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We define horizontal diffusion in C 1 path space over a Riemannian manifold and prove its existence. If the metric on the manifold is developing under the forward Ricci flow, horizontal diffusion along Brownian motion turns out to be length preserving. As application, we prove contraction properties in the Monge-Kantorovich minimization problem for probability measures evolving along the heat flow. For constant rank diffusions, differentiating a family of coupled diffusions gives a derivative process with a covariant derivative of finite variation. This construction provides an alternative method to filtering out redundant noise.
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Preliminaries

The main concern of this paper is to answer the following question: Given a second order differential operator L without constant term on a manifold M and a C 1 path u → ϕ(u) taking values in M , is it possible to construct a one parameter family X t (u) of diffusions with generator L and starting point X 0 (u) = ϕ(u), such that the derivative with respect to u is locally uniformly bounded? If the manifold is R n and the generator L a constant coefficient differential operator, there is an obvious solution: the family X t (u) = ϕ(u) + Y t , where Y t is an L-diffusion starting at 0, has the required properties. But already on R n with a non-constant generator, the question becomes difficult.

In this paper we give a positive answer for elliptic operators L on general manifolds; the result also covers time-dependent elliptic generators L = L(t). It turns out that the constructed family of diffusions solves the ordinary differential equation in the space of semimartingales:

(1.1) ∂ u X t (u) = W (X(u)) t ( φ(u)),
where W (X(u)) is the so-called deformed parallel translation along the semimartingale X(u).

The problem is similar to finding flows associated to derivative processes as studied in [START_REF] Cruzeiro | Equations différentielles sur l'espace de Wiener et formules de Cameron-Martin non linéaires[END_REF][START_REF] Cipriano | Flows associated to tangent processes on the Wiener space[END_REF][START_REF] Cipriano | Flows associated with irregular R d vector fields[END_REF][START_REF] Driver | A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact manifold[END_REF][START_REF] Hsu | Quasi-invariance of the Wiener measure on the Path Space over a Compact Riemannian Manifold[END_REF][START_REF] Gong | Flows associated to adapted vector fields on the Wiener space[END_REF] and [START_REF] Fang | Quasi-invariant flows associated to tangent processes on the Wiener space[END_REF]. However it is transversal in the sense that in these papers diffusions with the same starting point are deformed along a drift which vanishes at time 0. In contrast, we want to move the starting point but to keep the generator. Our strategy of proof consists in iterating parallel couplings for closer and closer diffusions. In the limit, the solution may be considered as an infinite number of infinitesimally coupled diffusions. We call it horizontal L-diffusion in C 1 path space.

If the generator L is degenerate, we are able to solve (1.1) only in the constant rank case; by parallel coupling we construct a family of diffusions satisfying (1.1) at u = 0. In particular, the derivative of X t (u) at u = 0 has finite variation compared to parallel transport.

Note that our construction requires only a connection on the fiber bundle generated by the "carré du champ" operator. In the previous approach of [START_REF] Elworthy | On the geometry of Diffusion Operators and Stochastic Flows[END_REF], a stochastic differential equation is needed and ∇ has to be the Le Jan-Watanabe connection associated to the SDE.

The construction of families of L(t)-diffusions X . (u) with ∂ u X . (u) locally uniformly bounded has a variety of applications. In Stochastic Analysis, for instance, it allows to deduce Bismut type formulas without filtering redundant noise. If only the derivative with respect to u at u = 0 is needed, parallel coupling as constructed in [START_REF] Arnaudon | Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below[END_REF] would be a sufficient tool. The horizontal diffusion however is much more intrinsic by yielding a flow with the deformed parallel translation as derivative, well-suited to applications in the analysis of path space. Moreover for any u, the diffusion X . (u) generates the same filtration as X . (0), and has the same lifetime if the manifold is complete.

In Section 4 we use the horizontal diffusion to establish a contraction property for the Monge-Kantorovich optimal transport between probability measures evolving under the heat flow. We only assume that the cost function is a non-decreasing function of distance. This includes all Wasserstein distances with respect to the time-dependent Riemannian metric generated by the symbol of the generator L(t). For a generator which is independent of time, the proof could be achieved using simple parallel coupling. The time-dependent case however requires horizontal diffusion as a tool.

Horizontal diffusion on C 1 path space

Let M be a complete Riemannian manifold with ρ its Riemannian distance. The Levi-Civita connection on M will be denoted by ∇.

Given a continuous semimartingale X taking values in M , we denote by d ∇ X = dX its Itô differential and by d m X the martingale part of dX. In local coordinates, (2.1)

d ∇ X ≡ dX = dX i + 1 2 Γ i jk (X) d<X j , X k > ∂ ∂x i
where Γ i jk are the Christoffel symbols of the Levi-Civita connection on M . In addition, if dX i = dM i + dA i where M i is a local martingale and A i a finite variation process, then

d m X = dM i ∂ ∂x i .
Alternatively, if P t (X) ≡ P M t (X) : T X0 M → T Xt M denotes parallel translation along X, then

dX t = P t (X) d . 0 P s (X) -1 δX s t and d m X t = P t (X) dN t
where N t is the martingale part of the Stratonovich integral t 0 P (X) -1 s δX s . If X is a diffusion with generator L, we denote by W (X) the so-called deformed parallel translation along X. Recall that W (X) t is a linear map T X0 M → T Xt M , determined by the initial condition W (X) 0 = Id TX 0 M together with the covariant Itô stochastic differential equation:

(2.2) DW (X) t = - 1 2 Ric ♯ (W (X) t ) dt + ∇ W (X)t Z dt.
By definition we have

(2.3) DW (X) t = P t (X)d P . (X) -1 W (X) t .
Note that the Itô differential (2.1) and the parallel translation require only a connection ∇ on M . For the deformed parallel translation (2.2) however the connection has to be adapted to a metric.

In this Section the connection and the metric are independent of time. We shall see in Section 3 how these notions can be extended to time-dependent connections and metrics. Theorem 2.1. Let R → M , u → ϕ(u), be a C 1 path in M and let Z be a vector field on M . Further let X 0 be a diffusion with generator L = ∆/2 + Z, starting at ϕ(0), and lifetime ξ. There exists a unique family u → (X t (u)) t∈[0,ξ[ of diffusions with generator L, almost surely continuous in (t, u) and C 1 in u, satisfying X(0) = X 0 , X 0 (u) = ϕ(u) and

(2.4) ∂ u X t (u) = W (X(u)) t ( φ(u)).
Furthermore, the process X(u) satisfies the Itô stochastic differential equation

(2.5) dX t (u) = P Xt( • ) 0,u d m X 0 t + Z Xt(u) dt,
where

P Xt( • ) 0,u : T X 0 t M → T Xt(u) M denotes parallel transport along the C 1 curve [0, u] → M, v → X t (v).
Definition 2.2. We call t → (X t (u) u∈R ) the horizontal L-diffusion in C 1 path space C 1 (R, M ) over X 0 , starting at ϕ.

Remark 2.3. Given an elliptic generator L, we can always choose a metric g on M such that L = ∆/2+Z for some vector field Z where ∆ is the Laplacian with respect to g. Assuming that M is complete with respect to this metric, the assumptions of Theorem 2.1 are fulfilled. In the non-complete case, a similar result holds with the only difference that the lifetime of X . (u) then possibly depends on u.

Remark 2.4. Even if L = ∆/2, the solution we are looking for is not the flow of a Cameron-Martin vector field: firstly the starting point here is not fixed and secondly the vector field would have to depend on the parameter u. Consequently one cannot apply for instance Theorem 3.2 in [START_REF] Hsu | Quasi-invariance of the Wiener measure on the Path Space over a Compact Riemannian Manifold[END_REF]. An adaptation of the proof of the cited result would be possible, but we prefer to give a proof using infinitesimal parallel coupling which is more adapted to our situation.

Proof of Theorem 2.1. Without loss of generality we may restrict ourselves to the case u ≥ 0. A. Existence. Under the assumption that a solution X t (u) exists, we have for any stopping time T ,

W T +t (X(u))( φ(u)) = W t (X T + • (u)) (∂X T (u)), for t ∈ [0, ξ(ω) -T (ω)[ and ω ∈ {T < ξ}.
Here ∂X T := (∂X) T denotes the derivative process ∂X with respect to u, stopped at the random time T ; note that by Eq. (2.4), (∂X T )(u) = W (X(u)) T ( φ(u)). Consequently we may localize and replace the time interval [0, ξ[ by [0, τ ∧ t 0 ] for some t 0 > 0, where τ is the first exit time of X from a relatively compact open subset U of M with smooth boundary.

We may also assume that U is sufficiently small and included in the domain of a local chart; moreover we can choose u 0 ∈ ]0, 1] with u0 0 φ(u) du small enough such that the processes constructed for u ∈ [0, u 0 ] stay in the domain U of the chart. At this point we use the uniform boundedness of W on [0, τ ∧ t 0 ].

For α > 0, we define by induction a family of processes (X α t (u)) t≥0 indexed by u ≥ 0 as follows:

X α (0) = X 0 , X α 0 (u) = ϕ(u), and if u ∈ ]nα, (n + 1)α] for some integer n ≥ 0, X α (u) satisfies the Itô equation (2.6) dX α t (u) = P X α t (nα),X α t (u) d m X α t (nα) + Z X α t (u)
dt, where P x,y denotes parallel translation along the minimal geodesic from x to y. We choose α sufficiently small so that all the minimizing geodesics are uniquely determined and depend smoothly of the endpoints: since Xα(u) is constructed from Xα(nα) via parallel coupling (2.6), there exists a constant C > 0 such that

(2.7) ρ(X α t (u), X α t (nα)) ≤ ρ(X α 0 (u), X α 0 (nα)) e Ct ≤ φ ∞ αe Ct0
(see e.g. [START_REF] Kendall | Nonnegative Ricci curvature and the Brownian coupling property[END_REF]). The process ∂X α (u) satisfies the covariant Itô stochastic differential equation (2.8)

D∂X α (u) = ∇ ∂X α (u) P X α (nα), . d m X α t (nα) + ∇ ∂X α (u) Z dt - 1 2 Ric ♯ (∂X α (u)) dt,
(see [START_REF] Arnaudon | Horizontal martingales in vector bundles[END_REF] Eq. (4.7), along with Theorem 2.2).

Step 1 We prove that if X and Y are two L-diffusions stopped at τ 0 := τ ∧ t 0 and living in U , then there exists a constant C such that

(2.9) E sup t≤τ0 W (X) t -W (Y ) t 2 ≤ C E sup t≤τ0 X t -Y t 2 .
Here we use the Euclidean norm defined by the chart. Writing

L = a ij ∂ ij + b j ∂ j
with a ij = a ji for i, j ∈ {1, . . . , dim M }, and denoting by (a ij ) the inverse of (a ij ), the connection ∇ ′ with Christoffel symbols

(Γ ′ ) k ij = - 1 2 (a ik + a jk )b k
has the property that all L-diffusions are ∇ ′ -martingales.

On the other hand, for ∇ ′ -martingales X and Y living in U , with N X , respectively N Y , their martingale parts in the chart U , Itô's formula for ∇ ′ -martingales yields

(N X ) k -(N Y ) k , (N X ) k -(N Y ) k t = (X k t -Y k t ) 2 -(X k 0 -Y k 0 ) 2 -2 t 0 (X k s -Y k s ) d((N X s ) k -(N Y s ) k ) + t 0 (X k s -Y k s ) (Γ ′ ) k ij (X s ) d (N X ) i , (N X ) j s -(Γ ′ ) k ij (Y s ) d (N Y ) i , (N Y ) j s .
From there we easily prove that, for U sufficiently small, there exists a constant C > 0 such that for all L-diffusions X and Y stopped at the first exit time of U ,

(2.10) E N X -N Y |N X -N Y τ0 ≤ CE sup t≤τ0 X t -Y t 2
where N X -N Y |N X -N Y denotes the Riemannian quadratic variation (see e.g. [START_REF] Arnaudon | Stability of stochastic differential equations in manifolds[END_REF]).

Writing W (X) = P (X) P (X) -1 W (X) , an easy calculation shows that in the local chart

dW (X) = -Γ(X)(dX, W (X)) - 1 2 (dΓ)(X)(dX)(dX, W (X)) + 1 2 Γ(X)(dX, Γ(X)(dX, W (X))) - 1 2 Ric ♯ (W (X)) dt + ∇ W (X) Z dt. (2.11)
We are going to use Eq. (2.11) to evaluate the difference W (Y ) -W (X). Along with the already established bound (2.10), taking into account that W (X), W (Y ) and the derivatives of the brackets of X and Y are bounded in U , we can get a bound for F (t) := E sup s≤t∧τ W (Y ) -W (X) 2 . First an estimate of the type

F (t) ≤ C 1 E sup s≤τ0 X s -Y s 2 + C 2 t 0 F (s) ds, 0 ≤ t ≤ t 0
is derived which then by Gronwall's lemma leads to (2.12)

F (t) ≤ C 1 e C2t E sup t≤τ0 X t -Y t 2 .
Letting t = t 0 in (2.12) we obtain the desired bound (2.9).

Step 2 We prove that there exists C > 0 such that for all u ∈ [0, u 0 ],

(2.13)

E sup t≤τ0 ρ 2 X α t (u), X α ′ t (u) ≤ C(α + α ′ ) 2 .
From the covariant equation (2.8) for ∂X α t (v) and the definition of deformed parallel translation (2.2),

DW (X) -1 t = 1 2 Ric ♯ (W (X) -1 t ) dt -∇ W (X) -1 t Z dt, we have for (t, v) ∈ [0, τ 0 ] × [0, u 0 ], W (X α (v)) -1 t ∂X α t (v) = φ(v) + t 0 W (X α (v)) -1 s ∇ ∂X α s (v) P X α s (vα), . d m X α s (v α ),
or equivalently,

∂X α t (v) = W (X α (v)) t φ(v) + W (X α (v)) t t 0 W (X α (v)) -1 s ∇ ∂X α s (v) P X α s (vα), . d m X α s (v α ) (2.14)
with v α = nα, where the integer n is determined by nα < v ≤ (n + 1)α. Consequently, we have

ρ(X α t (u), X α ′ t (u)) = u 0 dρ, ∂X α t (v), ∂X α ′ t (v) dv = u 0 dρ, W (X α (v)) t φ(v), W (X α ′ (v)) t φ(v) dv + u 0 dρ, W (X α (v)) t t 0 W (X α (v)) -1 s ∇ ∂X α s (v) P X α s (vα), . d m X α s (v α ), 0 dv + u 0 dρ, 0, W (X α ′ (v)) t t 0 W (X α ′ (v)) -1 s ∇ ∂X α ′ s (v) P X α ′ s (v α ′ ), . d m X α ′ s (v a ′ ) dv.
This yields, by means of boundedness of dρ and deformed parallel translation, together with (2.12) and the Burkholder-Davis-Gundy inequalities,

E sup t≤τ0 ρ 2 X α t (u), X α ′ t (u) ≤ C u 0 E sup t≤τ0 ρ 2 X α t (v), X α ′ t (v) dv + C u 0 E τ0 0 ∇ ∂X α s (v) P X α s (vα), . 2 ds dv + C u 0 E τ0 0 ∇ ∂X α ′ s (v) P X α ′ s (v α ′ ), .
2 ds dv.

From here we obtain

E sup t≤τ0 ρ 2 X α t (u), X α ′ t (u) ≤ C u 0 E sup t≤τ0 ρ 2 X α t (v), X α ′ t (v) dv + Cα 2 u 0 E τ0 0 ∂X α s (v) 2 ds dv + Cα ′ 2 u 0 E τ0 0 ∂X α ′ s (v) 2 ds dv,
where we used the fact that for v ∈ T x M , ∇ v P x, . = 0, together with

ρ(X β s (v), X β s (v β )) ≤ Cβ, β = α, α ′ , see estimate (2.7).
Now, by Eq. (2.8) for D∂X β , there exists a constant C ′ > 0 such that for all v ∈ [0, u 0 ],

E τ0 0 ∂X β s (v) 2 ds < C ′ .
Consequently,

E sup t≤τ0 ρ 2 X α t (u), X α ′ t (u) ≤ C u 0 E sup t≤τ0 ρ 2 X α t (v), X α ′ t (v) dv + 2CC ′ (α + α ′ ) 2
which by Gronwall lemma yields

E sup t≤τ0 ρ 2 X α t (u), X α ′ t (u) ≤ C (α + α ′ ) 2
for some constant C > 0. This is the desired inequality.

Step 3 From inequality (2.13) we deduce that there exists a limiting process

(X t (u)) 0≤t≤τ0, 0≤u≤u0
such that for all u ∈ [0, u 0 ] and α > 0,

(2.15)

E sup t≤τ0 ρ 2 (X α t (u), X t (u)) ≤ Cα 2 .
In other words, for any fixed u ∈ [0, u 0 ], the process (X α t (u)) t∈[0,τ0] converges to (X t (u)) t∈[0,τ0] uniformly in L 2 as α tends to 0. Since these processes are ∇ ′martingales, convergence also holds in the topology of semimartingales. This implies in particular that for any u ∈ [0, u 0 ], the process (X t (u)) t∈[0,τ0] is a diffusion with generator L, stopped at τ 0 .

Extracting a subsequence (α k ) k≥0 convergent to 0, we may assume that almost surely, for all dyadic u ∈ [0, u 0 ], sup t≤τ0 ρ (X α t (u), X t (u)) converges to 0. Moreover we can choose (α k ) k≥0 of the form α k = 2 -n k with (n k ) k≥0 an increasing sequence of positive integers. Due to (2.7), we can take a version of the processes (t, u)

→ X α k t (u) such that u → X α k t (u) is uniformly Lipschitz in u ∈ Nα k ∩ [0, u 0 ]
with a Lipschitz constant independent of k and t. Passing to the limit, we obtain that a.s for any t ∈ [0, τ 0 ], the map u → X t (u) is uniformly Lipschitz in u ∈ D ∩ [0, u 0 ] with a Lipschitz constant independent of t, where D is the set of dyadic numbers. Finally we can choose a version of (t, u) → X t (u) which is a.s. continuous in (t, u) ∈ [0, τ 0 ] × [0, u 0 ], and hence uniformly Lipschitz in u ∈ [0, u 0 ].

Step 4 We prove that almost surely, X t (u) is differentiable in u with derivative W (X(u)) t ( φ(u)). More precisely, we show that in local coordinates, almost surely, for all t ∈ [0,

τ 0 ], u ∈ [0, u 0 ], (2.16) X t (u) = X 0 t + u 0 W (X(v)) t ( φ(v)) dv.
From the construction it is clear that almost surely, for all t ∈ [0, τ 0 ], u ∈ [0, u 0 ],

X α k t (u) = X 0 t + u 0 W (X α k (v)) t ( φ(v)) dv + u 0 W (X α k (v)) t t 0 W (X α k (v)) -1 s ∇ ∂X α k s (v) P X α k s (vα k ), . d m X α k s (v α k ) dv.
This yields

X t (u) -X 0 t - u 0 W (X(v)) t ( φ(v)) dv = X t (u) -X α k t (u) + u 0 (W (X α k (v)) t -W (X(v)) t ) φ(v) dv + u 0 W (X α k (v)) t t 0 W (X α k (v)) -1 s ∇ ∂X α k s (v) P X α k s (vα k ), . d m X α k s (v α k ) dv.
The terms of right-hand-side are easily estimated, where in the estimates the constant C may change from one line to another. First observe that

E sup t≤τ0 X t (u) -X α k t (u) 2 ≤ Cα 2 k .
Using (2.9) and (2.15) we have

E sup t≤τ0 u 0 (W (X α k (v)) t -W (X(v)) t ) dv 2 ≤ E sup t≤τ0 u 0 W (X α k (v)) t -W (X(v)) t 2 dv = u 0 E sup t≤τ0 W (X α k (v)) t -W (X(v)) t 2 dv ≤ Cα 2 k ,
and finally

E sup t≤τ0 u 0 W (X α k (v)) t t 0 W (X α k (v)) -1 s ∇ ∂X α k s (v) P X α k s (vα k ), . d m X α k s (v α k ) dv 2 ≤ C u 0 E sup t≤τ0 t 0 W (X α k (v)) -1 s ∇ ∂X α k s (v) P X α k s (vα k ), . d m X α k s (v α k ) 2 dv ≤ Cα 2 k u 0 E τ0 0 ∂X α k s (v) 2 ds dv ≤ Cα 2 k .
We deduce that

E sup t≤τ0 X t (u) -X 0 t - u 0 W (X(v)) t ( φ(v)) dv 2 ≤ Cα 2 k .
Since this is true for any α k , using continuity in u of X t (u), we finally get almost surely for all t, u,

X t (u) = X 0 t + u 0 W (X(v)) t ( φ(v)) dv.
Step 5 Finally we are able to prove Eq. (2.5):

dX t (u) = P Xt( • ) 0,u d m X 0 t + Z Xt(u) dt.
Since a.s. the mapping (t, u) → ∂X t (u) is continuous, the map u → ∂X(u) is continuous in the topology of uniform convergence in probability. We want to prove that u → ∂X(u) is continuous in the topology of semimartingales.

Since for a given connection on a manifold, the topology of uniform convergence in probability and the topology of semimartingale coincide on the set of martingales (Proposition 2.10 of [START_REF] Arnaudon | Stability of stochastic differential equations in manifolds[END_REF]), it is sufficient to find a connection on T M for which ∂X(u) is a martingale for any u. Again we can localize in the domain of a chart. Recall that for all u, the process X(u) is a ∇ ′ -martingale where ∇ ′ is defined in step 1.

Then by [START_REF] Arnaudon | Differentiable and analytic families of continuous martingales in manifolds with connections[END_REF], Theorem 3.3, this implies that the derivative with respect to u with values in T M , denoted here by ∂X(u), is a (∇ ′ ) c -martingale with respect to the complete lift (∇ ′ ) c of ∇ ′ . This proves that u → ∂X(u) is continuous in the topology of semimartingales.

Remark 2.5. Alternatively, one could have used that given a generator L ′ , the topologies of uniform convergence in probability on compact sets and the topology of semimartingales coincide on the set of L ′ -diffusions. Since the processes ∂X(u) are diffusions with the same generator, the result could be derived as well.

As a consequence, we have formally (2.17)

D∂X = ∇ u dX - 1 2 R(∂X, dX)dX. Since dX(u) ⊗ dX(u) = g -1 (X(u)) dt
where g is the metric tensor, Eq. (2.17) becomes

D∂X = ∇ u dX - 1 2 Ric ♯ (∂X) dt.
On the other hand, Eq. (2.4) and Eq. (2.2) for W yield

D∂X = - 1 2 Ric ♯ (∂X) dt + ∇ ∂X Z dt.
From the last two equations we obtain

∇ u dX = ∇ ∂X Z dt.
This along with the original equation

dX 0 = d m X 0 + Z X 0 dt gives dX t (u) = P Xt( • ) 0,u d m X 0 t + Z Xt(u) dt, where P Xt( • ) 0,u : T Xt M → T Xt(u) M denotes parallel transport along the C 1 curve v → X t (v).
B. Uniqueness. Again we may localize in the domain of a chart U . Letting X(u) and Y (u) be two solutions of Eq. (2.4), then for (t, u)

∈ [0, τ 0 [×[0, u 0 ] we find in local coordinates, (2.18) Y t (u) -X t (u) = u 0 W (Y (v)) t -W (X(v)) t ( φ(v)) dv.
On the other hand, using (2.9) we have

(2.19) E sup t≤τ0 Y t (u) -X t (u) 2 ≤ C u 0 E sup t≤τ0 Y t (v) -X t (v) 2 dv
from which we deduce that almost surely, for all t ∈ [0, τ 0 ], X t (u) = Y t (u). Consequently, exploiting the fact that the two processes are continuous in (t, u), they must be indistinguishable.

Horizontal diffusion along non-homogeneous diffusion

In this Section we assume that the elliptic generator is a C 1 function of time: L = L(t) for t ≥ 0. Let g(t) be the metric on M such that

L(t) = 1 2 ∆ t + Z(t)
where ∆ t is the g(t)-Laplacian and Z(t) a vector field on M . Let (X t ) be an inhomogeneous diffusion with generator L(t). Parallel transport P t (X) t along the L(t)-diffusion X t is defined analogously to [START_REF] Arnaudon | Brownian motion with respect to a metric depending on time; definition, existence and applications to Ricci flow[END_REF] as the linear map

P t (X) t : T X0 M → T Xt M which satisfies (3.1) D t P t (X) t = - 1 2 ġ♯ (P t (X) t ) dt
where ġ denotes the derivative of g with respect to time; the covariant differential D t is defined in local coordinates by the same formulas as D, with the only difference that Christoffel symbols now depend on t.

Alternatively, if J is a semimartingale over X, the covariant differential D t J may be defined as D(0, J) = (0, D t J), where (0, J) is a semimartingale along (t, X t ) in M = [0, T ] × M endowed with the connection ∇ defined as follows: if

s → φ(s) = (f (s), ϕ(s)) is a C 1 path in M and s → ũ(s) = (α(s), u(s)) ∈ T M is C 1 path over φ, then ∇ũ(s) = α(s), ∇ f (s) u (s)
where ∇ t denotes the Levi-Civita connection associated to g(t). It is proven in [START_REF] Arnaudon | Brownian motion with respect to a metric depending on time; definition, existence and applications to Ricci flow[END_REF] that P t (X) t is an isometry from (T X0 M, g(0, X 0 )) to (T Xt M, g(t, X t )).

The damped parallel translation W t (X) t along X t is the linear map

W t (X) t : T X0 M → T Xt M satisfying (3.2) D t W t (X) t = ∇ t W t (X)t Z(t, •) - 1 2 (Ric t ) ♯ (W t (X) t ) dt.
If Z ≡ 0 and g(t) is solution to the backward Ricci flow:

(3.3) ġ = Ric,
then damped parallel translation coincides with the usual parallel translation:

P t (X) = W t (X),
(see [START_REF] Arnaudon | Brownian motion with respect to a metric depending on time; definition, existence and applications to Ricci flow[END_REF] Theorem 2.3).

The Itô differential d ∇ Y = d ∇ t Y of an M -valued semimartingale Y is defined by formula (2.1), with the only difference that the Christoffel symbols depend on time.

Theorem 3.1. Keeping the assumptions of this Section, let R → M, u → ϕ(u), be a C 1 path in M and let X 0 be an L(t)-diffusion with starting point ϕ(0) and lifetime ξ. Assume that (M, g(t)) is complete for every t. There exists a unique family

u → (X t (u)) t∈[0,ξ[ of L(t)-diffusions, which is a.s. continuous in (t, u) and C 1 in u, satisfying X(0) = X 0 and X 0 (u) = ϕ(u),
and solving the equation

(3.4) ∂X t (u) = W t (X(u)) t ( φ(u)).
Furthermore, X(u) solves the Itô stochastic differential equation

(3.5) d ∇ X t (u) = P t,Xt( • ) 0,u d ∇(t) X t + Z(t, X t (u)) dt, where P t,Xt( • ) 0,u : T X 0 t M → T Xt(u) M denotes parallel transport along the C 1 curve [0, u] → M , v → X t (v)
, with respect to the metric g(t).

If Z ≡ 0 and if g(t) is given as solution to the backward Ricci flow equation, then almost surely for all t, (3.6) ∂X t (u) g(t) = φ(u) g(0) . Definition 3.2. We call t → (X t (u)) u∈R the horizontal L(t)-diffusion in C 1 path space C 1 (R, M ) over X 0 , started at ϕ. Remark 3.3. Eq. (3.6) says that if Z ≡ 0 and if g is solution to the backward Ricci flow equation, then the horizontal g(t)-Brownian motion is length preserving (with respect to the moving metric). Remark 3.4. Again if the manifold (M, g(t)) is not necessarily complete for all t, a similar result holds with the lifetime of X . (u) possibly depending on u.

Proof of Theorem 3.1. The proof is similar to the one of Theorem 2.1. We restrict ourselves to explaining the differences.

The localization procedure carries over immediately; we work on the time interval [0, τ ∧ t 0 ]. For α > 0, we define the approximating process X α t (u) by induction as X α t (0) = X 0 t , X α 0 (u) = ϕ(u), and if u ∈ ]nα, (n + 1)α] for some integer n ≥ 0, then X α (u) solves the Itô equation where Px,ỹ denotes parallel translation along the minimal geodesic from x to ỹ for the connection ∇.

(3.7) d ∇ X α t (u) = P t X α t (nα),X α t (u) d m X α t (nα) + Z(t
Denoting by ρ(t, x, y) the distance from x to y with respect to the metric g(t), Itô's formula shows that the process ρ (t, X α t (u), X α t (nα)) has locally bounded variation. Moreover since locally ∂ t ρ(t, x, y) ≤ Cρ(t, x, y) for x = y, we find similarly to (2.7), ρ(t, X α t (u), X α t (nα)) ≤ ρ(0, X α 0 (u), X α 0 (nα))e Ct ≤ φ ∞ αe Ct0 . Since all Riemannian distances are locally equivalent, this implies

(3.9) ρ(X α t (u), X α t (nα)) ≤ ρ(X α 0 (u), X α 0 (nα))e Ct ≤ φ ∞ αe Ct0 where ρ = ρ(0, •, •).
Next, differentiating Eq. (3.8) yields

D∂ u Xα t (u) = ∇∂u Xα t (u) P Xα t (nα), . d m Xα t (nα) + ∇∂u Xα t (u) Z dt - 1 2 R ∂ u Xα t (u), d Xα t (u) d Xα t (u).
Using the fact that the first component of Xα t (u) has finite variation, a careful computation of R leads to the equation

D t ∂ u X α t (u) = ∇ t ∂uX α t (u) P t X α t (nα), . d m X α t (nα) + ∇ t ∂uX α t (u) Z(t, •) - 1 2 (Ric t ) ♯ ∂ u X α t (u) dt.
To finish the proof, it is sufficient to remark that in step 1, Eq. (2.10) still holds true for X and Y g(t)-Brownian motions living in a small open set U , and that in step 5, the map u → ∂X(u) is continuous in the topology of semimartingales. This last point is due to the fact that all ∂X(u) are inhomogeneous diffusions with the same generator, say L ′ , and the fact that the topology of uniform convergence on compact sets and the topology of semimartingales coincide on L ′ -diffusions.

Application to optimal transport

In this Section we assume again that the elliptic generator L(t) is a C 1 function of time with associated metric g(t):

L(t) = 1 2 ∆ t + Z(t)
where ∆ t is the Laplacian associated to g(t) and Z(t) is a vector field. We assume further that for any t, the Riemannian manifold (M, g(t)) is metrically complete, and L(t) diffusions have infinite lifetime. Letting ϕ : R + → R + be a non-decreasing function, we define a cost function where ρ(t, •, •) denotes distance with respect to g(t).

To the cost function c we associate the Monge-Kantorovich minimization between two probability measures on M where Π(µ, ν) is the set of all probability measures on M × M with marginals µ and ν. We denote

(4.3) W p,t (µ, ν) = (W ρ p ,t (µ, ν)) 1/p
the Wasserstein distance associated to p > 0.

For a probability measure µ on M , the solution of the heat flow equation associated to L(t) will be denoted by µP t .

Define a section (∇ t Z) ♭ ∈ Γ(T * M ⊙ T * M ) as follows: for any x ∈ M and u

, v ∈ T x M , (∇ t Z) ♭ (u, v) = 1 2 g(t)(∇ t u Z, v) + g(t)(u, ∇ t v Z) .
In case the metric does not depend on t and Z = grad V for some

C 2 function V on M , then (∇ t Z) ♭ (u, v) = ∇dV (u, v).
Theorem 4.1. We keep notation and assumptions from above. a) Assume

(4.4) Ric t -ġ -2(∇ t Z) ♭ ≥ 0. Then the function t → W c,t (µP t , νP t ) is non-increasing. b) If for some k ∈ R, (4.5) Ric t -ġ -2(∇ t Z) ♭ ≥ kg,
then we have for all p > 0 W p,t (µP t , νP t ) ≤ e -kt/2 W p,0 (µ, ν).

Remark 4.2. Before turning to the proof of Theorem 4.1, let us mention that in the case Z = 0, g constant, p = 2 and k = 0, item b) is due to [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy, and Ricci curvature[END_REF] and [START_REF] Otto | Eulerian calculus for the contraction in the Wasserstein distance[END_REF]. In the case where g is a backward Ricci flow solution, Z = 0 and p = 2, statement b) is due to Lott [START_REF] Lott | Optimal transport and Ricci curvature for metric-measure spaces[END_REF] and McCann-Topping [START_REF] Mccann | Ricci flow, entropy and optimal transportation[END_REF]. For extensions about L-transportation, see [START_REF] Topping | L-optimal transportation for Ricci flow[END_REF].

Proof of Theorem 4.1. a) Assume that Ric tġ -2(∇ t Z) ♭ ≥ 0. Then for any L(t)-diffusion (X t ), we have

d g(t)(W (X) t , W (X) t ) = ġ(t) W (X) t , W (X) t dt + 2g(t) D t W (X) t , W (X) t = ġ(t) W (X) t , W (X) t dt + 2g(t) ∇ t W (X)t Z(t, •) - 1 2 (Ric t ) ♯ (W (X) t ), W (X) t dt = ġ + 2(∇ t Z) ♭ -Ric t W (X) t , W (X) t dt ≤ 0.
Consequently, for any t ≥ 0, (4.6) W (X) t t ≤ W (X) 0 0 = 1.

For x, y ∈ M , let u → γ(x, y)(u) be a minimal g(0)-geodesic from x to y in time 1: γ(x, y)(0) = x and γ(x, y)(1) = y. Denote by X x,y (u) a horizontal L(t)-diffusion with initial condition γ(x, y).

For η ∈ Π(µ, ν), define the measure η t on M × M by

η t (A × B) = M×M P X x,y t (0) ∈ A, X x,y t (1) ∈ B dη(x, y),
where A and B are Borel subsets of M . Then η t has marginals µP t and νP t . Consequently it is sufficient to prove that for any such η,

M×M E c(t, X x,y t (0), X x,y t (1)) dη(x, y) ≤ M×M c(0, x, y) dη(x, y).

On the other hand, we have a.s., ρ(t, X x,y t (0), X x,y t (1)) ≤ and this clearly implies c t, X x,y t (0), X x,y t (1) ≤ c(0, x, y) a.s., and then (4.7). b) Under condition (4.5), we have d dt g(t) W (X) t , W (X) t ≤ -k g(t) W (X) t , W (X) t , which implies W (X) t t ≤ e -kt/2 , and then ρ t, X x,y t (0), X x,y t (1) ≤ e -kt/2 ρ(0, x, y). The result follows.

Derivative process along constant rank diffusion

In this Section we consider a generator L of constant rank: the image E of the "carré du champ" operator Γ(L) ∈ Γ(T M ⊗ T M ) defines a subbundle of T M . In E we then have an intrinsic metric given by g(x) = (Γ(L)|E(x))

-1 , x ∈ M.

Let ∇ be a connection on E with preserves g, and denote by ∇ ′ the associated semi-connection: if U ∈ Γ(T M ) is a vector field, ∇ ′ v U is defined only if v ∈ E and satisfies

∇ ′ v U = ∇ Ux 0 V + [V, U ] x0
where T ′ denotes the torsion tensor of ∇′ . Since for all x ∈ M , ∇v Px,. = 0 if v ∈ T x M , the first term in the right vanishes. As a consequence, D′ T x0 X has finite variation, and T ′ ( D′ T x0 X, dX) = 0. Then using the identity R′ (v, u)u + ∇′ T ′ (u, v, u) = R(v, u)u, u, v ∈ T x M, which is a particular case of identity (C.17) in [START_REF] Elworthy | On the geometry of Diffusion Operators and Stochastic Flows[END_REF], we obtain D′ T x0 X = ∇Tx 0 X Z dt -1 2 R(T x0 X, dX(x 0 ))dX(x 0 ).

Finally writting R(T x0 X, dX(x 0 ))dX(x 0 ) = Ric ♯ (T x0 X) dt yields the result.

Remark 5.3. In the non-degenerate case, ∇ is the Levi-Civita connection associated to the metric generated by L, and we are in the situation of Section 2. In the degenerate case, in general, ∇ does not extend to a metric connection on M . However conditions are given in [START_REF] Elworthy | On the geometry of Diffusion Operators and Stochastic Flows[END_REF] (1.3.C) under which P ′ (X) is adapted to some metric, and in this case T x0 X is bounded with respect to the metric. One would like to extend Theorem 2.1 to degenerate diffusions of constant rank, by solving the equation

∂ u X(u) = ∇∂uX(u) Z dt - 1 2 Ric ♯ (∂ u X(u)) dt.
Our proof does not work in this situation for two reasons. The first one is that in general P ′ (X) is not adapted to a metric. The second one is the lack of an inequality of the type (2.7) since ∇ does not have an extension ∇ which is the Levi-Civita connection of some metric.

Remark 5.4. When M is a Lie group and L is left invariant, then ∇ can be chosen as the left invariant connection. In this case ( ∇) ′ is the right invariant connection, which is metric.

(4. 1 )

 1 c(t, x, y) = ϕ(ρ(t, x, y))

( 4 . 2 )

 42 W c,t (µ, ν) = inf η∈Π(µ,ν) M×M c(t, x, y) dη(x, y)

1 0∂ 1 0W 1 0

 111 u X x,y t (u) t du = (X x,y (u)) t γ(x, y)(u) t du ≤ γ(x, y)(u) 0 du = ρ(0, x, y),

  , X t (u)) dt where P t x,y is the parallel transport along the minimal geodesic from x to y, for the connection ∇ t .

	Alternatively, letting Xα t = (t, X α t ), we may write (3.7) as
	(3.8)	d ∇ Xα t (u) = P Xα t (nα), Xα t (u) d m	Xα t (nα) + Z( Xα t (u)) dt

where V ∈ Γ(E) is such that V x0 = v (see [START_REF] Elworthy | On the geometry of Diffusion Operators and Stochastic Flows[END_REF], Section 1.3). We denote by Z(x) the drift of L with respect to the connection ∇.

For the construction of a flow of L-diffusions we will use an extension of ∇ to T M denoted by ∇. Then the associated semi-connection ∇ ′ is the restriction of the classical adjoint of ∇ (see [START_REF] Elworthy | On the geometry of Diffusion Operators and Stochastic Flows[END_REF] Proposition 1.3.1).

Remark 5.1. It is proven in [START_REF] Elworthy | On the geometry of Diffusion Operators and Stochastic Flows[END_REF] that a connection ∇ always exists, for instance, we may take the Le Jan-Watanabe connection associated to a well chosen vector bundle homomorphism from a trivial bundle M × H to E where H is a Hilbert space.

If X t is an L-diffusion, the parallel transport

along X t (with respect to the connection ∇) depends only on ∇. The same applies for the Itô differential dX t = d ∇ X t . We still denote by d m X t its martingale part.

We denote by P ′ (X) t :

the parallel transport along X t for the adjoint connection ( ∇) ′ , and by D′ J the covariant differential (with respect to ( ∇) ′ ) of a semimartingale J ∈ T M above X; compare (2.3) for the definition.

Theorem 5.2. We keep the notation and assumptions from above. Let x 0 be a fixed point in M and X t (x 0 ) an L-diffusion starting at x 0 . For x ∈ M close to x 0 , we define the L-diffusion X t (x), started at x, by

(5.1)

where Px,y denotes parallel transport (with respect to ∇) along the unique ∇-geodesic from x to y. Then

where

and (e i ) i=1,...,d an orthonormal basis of E x for the metric g. Under the additional assumption that Z ∈ Γ(E), the differential D′ T x0 X does not depend on the extension ∇, and we have

Proof. From [3] Eq. 7.4 we have D′ T x0 X = ∇Tx 0 X PXt(x0),. d m X t (x 0 ) + ∇Tx 0 X Z dt