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ABSTRACT

This paper deals with the problem of fault detection and
identification in noisy systems. A proportionnal integral
observer with unknown inputs is used to reconstruct state
and sensors faults. A mathematical transformation is made
to conceive an augmented system, in which the initial sen-
sor fault appear as an unknown input. The noise effect on
the state and fault estimation errors is also minimized. The
obtained results are then extended to nonlinear systems de-
scribed by nonlinear Takagi-Sugeno models.

Index Terms— state estimation, Takagi-Sugeno, sen-
sor fault, unknown input, multiple model

1. INTRODUCTION

State estimation is an important field of research with nu-
merous applications in control and diagnosis. Generally
the whole system state is not always measurable and the
recourse to its estimation is a necessity.
An observer is generally a dynamical system allowing the
state reconstruction from the system model and the mea-
surements of its inputs and ouputs [?]. For linear models,
state estimation methods are very efficient [?]. However
for many real systems, the linearity hypothesis cannot be
assumed. In that case, the synthesis of a nonlinear ob-
server allows the reconstruction of the system state. For
example, let us cite sliding mode observers [?], the Thau-
Luenberger observers [?] and observer for nonlinear sys-
tems described by Takagi-Sugeno models [?].
Approaches using Takagi-Sugeno model (sometimes named
multiple model) are the object of many works in differ-
ent contexts including the taking into account of unknown
inputs or parameter uncertainties [?, ?]. Various studies
dealing with the presence of unknown inputs acting on the
system were published [?, ?, ?]. Some of them tried to
reconstruct the system state in spite of the unknown in-
put existence. This reconstruction is assured via the elim-
ination of unknown inputs [?, ?]. Other works choose to
estimate, simultaneously, the unknown inputs and system

state [?, ?]. Among the techniques that do not require the
elimination of the unknown inputs, Wang [?] proposes an
observerable to entirely reconstruct the state of a linear
system in the presence of unknown inputs and in [?], to
estimate the state, a model inversion method is used. Us-
ing the Walcott and Zak structure observer [?] Edwards et
al. [?, ?] have also designed a convergent observer using
the Lyapunov approach.
Observers with unknown inputs are used to estimate actua-
tors faults wich can be assumed to unknown inputs, this es-
timation can be made by the use of a proportionnel integarl
observer [?]. In often cases, process can be subjected to
disturbances which have as origin the noises due to its en-
vironment, uncertainty of measurements, fault of sensors
and/or actuators. These disturbances have harmful effects
on the normal behavior of the process and their estimation
can be used to conceive a control strategy able to minimize
their effects. In the case of sensor faults, Edwards [?] pro-
pose for linear systems to use a new state wich is a filtrate
version of the output, to conceive an augmeted system in
wich th sensor fault appear as un unknown input. This for-
mulation was used by [?].
In this paper, a prportionnel integral observer will be con-
ceived to estimate the state and sensor faults. The exten-
sion of this method to nonlinear systems described by non-
linear Takagi-Sugeno models will be proposed afterthat.

2. LINEAR SYSTEM CASE

The objective of this part is to estimate a sensor fault af-
fecting a linear system via an unknown input proportional
integral state observer.

2.1. Problem formulation

Consider the linear model affected by a sensor fault and a
measurement noise described by :

ẋ(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) + Ef(t) +Dw(t) (2)



wherex(t) ∈ Rn represents the system state,y(t) ∈ Rm

is the measured output,u(t) ∈ Rr is the system input,f(t)
represents the fault andw(t) is the measurement noise.
A, B andC are known constant matrices with appropri-
ate dimensions.E andD are respectively the fault and
the noise distribution matrices which are assumed to be
known. Consider also the statez(t) ∈ Rp [?] that is a
filtered version of the outputy(t). It is given by :

ż(t) = −Āz(t) + ĀCx(t) + ĀEf(t) (3)

where−Ā ∈ Rp∗p is a stable matrix.
One introduce the augmented stateX =

[

xT zT
]T

,
this state is given by the equation (??).

Ẋ(t) = AaX(t) +Bau(t) + Eaf(t) (4)

Y (t) = CaX(t) +Daw(t) (5)

with :

Aa =

[

A 0
ĀC −Ā,

]

, Ca =

[

C 0
0 I

]

(6)

Ba =

[

B

0

]

, Ea =

[

0
ĀE

]

and Da =

[

D

D

]

(7)

The structure of the chosen observer is as follows :

˙̂
X(t) = AaX̂(t) +Bau(t) + Eaf̂(t) +K(Y (t) − Ŷ (t))

(8)

˙̂
f(t) = L(Y (t) − Ŷ (t)) (9)

Ŷ (t) = CaX̂(t) (10)

whereX̂(t) is the estimated state,̂f(t) represents the esti-
mated fault,Ŷ (t) is the estimated output,K is the propor-
tional observer gain andL is the integral gain to be com-
puted. It is supposed that the fault affecting the system is
bounded. Let us define the state estimation errorx̃(t) and
the fault estimation error̃f(t) :

x̃(t) = X(t) − X̂(t) and f̃(t) = f(t) − f̂(t) (11)

The dynamics of the state estimation error is given by the
computation of˙̃x(t) which can be written :

˙̃x(t) = Ẋ(t) − ˙̂
X(t)

= (Aa −KaC)x̃(t) + Eaf̃(t) −KDaw(t) (12)

The dynamics of the fault estimation error is :

˙̃
f(t) = ḟ(t) − ˙̂

f(t)

= ḟ(t) − LCaX̃(t) − LDaw(t) (13)

The following matrices are introduced :

ϕ =

[

x̃

f̃

]

and ε =

[

w

ḟ

]

(14)

From the equations (??) and (??), one can obtain :

ϕ̇ = A0ϕ+B0ε (15)

with :

A0 =

[

Aa −KCa Ea

−LCa 0

]

, B0 =

[

−KDa 0
−LDa I

]

(16)

The matrixI is the identity matrix with appropriate dimen-
sions. In order to analyse the convergence of the general-
ized estimation errorϕ(t), let us consider the following
quadratic Lyapunov candidate functionV (t) :

V (t) = ϕTPϕ (17)

whereP denotes a positive definite matrix.
The problem of robust state and fault estimation is to find
the gainsK andL of the observer to ensure an asymptotic
convergence ofϕ(t) toward zero ifε(t) = 0 and to ensure
a bounded error in the case whereε(t) 6= 0, i.e. :

lim
t→∞

ϕ(t) = 0 for ε(t) = 0

‖ϕ(t)‖Qϕ
≤ µ‖ε(t)‖Qε

for ε(t) 6= 0 ande(0) = 0

(18)

whereµ > 0 is the attenuation level. To satisfy the con-
straints (??), it is sufficient to find a Lyapunov function
V (t) such that :

V̇ (t) + ϕTQϕϕ− µ2εTQεε < 0 (19)

whereQϕ andQε are two positive definite matrices. In
order to simplify the notations, the time index(t) will be
omitted henceforth.
The inequality (??) can also be written as :

ψT Ωψ < 0 (20)

with :

ψ =

[

ϕ

ε

]

,Ω =

[

AT
0
P + PA0 +Qϕ PB0

BT
0
P −µ2Qε

]

(21)

The quadratic form in (??) is negative if :

Ω < 0 (22)

The matrixA0 can be expressed as :

A0 = Ã− K̃C̃ (23)

with :

Ã =

[

Aa Ea

0 0

]

, K̃ =

[

K

L

]

, C̃ =
[

Ca 0
]

(24)

The matrixB0 can be written as :

B0 = −K̃D̃ + Ĩ (25)

with :

Ĩ =

[

0 0
0 I

]

and D̃ =
[

Da 0
]

(26)



Using??and??, the matrixΩ can be written as :

Ω =

[

PÃ+ ÃTP − PK̃C̃ − C̃T K̃TP +Qϕ ...

ĨTP − D̃T K̃TP ...

... −PK̃D̃ + P Ĩ

... −µ2Qε

]

(27)
The presence of the termsPK̃ and−µ2 make the inequal-
ity ?? non linear and the LMI’s methods of resolution can
not be used. To make linear this inequality, let us define
the following changes of variablesG = PK̃ andm = µ2.
The matrixΩ can be written as :

Ω =

[

PÃ+ ÃTP −GC̃ − C̃TGT +Qϕ ...

ĨTP − D̃TGT ...

... −GD̃ + P Ĩ

... −mQε

]

(28)
The resolution of the inequality?? that is now linear with
regard the different unknowns leads to find the matrixP

andG and the scalarm. The gain matrixK̃ is determined
via the resolution of̃K = P−1G and the attenuation level
is given byµ =

√
m.

2.2. Example

Lets us consider the linear system described by the follow-
ing matrices :

A =









−0.3 −3 −0.5 0.1
−0.7 −5 2 4

2 −0.5 −5 −0.9
−0.7 −2 1 −0.9









, B =









1 2
5 1
4 −3
1 2









,

C =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, D =









0.5 0.5
0.2 0.2
0.1 0.1
0 0.1









, E = B

The system inputu(t) is defined as follows :

u(t) =
[

u1(t) u2(t)
]T

whereu1(t) is a telegraph type
signal varying between zero and one andu2(t) is defined
by u2(t) = 0.3 + 0.1 sin(πt). The faultf(t) is made up

of two components :f(t) =
[

f1(t) f2(t)
]T

with :

f1 =

{

0, t ≤ 0.6sec
sin(0.5πt), t > 0.6sec

, f2 =

{

0, t ≤ 1sec
0.4, t > 1sec

To define the statez, one choosēA = 25 ∗ I, whereI is
the identity matrix.
Theµ,K andL computation gives :µ = 0.3317,

L =

[

−99.566 −31.179 −25.850 −18.090 ...

−71.636 −38.768 −4.346 −34.992 ...

... −31.055 323.373 94.166 18.293

... 86.279 44.744 −83.663 37.041

]

and

K =

























−8.925 −54.319 39.277 4.858 ...

−2.688 −7.409 14.877 2.259 ...

−2.567 −12.062 16.080 2.343 ...

−1.704 10.346 −5.056 14.141 ...

−0.751 −41.280 37.530 6.423 ...

−16.984 5.449 15.115 1.393 ...

−3.115 −7.090 33.576 3.298 ...

−9.858 1.925 −2.030 30.579 ...

... 49.140 −6.962 14.658 3.805

... 11.930 −3.436 3.833 1.019

... 11.558 −3.353 3.778 0.763

... −1.357 0.191 −1.603 −0.741

... 38.041 −7.502 10.874 5.102

... 22.549 −4.191 6.355 2.896

... 3.621 4.755 3.737 −1.686

... 7.681 6.721 −5.810 −6.283

























The simulation results are shown in the figure??. This
method allows to estimate well the sensor faults even in
the case of time-varying faults.
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Figure 1. Sensor faults and their estimates .

3. EXTENSION TO MULTIPLE MODEL
REPRESENTATION

The objective of this part is to extend the previous pro-
posed method to nonlinear systems represented by a mul-
tiple model.

3.1. Problem formulation

Consider the following nonlinear Takagi-Sugeno system
affected by a sensor fault :

ẋ(t) =

M
∑

i=1

µi(ξ(t))(Aix(t) +Biu(t)) (29a)

y(t) = Cx(t) + Ef(t) +Dw(t) (29b)



wherex(t) ∈ Rn represents the system state,y(t) ∈ Rm

is the measured output,u(t) ∈ Rr is the system input,f(t)
represents the fault andw(t) is the measurement noise.
Ai, Bi andC are known constant matrices with appro-
priate dimensions.E andD are respectively the fault
and noise distribution matrices which are assumed to be
known. The scalarM represents the number of local mod-
els. The weighting functionsµi are nonlinear and depend
on the decision variableξ(t) which must be measurable.
The weighting functions satisfy the sum convex property
expressed in the following equations :

0 ≤ µi(ξ(t)) ≤ 1,

M
∑

i=1

µi(ξ(t)) = 1 (30)

Let us consider the statez ∈ Rp given by :

ż(t) =

M
∑

i=1

µi(ξ(t))(−Āiz(t) + ĀiCx(t) + ĀiEf(t))

(31)
where−Āi, i ∈ 1, ..,M are stables matrices.
One introduce the augmented stateX =

[

xT zT
]T

,
this state is given by the equation (??) :

Ẋ(t) =
M
∑

i=1

µiξ(t))(AaiX(t) +Baiu(t) + Eaif(t)) (32a)

Y (t) = CaX(t) +Daw(t) (32b)

with :

Aai =

[

Ai 0
ĀiC −Āi

]

, Bai =

[

Bi

0

]

, Eai =

[

0
ĀiE

]

(33)
The matricesCa andDa are given by the equation (??).
The structure of the proportional integral observer is cho-
sen as follows :

˙̂
X(t) =

M
∑

i=1

µi(ξ(t))(AaiX̂(t) +Baiu(t) +

Eaif(t) +Ki(Y (t) − Ŷ (t))) (34)

f̂(t) =

M
∑

i=1

µi(ξ(t))(Li(Y (t) − Ŷ (t))) (35)

Ŷ (t) = CaX̂(t) (36)

whereX̂(t) is the estimated system state,f̂(t) represents
the estimated fault,̂Y (t) is the estimated output,Ki are
the local model proportional observer gains andLi are the
local model integral gains to be computed. It is assumed
that the fault affecting the system is bounded.
Using the expressions of̃x(t) andf̃(t) given by the equa-
tion (??), the dynamics of the state reconstruction error is
given by the computation of̃̇x(t) which is written :

˙̃x(t) = ẋ(t) − ˙̂x(t) =

M
∑

i=1

µi(ξ(t))(Aai −KiCax̃(t) +

Eaif̃(t) +KiDaw(t)) (37)

as the fault estimation error can be written :

˙̃
f(t) = ḟ(t) − ˙̂

f(t)

= ḟ(t) −
M
∑

i=1

µi(ξ(t))(LiCax̃(t) − LiDaw(t)) (38)

Using the definitions ofϕ andε given in (??) and omitting
to denote the dependance with regard to the timet, the
equations (??) and (??) can be written :

ϕ̇ = Amϕ+Bmε (39)

with :

Am =
M
∑

i=1

µiξÃi and Bm =
M
∑

i=1

µiξB̃i (40)

where :

Ãi =

[

Aai −KiCa Eai

−LiCa 0

]

, B̃i =

[

−KiDa 0
−LiDa I

]

(41)
The matrixI is the identity matrix with appropriate dimen-
sions. By considering the Lyapunov functionV given in
(??), and following the same reasoning as for linear sys-
tems, convergence of state and fault estimation errors as
well as attenuation level are guaranteed if :

ψT Ωψ < 0 (42)

with :

ψ =

[

ϕ

ε

]

,Ω =

[

AT
mP + PAm +Qϕ PBm

BT
mP −µ2Qε

]

(43)
The inequality (??) holds ifΩ < 0. The matrixAm can be
written as :

Am = Ãm − K̃mC̃a (44)

with :

Ãm =

M
∑

i=1

µi(u(t))Ãmi, K̃m =

M
∑

i=1

µi(u(t))K̃mi (45)

and

C̃a =
[

Ca 0
]

(46)

where

K̃mi =

[

Ki

Li

]

and Ãmi =

[

Aai Eai

0 0

]

(47)

In the same way, the matrixBm can be formulated as :

Bm = −K̃mD̃a + Ĩ (48)

with :

Ĩ =

[

0 0
0 I

]

et D̃ =
[

Da 0
]

(49)



With the following changes of variablesGm = PK̃m and
m = µ2, the matrixΩ can be put in the following form :

Ω =

[

PÃm + ÃT
mP −GmC̃a − C̃T

a G
T
m +Qϕ ...

ĨTP − D̃T
aG

T
m ...

... −GmD̃a + P Ĩ

... −mQε

]

(50)

As Ω =
M
∑

i=1

µi(ξ(t))Ωi, the negativity ofΩ is assured

if, for i = 1...M :

Ωi < 0 (51)

with :

Ωi =

[

PÃmi + ÃT
miP −GiC̃a − C̃T

a G
T
i +Qϕ ...

ĨTP − D̃T
aG

T
i ...

... −GiD̃a + P Ĩ

... −mQε

]

(52)
andGi = PK̃mi. Solving LMI’s (??) leads to the deter-
mination of the matricesP andGi and the scalarm. The
gain matrices are then deduced :K̃mi = P−1Gi.

3.2. Example

Consider the nonlinear system described by a Takagi-Sugeno
model with two local models, four states and four outputs
which structure is given by the following equations :

ẋ(t) =
2

∑

i=1

µi(u)(Aix(t) +Biu(t)) (53a)

y(t) = Cx(t) + Ef(t) +Dw(t) (53b)

The system matrices are defined as below :

A1 =









−0.3 −3 −0.5 0.1
−0.7 −5 2 4

2 −0.5 −5 −0.9
−0.7 −2 1 −0.9









, B1 =









1 2
5 1
4 −3
1 2









A2 =









−0.2 −3 −0.6 0.3
−0.6 −4 1 −0.6

3 −0.9 −7 −0.2
−0.5 −1 −2 −0.8









, B2 =









4 6
0 0
−4 2
7 6









C =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, D =









0.5 0.5
0.2 0.2
0.1 0.1
0 0.1









,
E1 = B1

E2 = B2

Consideringu(t) =
[

u1(t) u2(t)
]T

, the signalu1(t)
is a telegraph type signal whose amplitude is belongs to
the interval[0, 0.5]. The signalu2(t) is defined byu2(t) =
0.3 + 0.1 sin(πt).

The two fault signalsf(t) =
[

f1(t) f2(t)
]T

are de-
fined as :

f1 =

{

0, t ≤ 0.6sec
sin(0.5πt), t > 0.6sec

,f2 =

{

0, t ≤ 1sec
0.4, t > 1sec

ChoosingQϕ = Qǫ = I, theµ, K1, K2, L1 andL2 com-
putation gives :µ = 1.2247,

L1 =

[

−283.182 −121.148 74.310 −62.490 ...

−345.040 −151.396 85.418 −61.771 ...

... 153.758 410.074 −5.716 63.338

... 431.054 −96.606 −19.597 61.520

]

L2 =

[

−115.420 −105.768 35.048 −50.308 ...

−141.015 −123.698 40.092 −49.400 ...

... 75.051 190.906 −3.992 50.902

... 202.223 −41.755 −15.471 49.379

]

K1 =

























59.843 −482.376 547.587 97.355 ...

16.116 −166.067 215.763 41.211 ...

12.729 −106.775 131.025 23.323 ...

16.208 156.945 −350.338 69.215 ...

37.647 −470.569 530.406 95.417 ...

8.187 −166.308 210.176 37.676 ...

13.973 −78.243 104.622 22.092 ...

−34.769 69.786 −227.2868 58.444 ...

... 15.166 3.291 6.620 −2.133

... 3.843 0.496 2.505 −0.482

... 1.939 0.185 1.409 −0.301

... −13.356 −4.889 0.677 4.829

... 38.368 −2.347 5.611 1.561

... 0.897 31.048 2.941 1.2672

... −10.948 8.999 12.093 −1.030

... 33.251 29.593 −0.997 26.308

























K2 =

























−16.369 −33.252 66.898 41.566 ...

−11.586 −0.592 29.702 18.084 ...

−4.653 −5.738 18.480 10.259 ...

−32.873 84.740 −35.444 35.046 ...

−23.446 −32.323 67.143 39.703 ...

−13.176 −3.498 26.598 15.452 ...

−4.670 0.306 25.970 10.024 ...

−49.221 46.993 −16.385 33.501 ...

... 13.788 4.941 6.121 −5.722

... 4.862 1.629 2.405 −2.268

... 2.675 0.908 1.364 −1.309

... 3.369 1.273 2.063 −1.122

... 21.968 1.427 5.201 −2.997

... 4.031 12.337 2.670 −0.683

... −2.535 5.046 −0.200 −1.937

... 24.354 17.096 0.599 6.319

























The simulation results are shown in the figures?? and??.
As for the previous linear case, the proposed method pro-
vides good estimates of the system state (one present the
states error of estimation of system (??) and sensor faults.

4. CONCLUSION

This paper has presented an estimation method of sensor
faults which can be, by a mathematical transformation,
considered as unknown inputs to an augmented system.
This reconstruction is made for linear and nonlinear sys-
tem represented by a Takagi-Sugeno model. The proposed
method uses a proportionnal integral observer which is



able to estimate simultaneously the state of the system and
the unknown inputs. Small size examples have illustrated
the efficiency of the proposed approach.
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Figure 2. State reconstruction error.
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Figure 3. Faults and their estimate.
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