators.

As a consequence, we shall establish the following Leibniz-type formula for oper-
ators that are combinations of gradients and multiplications.

Lemma A.1. Let f and g be functions of v ∈ Rd, and a, b ∈ Cd. Then for any
n ∈ Nd,

(∇v + (a+ b))n(fg) =
∑

m≤n

( n

m

)
(∇v + a)mf (∇v + b)n−mg.

Proof. The right-hand side is equal to
∑

m,q,r

( n

m

)( m

q

)( n − m

r

)
∇q

vf ∇r
vg a

m−q bn−m−r.

After changing indices p = q + r, s = m− q, this becomes
∑

s,p,r

( n

p

)( p

r

)( n − p

s

)
∇r

vg∇p−r
v f as bn−p−s =

∑

p

( n

p

)
∇p

v(fg) (a+ b)n−p

= (∇v + (a+ b))n(fg).

�

A.3. Fourier transform. If f is a function Rd → R, we define

(A.1) f̃(η) =

∫

Rd

e−2iπη·v f(v) dv;

then we have the usual formulas

f(v) =

∫

Rd

f̃(η) e2iπη·v dη; ∇̃f(η) = 2iπη f̃(η).

Let Td = Rd/(LZd). If f is a function Td
L → R, we define

(A.2) f̂ (L)(k) =

∫

Td

e−2iπ k
L
·x f(x) dx;

then we have

f(x) =
1

Ld

∑

k∈Zd

f̂ (L)(k) e2iπ k
L

x; ∇̂f
(L)

(k) = 2iπ
k

L
f̂ (L)(k).

If f is a function Td
L × Rd → R, we define

(A.3) f̃ (L)(k, η) =

∫

Td
L

∫

Rd

e−2iπ k
L
·x e−2iπη·v f(x, v) dx dv;
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so that the reconstruction formula reads

f(x, v) =
1

Ld

∑

k∈Zd

∫

Rd

f̃ (L)(k, η) e2iπ k
L
·xe2iπη·v dv.

When L = 1 we do not specify it: so we just write

f̂ = f̂ (1); f̃ = f̃ (1).

(There is no risk of confusion since in that case formulae (A.3) and (A.1) coincide.)

A.4. Fixed point theorem. The following theorem is one of the many variants of
the Picard fixed point theorem:

Theorem A.2 (Fixed point theorem). Let E be a Banach space, F : E → E, and
R = 2‖F (0)‖. If F is (1/2)-Lipschitz B(0, R) → E, then it has a unique fixed point
in B(0, R).

Proof. Uniqueness is obvious. To prove existence, run the classical Picard iterative
scheme initialized at 0: x0 = 0, x1 = F (0), x2 = F (F (0)), etc. It is clear that (xn) is
a Cauchy sequence and ‖xn‖ ≤ ‖F (0)‖(1 + . . .+ 1/2n) ≤ 2‖F (0)‖, so xn converges
in B(0, R) to a fixed point of F . �
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