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Abstract

An experimental-numerical methodology is introduced to identify the pa-

rameters of a cohesive law of an adhesive layer within a joined assembly

on the basis of kinematic data provided by digital image correlation. Non-

conventional experiments on joined samples were designed to generate within

the assembly and the adhesive film complex strain and stress states close to

those expected in service and up to complete debonding. The modeling is

developed with reference to the observed sub-domain in which the experi-

mental boundary conditions are prescribed. The non-linear behavior of the

adhesive layer is described as a finite thickness interface endowed with a

mixed-mode cohesive law whose parameters are identified so as to match at

best the measured displacement field.
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1. Introduction

Joining two materials to obtain a better performance as that of the sin-

gles is a general goal in composite design. Various architectures are obtained

when dealing with layers or fibers. Among these, GLARE has received some

attention in the aerospace industry (Vlot, 2001; Sinke, 2003). GLARE is

a “GLAss-REinforced” fiber metal laminate, composed of several layers of

aluminum alloy interspersed with layers of glass-fiber “pre-preg.” In the de-

sign of stiffened panels for aircraft structures, recourse has also been made

to adhesively-bonded assemblies between GLARE laminates with different

geometries. To predict the structural response of such assemblies, a good

understanding of the adhesive layer properties is required. In this paper, it is

proposed to use images of the joined assembly in a non-conventional mechan-

ical test, representative of in-service conditions, to identify the parameters

governing a mixed-mode cohesive model for the adhesive layer.

When dealing with model calibration of adhesive joints, point data, e.g.,

strain and load data, are usually the only experimental information avail-

able (Derewonko et al., 2008). Pictures at different scales are used in a

qualitative way in addition to global data (Pardoen et al., 2005; Leffler et

al., 2007; Sørensen et al., 2008; Salomonsson and Andersson, 2008), or quan-

titatively by evaluating deflections (Yang et al., 2001; Su et al., 2004) and

deformed shapes (Sargent, 2005). In this study, it is proposed to use full-field

measurements provided by Digital Image Correlation (DIC). Its advantage

lies in the fact that numerous measurement points are available to analyze
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an experiment, as opposed to the standard practice of using few data.

During the last years, DIC (Sutton et al., 2000) has undergone substantial

developments for several reasons. First, its application is generally simple and

straightforward. It works effectively under natural light. The resolution is of

the same order as many conventional measurement devices. It is employable

at different scales, from macro down to micro or even nano scales (Sutton et

al., 1999; Soppa et al., 2001; Chasiotis and Knauss, 2002; Forquin et al., 2004;

Chasiotis, 2007). In all the previous cases, DIC was based upon local match-

ing of interrogation windows in a series of pictures. An alternative approach,

based on a finite-element discretization of the displacement field (Besnard et

al., 2006), will be used herein.

Several attempts have been made to enrich the experimental information

gathered by a conventional equipment with full-field measurements (McNeill

et al., 1987; Geers et al., 1999; Abanto-Bueno and Lambros, 2002; Cho et al.,

2005; Maier et al., 2005; Hild and Roux, 2006). However, very few studies deal

with the identification of cohesive models because of experimental challenges

and the scales at which data are to be obtained. Abanto-Bueno and Lambros

(2005) used a multi-camera system to determine the traction separation law.

The near-field images were used to measure the opening displacements, and

the far-field views to evaluate the interface tractions via an elastic solution.

The above procedure, however, is not a reliable route to follow when the

adherend behavior is nonlinear and only microscopic measurements are used

(as in the present case).

Advanced mechanical models for describing the nonlinear behavior of ma-

terials and structures contain numerous parameters, many of which are not
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easy to identify. Therefore, there is strong interest in industrial environments

to develop procedures for estimating these parameters on the basis of inno-

vative experimental tests (Yoshida et al., 2003). The latters are designed

with the aim of generating stress and strain states close to those expected

in-service. This approach leads to difficult challenges both in terms of mea-

surement and identification. On the measurement side, stress and strains are

typically very heterogeneous, possibly at the microscopic scale, or difficult

to access. For identification, the usual occurrence of different non-linearities

requires a full modeling that often makes the procedures quite difficult. The

novel developments, which open the way to such delicate task, is the origi-

nal combination of experimental full field measurement and inverse problem

approaches.

The above (inverse) procedure is applied to the characterization of a struc-

tural adhesive layer, joining a laminate skin and a Z-shaped reinforcement

(stringer), both made of GLARE for aerospace applications. The experi-

ments, specially designed for the present investigation, were monitored by

a digital camera, empowered by a long distance microscope (Section 2). A

meaningful sample of pictures was analyzed by a finite element based DIC

algorithm. The model adopted herein to describe the response of the mon-

itored Region-of-Interest (ROI) is presented in Section 3. The mechanical

properties of the adhesive layer, modeled as a cohesive thick interface law,

is estimated via an inverse procedure, and the traction profiles along the

adhesive layer reconstructed (Section 4).

Notations. Small strain and displacements are assumed. The symbol :

denotes the contraction with respect to two indices, namely, A : B = Aij Bij.
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Bold symbols denote vectors, matrices, or tensors, depending on the context.

2. Debonding experiments

Non-conventional tests are designed to generate complex stress and strain

states within a joined assembly. Under these conditions, nothing impedes dis-

tinct non-linear mechanical phenomena from occurring during the test, and

interact with each other (e.g., fracture of the adhesive layer, simultaneous

plastic yielding of the adherends, or local delamination). Therefore, numer-

ical simulations of the overall specimen response should take into account

all these phenomena simultaneously. In this context, displacement measure-

ments, say by DIC, turn out to be advantageous when compared with tradi-

tional “point” and overall measurements. In particular, DIC allows for the

evaluation of the actual kinematic boundary conditions of the modeled do-

main. The experiments reported herein are applied to the characterization

of a structural (60-µm thick) adhesive layer, joining a (1.4-mm thick) lam-

inate skin and a Z-shaped reinforcement (stringer), both made of GLARE

(Figure 1). The single epoxy adhesive layer, shown in Figure 2, is made of

BMS 5-101 produced by 3M (commercial denomination AF163 degree 10).

Tests were designed and performed on rectangular joined specimens (surface

area: 297 × 50 mm2) to lead to complete debonding of the adhesive (Fig-

ure 3). The experiments were monitored by a digital camera equipped with

a long distance microscope. A small region on the specimen surface around

the adhesive layer (of area approximately equal to 2× 2.5 mm2) was selected

as the ROI and monitored during the tests. The pictures at the microscale

(Figure 4) were subsequently processed to determine the displacements ex-
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Figure 1: Joined sample (surface area: 297 × 50 mm2) cut from the original laminate.

The epoxy adhesive layer between the plate and the Z-shaped stringer is the focus of the

present study.

perienced within the ROI by DIC.

The code used herein is based on a Galerkin, finite-element discretiza-

tion of the displacement field with bilinear shape functions (Besnard et al.,

2006). It allows one to establish a close connection with subsequent finite

element simulations. Figure 5 shows the kinematic measurements at the mi-

croscale provided by DIC, which concern two strips belonging to the joined

substrates close to the adhesive layer. The deformed meshes are shown at

different instants i during the debonding test. Measurements do not con-

sider the interior part of the adhesive joint, which has a poor texture quality

and a vanishing intensity gradient (it appears almost completely dark in the
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Figure 2: Detail of the adhesive joint (in red), showing a tapered profile to allow for the

insertion of the Z-shaped reinforcement on the skin laminate. Both laminates are made of

three aluminum alloy (light gray) and two epoxy pre-preg (dark gray) layers. The small

sub-domain monitored by DIC is located at the right end of the picture, where the joint

thickness stabilizes to 60 µm (constant along the remaining length). The magnification

used herein is less than that adopted in the pictures analyzed with DIC.

pictures of Figure 4). The adopted finite element (mechanical) model to be

introduced in the sequel is consistent with such measurements.

3. Mechanical model

The chosen mechanical modeling is matched to the same mechanical prob-

lem as in the experiments with the exclusive reference to the considered ROI.

Displacement fields measured by means of a DIC procedure are suitable to

specify Dirichlet boundary conditions for such a region. The debonding pro-
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Figure 3: Non-conventional test on a joined sample, up to complete debonding.

cess of the adhesive layer is simulated by prescribing displacements estimated

by DIC along the boundary of the monitored sub-domain. The mechanical

problem is solved with reference to this sub-domain, with a significant gain

in model complexity and computing time. In the mechanical modeling of

the debonding process developed herein, the hypothesis of holonomy is as-

sumed for both the adhesive response and the substrate elasto-plastic behav-

ior, namely they are governed by closed-form, history-independent functions

accounting for the current values of strains and stresses. It is motivated,

as in the deformation theory of plasticity, by the progressive propagation
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Figure 4: Sequence of digital images monitoring the debonding process of the adhesive

layer (about 60 µm thick) within the ROI after removal of rigid-body motions. The

joint length shown in picture labeled 0 is 1.88 mm. The (glossy) aluminum alloy layers

fastened by the (dark) adhesive layer can be clearly distinguished, and the appearance of

a completely traction-free surface is preceded by isolated thin fibrils bridging the opposite

aluminum alloy surfaces, illuminated by light traversing the open microscopic crack.

of the debonding process. It represents an important simplification from a

numerical standpoint, both in the forward simulations and in the analytical

sensitivity analysis.
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3.1. Aluminum alloy substrate

The aluminum (cold-rolled 2024-T3) alloy substrates are modeled accord-

ing to Prandtl-Reuss’ flow rule (Lemaitre and Chaboche, 1990)

ε =
1 + ν

E
S +

1− 2ν

E
pI +

3

2
α

(
q

σ0

)n−1

S (1)

where I denotes the second-order identity tensor, ε the (infinitesimal) strain

tensor, S the stress deviator tensor, q =
√

3
2
S : S its normalized second-

order invariant (von Mises’ equivalent stress), p = 1
3
σ : I the hydrostatic

stress, E and ν the isotropic elastic constants. Parameters α, σ0 and n

govern the (fully incompressible) nonlinear part of the material response. All

parameters describing the response of the aluminum alloy sheets are assumed

to be known a priori with sufficient accuracy.

3.2. Cohesive layer

To describe the joint response under mixed-mode loading conditions, a

modified version of the Xu-Needleman exponential law (Xu and Needleman,

1993), rooted in the atomistic description of binding energies, is chosen.

This law, formulated for a zero-thickness interface, specifies a holonomic

relationship between the tractions T on the interface, and the corresponding

displacement discontinuity vector ∆. Normal and tangential components of

traction and displacement vectors are denoted by Tn and Tt, ∆n and ∆t,

respectively. Symbols φn and φt designate the works-of-separation (for a

unit surface) under pure Mode I (peel) and Mode II (shear), respectively.

The (non-dimensional) ratio between the tangential and normal works-of-

separation is denoted by r = φt/φn. Originally, the Xu-Needleman interface

response assumes that the works-of-separation φn and φt are equal (r = 1).
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However, in the case of structural adhesives the ratio r generally lies in the

range 3 ≤ r ≤ 6 (Valoroso and Champaney, 2006). van den Bosch et al.

(2006) proposed an extension of the Xu-Needleman interface law that allows

for different normal and tangential works-of-separation

Tn =
φn

δn

(
∆n

δn

)
exp

(
−∆n

δn

)
exp

(
−∆2

t

δ2
t

)
(2a)

Tt =
2φt

δt

(
∆t

δt

) (
1 +

∆n

δn

)
exp

(
−∆n

δn

)
exp

(
−∆2

t

δ2
t

)
(2b)

The above cohesive relationship is governed by four parameters, namely, φn,

φt, δn and δt that describe the works-of-separation (per unit surface) and

the characteristic lengths under mode I and mode II conditions, respectively.

Although a sequence of images will be used for which the mode mixity is not

constant, the experienced range of mixity is too narrow to lead to a robust

determination of these four parameters as a whole. Complementary results

from fracture tests under different loading conditions should be considered

(e.g., pure mode I or mode II data). However, if the ratio r is prescribed

as an a priori known information, then the problem turns out to be suf-

ficiently well posed for a robust determination of the three remaining free

parameters (Section 3.5). Due to the significant scatter usually observed in

the mechanical response of adhesive joints, this externally prescribed value

is considered as a viable route to follow. In the following, the three unknown

parameters governing the adhesive layer behavior are gathered in a vector

form, X = {φn, δn, δt}T .

3.3. Extension to finite-thickness interfaces

Zero-thickness representation of cohesive interfaces is widely adopted in

computational mechanics to simulate quasi-brittle fracture processes at dif-
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Figure 6: Interface element with a finite thickness.

ferent scales (Bolzon et al., 2002; Shet and Chandra, 2004; Andena et al.,

2006). However, this simplification cannot be made in the present applica-

tion. First, from a geometrical point of view, the thickness of the adhesive

layer (approximately 60 µm) is not negligible with respect to the overall size

of the modeled region at the microscale (about 600 µm for the shortest size

of the ROI). Second, elastic strains are expected to influence the overall re-

sponse of the considered sub-domain. While the crack propagates, a part of

the adhesive joint is compressed (a slightly reduced layer thickness can be

noticed on the left side of the ROI in Figure 4).

In this study, the adhesive layer is modeled by means of finite-thickness

interface elements. A simplified kinematics is assumed by describing two

dominating deformation modes, namely, peel (normal) and shear (tangen-
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tial), both constant through the thickness (Figure 6). From a mechanical

standpoint, corroborated by experimental evidences, an adhesive layer is ex-

pected to behave differently from the adhesive as a bulk material (Högberg,

2006). The constitutive law of the adhesive layer, even with finite thick-

ness, is thus expressed to be a function of normal, ∆n, and tangential, ∆t,

displacements. The cohesive element adopted herein can be regarded as an

interface line element, with an initial gap between opposite nodes, otherwise

coincident.

With such an interface element, let us consider a suitable partition for the

nodal displacement vector U , namely U =
{
U−, U+

}T
, where superscripts

(·)± denote corresponding nodes belonging to the upper and lower element

side, respectively (Figure 6). The relative displacement vector is expressed

as

∆ =

 ∆n

∆t

 = [−RT NU−, RT NU+] = [−BsU
−, BsU

+] = B U (3)

where B is the compatibility operator, and R the orthogonal rotation matrix,

transforming the global coordinate system to the local one (in the present

case R = I). Shape functions, gathered in matrix N , vary linearly along the

element length, and are constant through the layer thickness. The traction

T at the joint interface is expressed as a function of the relative displacement

vector ∆ [Equations (2a)-(2b)]. At each interface element e in the adopted

discretization, the vector of internal nodal forces, F
(e)
int, and the tangent stiff-

ness matrices, K(e)
u , are defined as (Goyal et al., 2004)

F
(e)
int =

 −F s

F s

 F s =

∫ +1

−1

BT
s T |J | d ξ (4)
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K(e)
u =

 Ks −Ks

−Ks Ks

 Ks =

∫ +1

−1

BT
s Ku Bs |J | d ξ (5)

where ξ is the iso-parametric line coordinate, |J | the jacobian (here constant)

of the iso-parametric (line) mapping, Ku = ∂T /∂∆T the material tangent

stiffness matrix. One-dimensional integrals in Equations (4) and (5) are

computed via a Newton-Cotes scheme (with collocation points at the two

ends of the master element midline, for ξ = ±1). The formulation (3-5)

allows one to obtain an interface response that is independent of the layer

thickness, thus avoiding the scaling of work-of-separation, which is instead

required when the dissipated energy is smeared over the element area (Balzani

and Wagner, 2008).

The cohesive law (2a-2b) is further modified to take into account com-

pressive normal tractions (Tn < 0) generated within the finite-thickness el-

ements. The situation predicted by the cohesive relationship for ∆n → 0+,

Equations (2a)-(2b), is prolonged when ∆n < 0 as follows: (i) along the nor-

mal direction n, the adhesive response is governed by the tangent stiffness

matrix at the origin, as if it were linearly elastic, in a decoupled way with

respect to the tangential response; (ii) along the tangential direction t, a zero

value of ∆n is assumed in Equation (2b) and the tangential response Tt is

the one resulting from a pure mode II. Thus, in the present study, Equa-

tions (2a)-(2b) specify the adhesive response for ∆n ≥ 0, whereas for ∆n < 0

the following de-coupled equations hold

Tn =
φn

δ2
n

∆n (6a)

Tt =
2φt

δt

(
∆t

δt

)
exp

(
−∆2

t

δ2
t

)
(6b)
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This a priori simplification of the adopted model for ∆n < 0 assumes no

debonding in compression within the adhesive layer, friction or other kinds

of coupling between tangential and normal tractions.

3.4. Results

nT
[MPa]

10i = 7i =13i = crack front

joint length [mm]

500  elements
2,000  elements

Figure 7: Profiles of normal tractions along the modeled interface, at different measure-

ment instants i, computed with coarse (solid line) and fine (open circles) meshes.

The plane model adopted to simulate the mechanical response of the con-

sidered sub-domain is made of 570 finite elements, and the adhesive layer is

discretized by means of 39 cohesive elements. Plane stress conditions are

assumed since kinematic measurements provided by DIC concern the free

surface of the specimen. The computer code for the nonlinear FE analy-

ses and computation of parameter sensitivities was entirely developed in a
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Matlabr environment (Bonnet and Frangi, 2006), fully consistent with the

DIC software in terms of mesh and shape functions.

It is worth noting that because of measurement uncertainties, the ele-

ment size cannot be decreased at will since it will be accompanied by higher

measurement uncertainties (Besnard et al., 2006). In the present case, an

element size equal to 16 pixels (or 30.9 µm) is a compromise between un-

certainty level and spatial resolution of the DIC procedure. To evaluate the

mechanical effect of what may appear as a rather coarse mesh (i.e., 500 ele-

ments), a comparison is carried out with a finer mesh (using 2000 elements).

Figure 7 shows the normal traction profiles along the modeled joint interface

computed with the coarse and fine discretizations. The two profiles are very

close. This result shows that the constraints imposed by DIC do not degrade

significantly the results in terms of traction profiles since the measurements

are performed close enough to the cohesive zone.

Twenty digital images are considered to analyze the debonding process

within the ROI. Full field measurements are available at m = 19 measure-

ment instants, since the first image (i = 0) is the reference. Each forward

analysis requires approximately 15 minutes on a standard PC (2.2 GHz Quad

Core, and 3 Gigabyte RAM). The finite element simulation of the debonding

process within the monitored sub-domain is shown in Figure 8. For those

results, a fixed ratio of r = 6 was chosen. Displacements provided by DIC

along the boundary of the monitored zone, uexp
∂Ω i, are prescribed at different

instants i (i = 1, ..., 19) during the test. Figure 8 shows deformed meshes for

four different steps of the debonding process.

The nonlinear relationship between the model parameters for the adhesive

17
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layer X and the displacements at measurement instant i inside the ROI,

adopted as measurable quantities, namely ucomp
Ω i , is usually referred to as

forward or direct operator (as opposed to inverse), and denoted by

ucomp
Ω i = H i(X; uexp

∂Ω i) i = 1, ...,m ≡ 19 (7)

Even for a preliminary validation of the inverse procedure on the basis of

pseudo-experimental (i.e., synthetic) data, the prescribed kinematic bound-

ary conditions are exclusively those estimated by DIC, namely uexp
∂Ω i.

3.5. Sensitivity analysis

The aim of the sensitivity analysis is to determine which parameters of the

chosen model can be identified with the present experimental configuration.

Derivatives of the displacement field u ≡ {ux, uy}T with respect to the model

parameters to identify X represent a key ingredient of many identification

procedures. Strategies to compute such quantities are commonly referred to

as “sensitivity analyses” (Kleiber et al., 1997; Micharelis et al., 2006). A

simple and effective method is adopted based on the direct differentiation of

the governing equations (i.e., DDM strategy). The application of DDM to

the present problem takes advantage from the holonomy hypothesis assumed

for the nonlinear constitutive equations (for the substrates and the adhesive

layer), and it is implemented in the same FE code employed for forward

simulations. Let us consider the discretized finite element residual equations

at the n-th loading step

Rn = Rn(Un(X), X) = 0 (8)

Equation (8) holds at equilibrium states, and displacements are computed

by Newton-Raphson iterations. Due to the holonomy assumption, residuals

19
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at the current n-th step Rn depend only on the current vector of nodal

displacement Un, and on model parameters. The resulting displacement

field inside the domain is affected by perturbations of the adhesive properties

(sensitivities vanish where displacements are prescribed). By differentiating

the above residual equation (8), the following relationship is satisfied

∂Rn

∂Un T

∂Un

∂XT
= − ∂Rn

∂XT
(9)

Equation (9) provides parameter sensitivities for any steady-state mechanical

problem (Micharelis et al., 2006). In the present context, residual equations

over the ROI Ω particularize as

Rn =

∫
Ω

BT σn(Un(X), X) dΩ − F ext = 0 (10a)

∂Rn

∂Un T
=

∫
Ω

BT ∂σn

∂Un T
dΩ = Ku

∂Rn

∂XT
=

∫
Ω

BT ∂σn

∂XT
dΩ (10b)

where F ext, B and σn denote the vector of external forces, the compati-

bility matrix and the current value of local stress tensor, respectively. An

analogy can be proposed between the linearized form of finite element equa-

tions, solved iteratively to compute Newton corrections, and the sensitivity

analysis problem (9). Both problems are linear with respect to the unknowns

and are governed by the assembled tangent matrix Ku. For this reason, the

RHS of Equations (9) and (10) is referred to as “pseudo-load” vector. From

a numerical standpoint, parameter sensitivities are easily computed at the

end of each loading step of the finite element analysis, when convergence by

Newton iterations is achieved, by solving only the linear system (9), irre-

spectively of the parameter vector dimension nX . Since the tangent stiffness

matrix is already available at each Newton iteration, the sensitivity analy-

sis requires only the pseudo-load vector as additional datum. Such a vector
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is computed by assembling contributions from each element, analogously to

what is performed for vector F int gathering the internal forces. The above

strategy leads to faster identification procedures, thereby avoiding numerous

forward analyses required by finite differences schemes.

Figure 9 shows the sensitivity of horizontal displacement fields ux with

respect to the parameter δt, computed by the DDM at different measurement

instants i during the test. In spite of the noisy environment, at the begin-

ning of the test the above parameter sensitivity is significant over almost

the whole sub-domain, even if it peaks close to the adhesive layer (i = 4).

As the crack propagates, horizontal measurements are less sensitive to such

parameter, and non-vanishing sensitivities tend to concentrate around the

adhesive joint. The peak values move toward the sound part of the adhesive

layer, and indicate approximately the current location of the process zone

within the adhesive joint (i = 11, 15, 19). Last, it is worth noting that dis-

placement sensitivities with respect to parameter variations δn/δn and δt/δt,

where overlined quantities denote reference values, are significantly higher

(especially the former) than those concerning the normal work-of-separation

φn. This result suggests not to add a further unknown by allowing ratio r to

vary.

4. Reconstruction of interface tractions via parameter identifica-

tion

Since measured boundary conditions are used, and the pictures at hand

(i.e., with a poor texture) will induce high measurement uncertainties, the

identification technique needs to be robust enough to allow for low signal /
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noise ratios. The optimal parameters X̂ are obtained as a minimization of

a suitable discrepancy norm (Tarantola, 1987; Maier et al., 2005). Such a

function quantifies the discrepancy between measured quantities (i.e., dis-

placement of inner nodes of the ROI provided by DIC), and those computed

as functions of the unknown model parameters. Let m be the number of avail-

able measurement instants, nn the number of nodal displacements selected.

The adopted objective function is the least-squares norm

X̂ = arg min
X

{
ω(X) =

m∑
i=1

ωi(X)

}
(11)

ωi(X) =
1

(W i
x)

2

nn∑
j=1

[uexp
x − ucomp

x (X)]2j +
1

(W i
y)

2

nn∑
j=1

[
uexp

y − ucomp
y (X)

]2

j

where weights W i
x and W i

y at each measurement instant i are defined

as the maximum displacements (in absolute value, and after the subtrac-

tion of the average rigid body motions) measured at that instant, along the

horizontal and vertical direction, respectively. The contributions of all m

discrepancies ωi are additively included in a unique scalar objective func-

tion to minimize. The discrepancy between the experimental and computed

displacements is based of nn = 80 nodal values and m = 19 measurement

instants, concerning both aluminum alloy strips. The number of used exper-

imental data points, m × nr = 19 × 80 = 1520, is to be compared to the

number of unknowns, 3. This large ratio is responsible for the robustness of

the procedure.
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Figure 10: Validation of the identification procedure on the basis of artificial data. Min-

imization process of the objective function by Trust Region algorithm, in the presence of

a Gaussian (non-correlated) noise on measured displacements, with increasing standard

deviation s, namely s = 0, 0.1, 0.6, 1 and 2 pixels.

4.1. Artificial data

The displacements inside the discretized domain Ω are generated numer-

ically by using an a priori assumed parameter set X. The parameter esti-

mates X̂ resulting from the identification procedure are thus compared with

the original set, and the error is assessed. The reference parameters are

φn = 1.0 N mm−1, δn = 5 µm and δt = 50 µm. This parameter set speci-

fies an adhesive layer capable of developing maximum normal and tangential

tractions equal to Tn max = 74 MPa and Tt max = 103 MPa, under pure mode

I and II, respectively. The mechanical parameters for the aluminum alloy

sheet are as follows: Young’s modulus E = 72 GPa, Poisson’s ratio ν = 0.33,
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yield stress σ0 = 180 MPa, yield offset α = 0.06 and hardening exponent

n = 7.

The minimization in the parameter space of the objective function ω(X)

is performed through gradient-based (first-order) algorithms. The most re-

cent Trust Region Method (Coleman and Li, 1996; Matlab, 2003) allows for

box-constraints by an interior-point strategy. This provision is particularly

important when an unknown model parameter entering constitutive mod-

els and input of finite element codes belong to a feasible interval, and the

initialization set is not necessarily close to the minimum point.

To validate the above procedure, first artificial data are considered with

no noise. In this situation, the three parameters are estimated correctly in

a few iterations, up to machine precision. No dependence of the parameter

estimates X̂ on the algorithm initialization, which might have suggested the

presence of secondary minima, was observed. Thereafter, to investigate the

robustness of the inverse analysis procedure, displacements inside the sub-

domain Ω are corrupted by means of an additive, uncorrelated (over time

and space) Gaussian noise e

yexp
i = H i(X; uexp

∂Ω i ) + ei (12)

with zero average and standard deviation s. For the sake of simplicity, pre-

scribed boundary displacements provided by DIC, namely uexp
∂Ω i, which are

already affected by measurement uncertainties, are left unchanged. If the

parameter estimates X̂ resulting from the inverse procedure are far from

the correct values (a conventional error threshold of 15 % is given), the in-

verse problem is expected to be ill-posed, and non-identifiability should be

invoked with regard to one or more parameters. Values of standard devia-
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Table 1: Identified parameters as functions of the standard uncertainty level s of the

displacement data.

s (pixels) 0.1 0.6 1.0 2.0

φn (N mm−1) 1.0 (2 %) 0.9 (10 %) 1.0 (3 %) 0.9 (6 %)

δn (µm) 5.0 (1 %) 5.1 (1 %) 5.6 (12 %) 7.4 (48 %)

δt (µm) 50 (1 %) 48 (5%) 52 (3 %) 49 (2 %)

ω(X̂) 0.4 7.5 14.3 30.6

tions considered for white noise are as follows: s = 0.1, 0.6, 1.0, 2.0 pixels.

Table 1 shows the parameter estimates resulting from data with increasing

level of noise, together with their percentage error (in parentheses) and val-

ues of objective function at the minimum point X̂. Values of the objective

function at the minimum point, ω(X̂), increase significantly with the noise

level (Figure 10). In the presence of noise levels with a standard deviation

s ≤ 1.0 pixel, the resulting parameter estimates X̂ provided by the above

inverse procedure are rather acceptable (i.e., the relevant percentage error

does not exceed the chosen threshold of 15 %). For s ≥ 2 pixels instead, the

parameter δn is no longer identifiable by the above numerical procedure. It

is worth emphasizing that a standard deviation s = 2 pixels implies that the

single Gaussian perturbation term belongs to the interval e ∈ [−6, +6] pix-

els, with a probability of 99 %. With reference to the DIC procedure, such

a noise intensity on kinematic data is very high (Besnard et al., 2006), and

therefore the inverse procedure can be regarded as sufficiently robust in the

present case.
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4.2. Experimental data

Experimental data of Section 2 are considered. Through the bilinear

shape functions defined over each finite element, kinematic data provided

by the DIC algorithm are interpolated at the discretization nodes belong-

ing to the mechanical model. Parameter estimates obtained by the inverse

procedure are φn = 2.5 N mm−1, δn = 8.5 µm, δt = 85 µm, and hence

φt = rφn = 9.8 N mm−1. The value of the objective function at the mini-

mum point is equal to ω(X̂) = 7.5. It is worth noting that the latter has a

level close to the noisy case resting on independent Gaussian perturbations,

with standard deviation s = 0.6 pixel (Table 1) for which the identification

was deemed acceptable.

Although the cohesive model adopted herein describes a nonlinear be-

havior of the adhesive layer, useful indications are obtained concerning the

elastic properties of the adhesive layer. From the estimated parameters, the

(de-coupled) tangent stiffness at the origin (∆n, ∆t → 0) reads

• along the normal direction, ∂Tn/∂∆n = φn/δ
2
n = 34.1 N mm−3,

• and along the tangential direction, ∂Tt/∂∆t = 2rφn/δ
2
t = 2.7 N mm−3.

Such values have to be regarded as effective properties of the adhesive layer

at the microscale, and are expected to be different from those of the bulk

material (since the layer thickness is t ' 60 µm). If for the bulk epoxy ad-

hesive Young’s modulus Eadh ' 1 GPa and Poisson’s ratio νadh ' 0.4 are

assumed, the stiffness values estimated above are comparable to Eadh(1 −

νadh)/[(1 + νadh)(1− 2νadh)t] ' 36 N mm−3 and Eadh/[2(1 + νadh)t] ' 5.9 N
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Figure 11: Change of normal and tangential traction profiles at the adhesive interface, Tn

and Tt, resp., re-constructed by the proposed identification procedure at different mea-

surement instants i, with the a priori assumed ratio r = 4.
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mm−3 (Högberg, 2006), along the normal and tangential direction, respec-

tively.

Figure 11 shows the profiles of tangential and normal tractions along the

adhesive layer computed by the identified model at different measurement

instants i (8 ≤ i ≤ 19) during the test. The profiles of normal tractions

Tn exhibit a classical bell shape with a softening branch for tensile values

when ∆n ≥ 0, while compressive values are observed in the remaining part

of the adhesive layer (Tn < 0 when ∆n < 0). During the debonding pro-

cess, profiles of normal tractions Tn translate progressively towards the left

part of the monitored sub-domain as the crack propagates. Simultaneously,

their peak values change, since the mode mixity varies continuously during

the experiment along the adhesive layer. The traction-free part of the in-

terface, corresponding to a macroscopic crack observable in digital images

(see Figure 4), becomes larger, starting from the right end of the ROI, and

the compressed part (Tn < 0) at the left side progressively reduces until it

completely vanishes. As a consequence of measurement uncertainties, small

values of tensile tractions (≤ 10 MPa) are observed on the left end of the

ROI. The profiles of tangential tractions Tt appear to be smoother with re-

spect to the normal ones, since the horizontal displacements detected by DIC

and prescribed along the model boundaries are larger and yield better sig-

nal to noise ratios. Moreover, horizontal boundary displacements prescribed

at each aluminum alloy strip exhibit a rather limited variation along the

layer. Therefore, bell-shape profiles for tangential tractions are less obvious.

The pre-peak response is clearly distinguished only at the first measurement

instants.
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30



These results show that the loading conditions generated at the microscale

during the test proposed herein are rather severe in order to calibrate a mixed-

mode cohesive model. Mode mixity varies continuously during the debonding

experiment along the adhesive layer. Interface tractions computed by the

identified model (Figure 11) are reasonable from an engineering standpoint,

when compared to experimental data on structural adhesives available in

the literature (Högberg et al., 2006; Leffler et al., 2007; Hua et al., 2008)

when taking into account the relevant layer thickness. Under pure mode

I and mode II, the calibrated model predicts maximum tractions Tn max =

107 MPa and Tt max = 99 MPa. To assess the role played by the dimensionless

Table 2: Values of the different identified parameters as a function of the r ratio.

r 3.0 4.0 5.0 6.0

φn (Nmm−1) 3.0 2.5 2.2 1.9

δn (µm) 9.4 8.5 7.9 7.5

δt (µm) 80 85 90 94

φt = rφn (Nmm−1) 9.1 9.8 10.6 11.4

Tn max (MPa) 118 107 99 94

Tt max (MPa) 97 99 101 103

∂ Tn

∂ ∆n
|0 (GPa mm−1) 34 34 34 34

∂ Tt

∂ ∆t
|0 (GPa mm−1) 2.8 2.7 2.6 2.6

ω(X̂) 7.5 7.5 7.5 7.5

ratio r = φt/φn, the same identification process was repeated by assuming

different values for r. Table 2 shows for each value of r various parameter
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estimates. As expected from the sensitivity analysis, most values are virtually

independent of r. Traction profiles (Tn and Tt) at meaningful measurement

instants (i = 8, 11, 14, 17) generated with the above parameter estimates are

shown in Figure 12. It is worth emphasizing that such traction profiles are

quite close to each other, even if values of the corresponding parameter sets

X̂ exhibit significant differences. Other quantities of mechanical interest,

such as the maximum tensile tractions (not measured) under pure mode I,

Tn max, predicted by the model with the above estimates (Table 2), are also

varying with r. Further experimental tests under different loading conditions

are needed to tune properly the parameter r.

5. Closing remarks and outlook

In this study the mechanical properties of an adhesive layer in a GLARE

assembly, manufactured with an industrial process, have been estimated

through an inverse method based exclusively on full field displacements pro-

vided by DIC. Non-conventional tests were designed to generate mixed-mode

fracture conditions within the adhesive layer. Displacements at the micro-

scale estimated by DIC are adopted to specify Dirichlet boundary conditions

for a small sub-domain, including part of the adhesive layer subjected to

debonding and part of the aluminum alloy substrates.

Local kinematic measurements, provided by DIC in a format that is fully

consistent with conventional finite element discretizations, enabled us to fo-

cus the inverse analysis on the sole ROI of the DIC analysis. This procedure

allows one to model only a small part of the experiment since the effect of the

remote boundary conditions is accounted for by the measured displacements
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on the boundary of the ROI. The inner displacements are then used to tune

the parameters of the cohesive law. Kinematic data are thus adopted simul-

taneously to drive the mechanical simulation of the test (Dirichlet conditions

prescribed along the external boundary), and as comparison term (inside

the domain) included in the objective function. The parameters were iden-

tified and a good match was found between measured and computed (inner)

displacements at the optimum point.

The analysis performed herein, and resting only on measured displace-

ments, is quite general in terms of applicability. For instance, delamination

in composite materials, friction and sliding in metal/metal or hybrid assem-

blies may be analyzed with the same type of procedure. Last, the measured

displacement field may be enriched as in extended finite elements (Black and

Belytschko, 1999; Moës et al., 1999) to better capture displacement discon-

tinuities (Réthoré et al., 2007, 2008).
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J. L. Högberg, Mixed mode cohesive law, Int. J. Fract. 141 (2006) 549-559.
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(Springer Verlag, Wien, 2005), 47-73.

Matlab 6.5, Optimization Toolbox Manual , (The MathWorks Inc., 2003).

S. R. McNeill, W. H. Peters and M. A. Sutton, Estimation of stress intensity

factor by digital image correlation, Eng. Fract. Mech. 28 [1] (1987) 101-

112.

P. Michaleris, D. A. Tortorelli and C. A. Vidal, Tangent Operators and De-

sign Sensitivity. Formulations for Transient Nonlinear Coupled Problems

with Applications to Elasto-Plasticity, Int. J. Num. Meth. Eng. 37 (1994)

2471-2499.

N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack

growth without remeshing, Int. J. Num. Meth. Eng. 46 [1] (1999) 133150.

T. Pardoen, T. Ferracin, C. M. Landis and F. Delannay, Constraint effects

in adhesive joint fracture, J. Mech. Phys. Solids 53 (2005) 1951-1983.
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