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Stability Variances: A filter Approach.

Alaa Makdissi, Francois Vernotte and Emeric De Clercq

Abstract

We analyze the Allan Variance estimator as the combinatioBiscrete-Time linear filters. We apply this analysis to the
different variants of the Allan Variance: the Overlappingjad Variance, the Modified Allan variance, the Hadamardiafaze
and the Overlapping Hadamard variance. Based on this amalies present a new method to compute a new estimator of the
Allan Variance and its variants in the frequency domain. Wewsthat the proposed frequency domain equations are deuiva
to extending the data by periodization in the time domairkelthe Total Variance [1], which is based on extending the dat
manually in the time domain, our frequency domain variarestgnators have better statistics than the estimatorseofltssical
variances in the time domain. We demonstrate that the previeell-know equation that relates the Allan Variance to Flosver
Spectrum Density (PSD) of continuous-time signals is ntitviar real world discrete-time measurements and we pre@osew
equation that relates the Allan Variance to the PSD of thereis-time signals and that allows to compute the Allanararé
and its different variants in the frequency domain .
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Stability Variances: A filter Approach.

I. INTRODUCTION The two-sided PSD is a positiveS{°(f) > 0) and a

The Allan Variance [2] and other frequency stability variSymetric functlo_n nf (_STS(f) = 5T5(=f) ). In frequency
ances [3], [4], [5], [1] were introduced in order to aIIonetrOlO_gy’ the smglg_—&ded Eower Spectral Densm(f) has
characterization and classification of frequency fluctiei bee.n historically utilized. It is related to the two-side8DP
[6]. One of the goals of these frequency stability varianegas
to overcome the fact that the true variance is mathematicall
undefined in the case of some power law spectrum [6]. 2STS(f) if f>0

The stability properties of oscillators and frequency stan Sy (f) = { 0 it f<o. (4)
dards can be characterized by two ways: the power spectral
density (PSD) of the phase (or frequency) fluctuations, i. e. ) )
the energy distribution in the Fourier frequency spectrum; FOr power-law spectrum signals, the PSD is expressed as
or various variances of the frequency fluctuations averagéd (/) = haf® [6]. The a integer value may vary from -4 to
during a given time interval, it is said in the time domaineTh*2 in common clocks frequency fluctuation signals [9]. The
power spectral density of frequency fluctuations is of greHtie variance is defined then as [6]:
importance because it carries more information than the tim
domain frequency stability variances and provides an unam- 7 7
biguous identification of the noise process encounteredah r oy = Ry (0) = /Sy (f)df = /haf“df. (5)
oscillators. PSD are the preferred tool in several apptioat 0 0
such as telecommunications or frequency synthesis. 8yabil
variances are most used in systems in which time measurey . ~an notice easil
ments are involved, or for very low Fourler_f_requenmes.rEa_cdivergeS and then the
one of these tools corresponds to a specific instrumentation
spectrum analyzers for frequency-domain measuremends, an
digital counters for time domain measurements. Althou

there is a separation between measurements methods, ical k : Allan. Had d)in the f
and sometimes user’'s community of these two paramete(fsasspa. hown vanancgs( an, Hadamar ) In Ihe fregyen
. . . domain instead of the time domain, especially in the case of
time-domain and frequency-domain parameters naturady ar. . . ) .
screte signals, which are the most current in practice Th

not independent. The true variance for example can be t e h vsis is develoned in Section |1 in th h
oretically deduced from the PSD by an integral relationshi erapproach analysis IS developedin section 111n thega
ase of a difference filter of order. This approach allows

The true variancer? of a zero-mean continuous-time signa s to propose eneral formulae for the stability variance of
Y(t) is defined for stationary signals as the value of the prop 9 u Mty varl

autocorrelation functionRy (r) — E[Y ()Y (t+ )] for coqtinuoug—time signals. The well known frequency stq_bili
7 = 0 (where E is the mathematical expectation operatorﬁm'"’mces like (AVAR, MODAVAR, HADAMARD) are special

[7]. This statistical definition of the autocorrelation mslated ases of the_ pr_oposed_formula foe=1 an_d n=2. As in
to the time-averge of the produkt(t) Y (¢ + r) if the signal practical application the signals are not continuous bee#ue

is correlation-ergodic [8] by: measurement instruments are read at discrete periodanisst
' the filter approach is then extended in Section Ill to diseret

y that for integer < 0, limy_.o f
integral if] (5) is infinite.

The intent of this paper is to explore the relationship be-
een stability variances and the PSD using a filter approach
ig approach allows us to establish new estimators of the

T time signals. New estimators of the classical variance$ién t
1 . . .
Ry(r) = lim — / Y (¢ + 1) Y(t)dt @ fr_equency domaln_ are propqsed which are dlffe_rent from a
T—oo 2T simple discretization of the integral of the continuousdi
=T

equations. The proposed discrete-time variances are based
The definition of the two-sided Power Spectral Densitgn the fact that filtering in the discrete frequency domain
(PSD) STS (f) of the signalY is related to Autocorrelation is equivalent to a periodization in the time domain. This
function by the Fourier Transform and its inverse by [7]:  periodization makes our proposed variances estimator have
better statistics than the classical estimators. In Sedho

o0

—ionfr we present the theoretical calculation of the equivalegtet
Sy*(f) = / Ry (r)e " 7dr (2) of freedom of the new proposed frequency domain variances
—o0 estimators. Finally, these estimators, the overlappintgnAl
and variance (OAVAR), the Hadamard variance (HVAR), and the
< modified Allan variance (MAVAR), are compared in Section
Ry (1) = / SLI(f)e2mI7qf. (3) Vto the same estimators in the time-domain using a numerical

simulation.

— 00
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[I. CONTINOUS-TIME SIGNALS This processing may seem contradictory in the sense that we
are looking for the long term behaviour (i.e wh¢n— 0) of

A. Characterization of long term stability by filtering - =Y :
of s desirabl h e the | - the signalY (¢) and the proposed processing introduces in the
ten, it's desirable to characterize the long term stbil - o510 time 5 filteD(f) that eliminates to a certain extent the

clocks. Long term behaviour_is determined by the componer&gmponemS of the PSD af () at f — 0. In fact, even if the
of th_e PSD at low frequenm_esf (tends to zero). In qrder 10 introduced processing may cancel the componersof f) at
obtain the long term behaviour we average the signéd) f = 0 and hence makes tend, (r) to 0 whenr — oo, such a
a.nd we study the vanance of the ayeraged S'Q”a'z@ the processing allows to study the asymptotic behaviousyef f)
signal obtained by averaging the signalt) during a timer. when f approaches zero. We will see in the following of this

We can write then: . paper that this asymptotic behaviour allows to charaaeim
1 classify the noise signals.
Z(t7) = T /t,TY (t) dt. (©) In order to realize a filteD(f) with a frequency response
(f) = £, the first idea that comes to mind is to use mul-
le continuous time derivations of the signél(t, 7). Each
derivation in the time domain is equivalent to a multiplioat
by 2 in the PSD domain.

The signalZ (¢, 7) could be seen as the output of a moviné)p
average filter M of length . The moving average filter
impulse responser (¢, 7) is defined by:

m (1, 7) = lRect. (t B %) 7 % Let U™ (t,7) the n™" derivative of Z (¢, 7) defined by:
. i . . (n) d"Z (t,7)
where Recg () is a centered rectangular windows of width vt (t,T) = —gn (14)
B:
1 for - B<¢<B (n) (n) P :
= 2 =V=7 The PSDS, of U™ (¢, ) is given by:
Rects (1) { 0 otherwise. (8) v (f) (t,7)isg y
. : : , ) 2 on sin® (77 f)
Thus, in the time domainZ(¢,7) may be defined as: S(f) = @2rf)*" Sz (f) = (2nf)™" WSY (f)
T
Z(t,7) =m(t, ) * Y (1), 9) (15)
_ and its variancer?, (7, n) is equal to:
where %’ denotes the convolution product operator.
The frequency Respongé ( f) of this moving average filter e . sin? (77
s dhvon pcney Response(f) gaverag o )= [ e e (. e
is given by: . 0 (x7f)
M (f) = Meiﬂrf (10)
T nrf : A perfect continuous derivation in the time domain has

a linear frequency response for all the frequencies. Such a
derivation is impossible to realize and is often approxadat
by a filter D that have the same frequency response in the
Sy (f) = |M(f)|25y (f). (11) Vvicinity of f = 0. The simplest filter that approximates a

derivation is the simple time difference filter defined by its
From () (19) and[(31), the variance of tle(t, 7) signal impulse response:
is expressed by:

According to linear filter properties, the PST), (f) of the
continuous time signaf (¢, ) is:

, * gin? (7 f) dt,7)=6(t)—6(t—71). a7)
o7 (1) = /o (m'f)2 Sy (). (12) Its Fourier TransformD(f) is given by:
It's clear that whenSy (f) = h,f“ the varianceo? (1) D(f)=1—e 2™ = 2sin(nrf)e /.  (18)

is not defined for power law witlw < 0 because thél/(f)

filter tends to 1 whery tends to zero. In order to make the When cascading simple difference filters! (¢, 7), we ob-
variances? (1) defined wheny < 0 we need to introduce an tain an-order difference filter. Its impulse respong@’ (¢, 1)
additional filter D(f) in series withM (f). The input of the is given by:

new D(f) filter is Z (t,7) and let us call its outpul/ (¢, 7). n

The variance of th& (¢, 7) signal is expressed whén(¢) has d™ (t,7) = Z (—=1)* Ck6 (t — k) (19)
power law spectrum by: =0

o2 (1) = hq /OO sin® (77 f) |D(f)|2 Fedf. (13) Wh_ere Ck in the ab(')ve equation is the binomial _Coefficient
0 defined byC* = Il ol andn! denotes the factorial of.

(n7f)”
. . 9 ' .. According to equation |Z1_,8), the frequency response
Obviously, the varianceoi; (r) becomes defined if D) (f) of the d™ (t, 7) filter is given by:

lims_o|D (f)° f* is defined. This means thab(f) must
be of the formf® when f — 0 with 8 > —«/2. In common DM (f)y = (D (f)" = 2"" sin™ (zrf) e . (20)
clock noise with—4 < o < +2 the filter D(f) must verifies

D (f) o< f? approximately for sufficiently smalf in order to We choose to normalize this filter in such a way that it does
makeo? (1) defined for the seven common clock noises. not modify the variance of a white noise processed by it. The
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normalization factor,, is given by the square root of the sunrtalled the Picinbono variance [12]. FroEk24), this var@aig

of the squares of the coefficier(tsl)’C Ck: defined by:
- 2 4T (n+1/2) 2\ o 8 /°° sin® (77 f)
c kZ:O {( 1) Cn} NGECES) cy,.  (21) m (7) v ( )(2) 3/, (n7f)? v (f)df-  (27)
. i This equation shows that the Hadamard variance is defined
(n) (n)
is ;:Zr?ugs_uw (t,7) of the normalized filtet™ (¢, 7) /c. for law power spectrum with integer values between -4 and

0. As previously explained, a high cut-off frequengy is
n 1 n necessary forx > 0 in order to ensure convergence of the
U™ (t,7) = - [d< ) (t,7) *m(t,T)} (). (22 e when
Table || shows the values of Allan variance [6] and
Hadamard variance [11], [12], [13] for power law spectra.
The results reported in this table if > 0 are only valid
for 7> 1/ (27 fp).

; ; i . BecauseD (f) « f™ in the vicinity of zero we can
or, equivalently, using equationf }10) arfd] (20): say thatD-filtering is equivalent to high-pass filtering. The
o2 (), = 2% /°° sin?" 2 (m'f)S (F)df (24) combination of the low pass filteb/(f) with the high-pass

v T2 o xrf)> ' filter D(f) forms a band-pass filte®(f). We will see in the
following of this paper that all the stability variances tbu
be expressed as the variance of output of band-pass filters
applied to the signal under study(¢). When varyingr we
obtain different band-pass filters (a filter bank) with diéfist

The variance of/(") (t, 1) is expressed by:
1

7=z [

Cpe i senar @)

The convergence domain of this variance is givenaby
— (n + 2). For positivea values we must introduce a high
cut-off frequency as the upper limit of the integration inler

to insure the convergence of (7) (n)- _ bandwidths. This analysis is similar to the multi-resauti
Sometimes it's useful to express the variange (7)., wavelet analysis [10] and the special case of the Allan naga
versus the PSD5x (f) of the phase &gnﬁ(g) related 10 fijter is nothing else but the Haar wavelet basis functior.[14
the frequency fluctuation” (1) by Y (1) = <. Replacing  ¢s worth recalling that equatior| (6) is valid only for con
Sy (f) = (2nf)* Sx(f) in (B4) we get: tinuous time signal and filters. This equation gives a thiécak
92n+2 oo definition of the Allan Variance of the continuous sigi&(t)
o (T) () = W/ sin®"*? (77 f) Sx (f)df.  (25) and cann't be used to compute the Allan variance unless the
" 0 formal expression of the PSBy (f) is a known function. In
Thus, according to the order of the used difference real world application signals are collected at discrestants
filter d (t,7) we obtain different variances with differentand the aboveé andD filters are unrealizable for big values
convergence domains (see [4] and [10] for the explicit linkf - especially when duration may last for months and years.

betweenn and the convergence). We will see in the next gh the next section we analyse the stability variances in the
this paper that most of the well-known stability variances acase of discrete-time signals.

special cases of equation (24) ¢r](25).

I1l. DISCRETETIME VARIANCES
B. The Allan Variance and the Hadamard Variance as filters |n real world applications, measurement instruments are
When the ordem of the filter d™ (¢, 7) is equal to one, read at discrete periodic instants. LBtbe the period of the
c? = 2 and, from ), we obtain the Allan Variance definetieading cycle. We suppose that the instrument measures the

by: mean value during this cycle without dead time. We have then
* gind (7 f) a discrete time series or signal given by:
s (7T
05 (1) = o} (7')(1) = 2/ ———=Sy (f)df. (26) 1 [T
o (m7f) Uk = — Y () dt. (28)
T Joe—nyr

The Allan Variance is noted:, (7) in the literature but it's ) ) o _ o
the true variance off (V) (t,7), a version ofY(t) processed by The time-serieg;, of a finite length is converted to digital
filters M and D. numbers and is studied in order to characterize and clabsfy

Equation [2p) shows that the Allan variance is defined f§Pntinuous time signa¥’(t). The PSDS,, (f) of the discrete-
power law spectrum withy values from -2 to 0. For > 0, time signal is periodic with a_perlog‘is = 1/T and is related
the Allan variance does not converge unless a high cut-&f the PSDSy (f) of the continuous signal'(¢) by:
frequencyf;, is taken into account. Moreover the asymptotic 1 sin? [7T (f — nf,
behaviour ofs? (7) is similar for the White Phase noise & Sy (f) = T Z Sy (f —nfs) 1[1 U f2)].
2) and Flicker Phase Noisex(= 1) (see table|] ). For power n [T (f = nfs)]
law with o« = —3 anda = —4 the Allan variance is undefined We notice from equatior{ (9) that the PSD)(f) is equal
(unless a low cut-off frequency is taken into account). to Sy (f)/T when f — 0 because all the terms in the sum are

When the orden of the filterd™ (¢, 7) is equal to 2¢3 = 6  null (sin (n7) = 0) except the term for, = 0. We conclude
and we obtain the three sample Hadamard variance [11] atkat we can study the long term behaviour of the continuous

(29)
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TABLE |
ALLAN AND HADAMARD VARIANCES FOR POWER LAW SPECTRA~Y = 0.577216 1S THE EULER’S CONSTANT AND f}, IS THE HIGH CUT-OFF FREQUENCY
FOR NOISE WITHa > 0.

a Allan Variance o3 (1) Hadamard Variance o%; (7)
3fn 5fn
+2 ———h ———h
4m272 +2 6272 +2
1 3[y+In(2nfp7)] —In(2) h 10 [y + In (27 f,7)] + In (3) — In (64) A
4m272 + 127272 "
1 1
0 —h —h
2T 0 2T 0
1 256
-1 2In(2) h— —In{— ) h_
n(2)h- 2 n( 27 ) !
o2 T w2r
-2 h_ —h_
E 3 72
8m2r2 127
-3 - —1In(3) —1In(4)| h_:
[T @ @] hs
a B 117473 »
15

. . . . . TABLE I
signalY (¢) by using the discrete time serigs. We can show THE PSDS, (/) OF THE SAMPLED TIME SERIES); WHEN Y/ (1) HAS A

without difficulty that in the presence of a dead-time (santpl POWER LAW SPECTRUNSy () = ho f.  1)(n, ) 1S THE POLYGAMMA

In some applications it's possible to eliminate or reduce p TS, ()
the aliasing phenomenon by using a low pass filter inside
the measurement instrument in front of the moving average 0 ho
operation.
For frequencies varying between 0 afid2, we can expect [1 T334y (2,1 + fT)} sin? (rfT)
that the PSDS, (f) of the discrete sequengg is nearly equal -1 h—1 <2723

to Sy(f)/T, at least in the case of a white noise, because
averaging during a timg and then sampling with a period
T preserve most of the information contained in the signal -2 h_2
Y'(t), since the averaging can be considered as a non perfect
anti-aliasing low pass filter.

For power-law spectrum the sum in equati (29) can be
expressed formally forv < 0. For o > 0, we must introduce
a high cut-off frequencyf;. TabIe|I| shows the expression of
S, (f) for some negativer values whenf varies between 0 74T [33 + 26 cos (2 fT) + cos (47 fT)]
and f,/2. The formulae in Tableﬂll relating the PSD of the 4| hea 60 sin® (nfT)
sampled signal to the PSD of the continuous signal were never
published before to our best knowledge.

A Taylor expansion of5, (f) when f tends to zerod < 0)

gives (see tablp]il): in (BA) is Sy (f)/T and the aliasing is negligible. For short
1 inei H —a i
1 . T Sy (f) + A(f term (f — &) the aliasing term varies @6~ and increases
Sy (f) = T ha f® — han 2= % when the sampling period grows.
s (30) For a > 0, the aliasing term depends also on the high cut-

We call A(f) = —ha%fo‘+2 the aliasing term for integer off frequency and varies ag® whatever the value of.. This
a < 0. It depends on the sampling periddand is null for means that the study of the stability varianceypffor power-
white noise & = 0). At long term, the dominant componentaw spectra withn > 2 does not allow to study the behaviour

w2T? [2 + cos (27 fT)]
3 sin? (7 fT)

[12 = T5 %4 (4,1 + fT)] sin? (x fT)

3| hes 127272 f5

4
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of Y(¢t) because the aliasing term is dominant whetends Obviously, by using@S) and]28), we can write:
to zero [15], [16]. LT

The variancer; of the discrete time serieg, is related to 2k = i/ Y (t)dt. (36)
its periodic PSDS,,(f) by [8]: mT J(g—m)T
4ok Equation @6) shows that averaging values of the signal
o) = T/ STE(f)df. (31) wx is equivalent to using an instrument with an averaging time
‘ - 7 =mT. This may let us think wrongly that the PSB, (f),

Equation ) relates the PSD of the measured discrete t“%fé[he discrete time series;, could be obtained directly from

signal y, (after averaging without dead-time) to the PSD O?quatmn ) b_y replacmgr - mT . - :
the continuous-time signal (¢). Equation ( ) relates the In fact, 2z, being discrete, its PSD is periodic and contains

variance to the PSD of the discrete-time signal. Combiniﬂ;ilasling (’;ermi. TSEII;SSESZ (f])c %fthe di_screte tir_ne;{eriebsk.
theses two equations and using an approach similar to felated to the v (f) of the continuous signai({) by:

presented in paragrapf (1A ) in the case of general diffeee 1 sin? [rmT (f — nfs)]

filter of order n for the continuous-time signals, allows us S:(f) = T ZSY (f=nfs) 2 -
to define a general stability variance for discrete-timenaig n [rm T (f = nfs)]

similar to that of equation [124 ) for continuous-time sighal |n order to relate the The PSD.(f) of the averaged

In the case of a frequency fluctuation sequence, the tirdgcrete time series; to the PSD of the sampled signal
seriesy, could be related to the time error sampl€st) by: 4, we compute the Fourier Transforid* (F) of the digital

©T filter my, whereF is a normalized frequency for the discrete

Uk = 1 dX(t) dt = X [kT] - X [(k — 1)T]. (32) time signals:¥ = f-T. The impulse response of this filter

T Jg—1yr dt T is mx = L7, (k), where,, (k), is a discrete rectangular

Sometimes, it’s difficult to realize experimentally the meawmdow of lengthm with all its coefficients equal to 1. This

. . . Impulse response is obtained fram(¢, 7) by sampling it with
surement ofy, according to equat|08) by averaging and" : : . N . )
recordingy;. without dead-time. If the time error dafa(t) are a sampling period’. The Fourier Transfornd/™ (¥} is then:
measurable it is always possible to sample them and compute

37)

m—1 .
1 . 11—exp(—2twnFm
yr according to equatior] (B2) without dead-time. M (F) = p” Z e MR = . ei) ((—in}'))
In order to simplify notations, we suppose, without loss in k=0 P
generality, thatl” is equal to 1 in the following of the paper. _ Lsin (mmF)

= —_— —inF (m — 1)]. 38
Then, integration in equati0ﬂ31) is done over the interval m sin (7 F) exp [=imF (m = 1) (38)

[~1/2,1/2] and equation[(32) could be written, by denoting

We can notice that the frequency response of the discrete
o = X (kT), as: ! quency rssp '

moving average filter of equatiorDSS) is different from that
of the continuous moving average filter of equatiErl (10) when
replacingr by mT.

In other terms, the time error sequeneg could be ob- As for the continuous time signals, thi®/ filter is not
tained from the averaged frequency sigmal by numerical sufficient to ensure the convergence of the variance for powe

Yk =Tk — Th—1- (33)

integration with a starting point, = 0: law spectrum signals witlk < 0. Therefore, we introduce
a digital version of the continuou® filter by choosing an
Tyl = Tk + Yr- (34) impulse responsé;, as:
In order to estimate theg(r)(n) variance from the ob- di. = (0k — Ok—m) (39)

served discrete-time seriag, we try to realize a discrete ) ) ) ) )

version u;, of the continuous signal/(™)(¢,7) defined by Wheredx is a Dirac impulse of unity amplitude. _
equation 2) by using digital filters similar to the analog As_ for the dlscre_te time filtermy,, th.e discrete filterd,, is
filters m(t, ) andd(™ (t, 7). Once we have a discrete versiorPPtained by samplingd (¢, 7) of equation @7) _ _
of U™ (¢, 7), we can estimate its variance by computing the The frequency response™ () of the digital filter d;. is
sample variance of the discrete-time sefigs identical to that of the continuous filtdp (F):

. Following. the filter gp_proa_ch u§ed for continuous tim_e D* (F) =1 — e~ 2™F™ — 9 sin (nFm) e~ ™5™, (40)
signals we introduce digital filters in such a way that their

discrete-time outputs are similar, as much as possible, towhen using. difference filters we get the digital filtet,"

analog signals in the previous section. by sampling the continuous time filte™ (¢,7) of equation
The moving average filtem (¢, 7) of length~ becomes in (@);
the discrete domain a rectangular windows of length= (n) " ok
7/T. The outputz;, of this filter is given by: 4 = (1) CFox—pm- (41)
p=0
m—1
2 = 1 Z Yin- (35) This impulse response f:ould be obt.ained also py a digital
m = convolution (denoted by in the following) of the filterdy
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in equation ) with itself, times. The frequency responséA. Estimation of the Stability Variances of the Discretmdi
D*(™(F) of the filter 4" is, according to[(40), given by: ~ Signals
In order to estimate the variances presented in the last

*(n) o * n __ on:m_..n —inwtFm . . .
D(F) = [DT(F)]" = 2%" sin” (mFm) e - (42)  section we use the sample variance of the zero mean discrete

If we use the same normalization facigr as the ?r;es of signal uy: | N
gqugtlon 1), the output;, of the normalized filtewd,” /c,, 52 (m) = < Z e (48)
is given by: P

1 n 1 n where N is the length of the time series,.
k= (dl(c '® Z’“) = o (dl(c '® m’“) ©yr- (43)  \Whenthe signal, is obtained by filtering a signal of length
) ] L using a filter of lengthp, we must consider inmlS) only
According to equations (#3)[ (1) {38) anld](42), the trug _ ;~ p + 1 unambiguous samples af,.
variance o7 (m) of the discrete signaluy is related to the | o U, be the Discrete Fourier Transform (DFT) of the

PSD S, (f) of the discrete signaly;. by: discrete signalu; defined by:
22 (/2 g2 2 (1 £ N-1
2 _ _ —2im i o N —
7 (m) c2m? /_1/2 sin? () Sy (f)df.  (44) U, = kiO uge ,mef0,---,N—-1}. (49)

The sample variance can be related to the DFT series using

Equation [4}4) defines a stability true variance of discrete- | . e parsevals theorem:

time signals in the general case. Percival proposed in [&7] a

identical formula to that obtained iff_(44) when= 1 in the P s 1 P 9

case of Allan variance. Z |ux|” = N Z U™ (50)
Comparing this expression to equati(24) we can naotice F=0

that the denominator in[(#4) is2sin (7f) while that of ~ The U coefficients forN/2 < k < N represent the

equation[(24) igw7f)?. We have shown in equatioh [30) thafhegative frequencies. In the case of a real sigmal the

S,(f) ~ Sy (f)/T. This difference bewteen equatiorfs](24§oefficients Uy, are symmetrical around® = [2-L]. we

and (4}) may let us think that the true variangg(m) of define a “one-sided” set of DFT coefficierits, by:

k=0

uy, is different from the variance? () (n) of the continuous . Uo
signalU™ (¢, 7). Appendix[V] show a mathematical demon- Uo = NG
stration of the equivalence of the discrete-time variante a - U = Ug, 0<k<P-1
the continuous-time variance. k= Up if N isodd (51)
The above discret-time variance can be written versus the Up = Up PN
PSD of the discrete-time error samples. Using equation ﬁ ! IS even.
3 ite:
(@) and ) we can write: The Parseval's theorem could be written then:
(1) _
M2y = Tp — Them = d}, QL. (45) N-1 9 L. 2
>l =5 > [ 52
Using this expression irﬂ]ﬁlS) we can express in terms k=0 k=0
of the phase measuremeant, under the simple form: According to equationd (#3) anfi [45), the DFT coefficients
1 (nt1) Uy of the time seriesuy, are related to that ofz, and yy

1 k k 1 k

It's clear that equatio] (36) is simpler than equatipq (48) iUy, = —M* ( — | D* [ — )V, = —D* "D [ =) X,
) ) . Cn N N m cp N

terms of computation complexity because the flﬂé(f @my, (53)

of equation [(48) must be computed for eaehvalue while  The transition from equatior] (43) to the first part of the

the coefficients of the filterl{"" ™ of equation [@6) do not ahove equation is valid under the assumption that discrete-

depend on the averaging factor. time signals are N-periodic. This means that the sample
According to equationd (46), (1) ar{d}(42), the true vakangariance in the frequency domain is equivalent to the sample

o, (m) of the discrete signalu is related to the PSDS.. (f)  variance in the time-domain applied to an extended version

of the discrete signalz by: (by periodization) of the discrete-time signal. The firsttyuf
) gre2 U2 above equality gives when usin |3d),](44),] (52) and (48):
o, (m) = —— sin™""= (wfm) Sy (f)df.  (47) il P o242 (xkm
“ c,me J_ . 2™ sin T 2
R O (m)m) = Cx) MACD

. . " o c%mQNz — sin? (%k)
This equation shows that the transition from the stability k=0

variance of the continuous-time sign¥l¢) given by equation  To our knowledge, this is the first time that a relation be-
(@) to the stability variance of discrete-time sigmalis done tween the sample variance estimator of the frequency #iabil
very simply. and the DFT of discrete time serieg;, is established. It's
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worth recalling that this equation is not a direct approxiora 5
to compute the generic variance expression of equa@n (24) Tm
by discretization in the frequency domain as was proposed in. 7 z, u, 2
[1)/8] but it is the variance, gccord)i/ng to the Parsevalljl's be‘D - M IM! M) —+f mava |
(@), of a signaly;, filtered in the frequency domain . [oavar | JRN 8
Some works [19] have shown that using the numerical E-
integration in ) to estimate the Allan varianee= 1) leads T

to a biased estimator regarding the classical Allan vasanc

sample estimator. \_Ne will show at_ the end of thIS_ paper thﬁb. 1. The processing chain of the stability variancks(m) is a moving
our formula {5}) gives results which are nearly identical tgverage filter of lengthn. D(™) (m) is a difference filter of order and lag
the classical sample estimators. m. T m is the decimation by a facton operator.

In fact, if we can consider that'(¢) is band-limited to
fmax= 55 then we can approximate the integral in equation _ _
(24) in the Riemann sense by replacing the integration by tiéeresting result could be written as:
sum of the surfages of rectangles of Wid-}-\l})f at discrete 6% (mT), ., = 62(m) (60)
frequenciesf, = (n) = "
In other words, the sample variance of equat@'n (54) is equal

n P . 2n mTkm . . .o
52 (mT) ) — 220 N'T sin2" 2 (zhm) Sy (i) to the integral of equatior{ (R4) for a band-limit¥gt) when
v () 2n2m2T? = k2 NT )" evaluated in the Riemann sense over the intefval [0, 1/27

R (55) by using the periodogram ofy, as an estimator of the PSD
where Sy (f) is an estimator of the PSBy (f). If we use Sy (f) of Y(t) according to equatior] (59).
2T|Y;|?/N as an estimator of Sy (fx) then equation[($5) The second part of equatiofi [53) gives when using (42),

becomes : (B3) and [4B):
gmmts P Tkm | o |2
~2 :2n+42
: gt I gin?t? (zhm) oum) = sz D sin (—) a6y
O'QU(mT)(n) = 222 k2( N )|Yk|2 (56) cpm N =0 N
n k=0

) ) ~ When X (t) is band-limited, equatior] (1) can be obtained
Its clear that equations[(56) and [54) are different. Thigirectly from equation[(35) using a Riemann sum and replac-
difference could by explained by the fact that equat@ (Zﬁ)g S, (f) by the periodogram of the discrete signa..
is given versus Sy (f) which is not observable directly |5 the following of this paper we express the different
while equation [(85) use|Y;|?, an estimator of the PSD of stapjlity variances in the discrete time using the signal.
the averaged and sampled version)oft). In other words, Figure[} shows the different filters involved in the compiotat
averaging according to equat|32) is considered whergusiyf theses stability variances.
V1|2 in equation[(54) whileSy (f) in equations|(24) and (55)
is considered before averaging according to equaﬁbn (6). ) )

In order to relate equatior (55) to equati$n] (24) we suppoBe The Overlapping Allan Variance (OAVAR)

that Sy (f) is band limited. In this case, there is no aliasing This is a special case of the above processing when the order

in equation [(29) and it could be written: of the difference filtern is equal to one. The normalization
. factor ¢, is given by equation[(21) and is equal t¢2. The
1 2 (nT 1 1
Sy (f) = TSY (f) sin” (r Qf) for 0<f< o7 (57) filter d,(f) of equation @6) is equal t@; — 20k 4 + Okt2m-
(7T'f) The signal uy, is given by:
The DFT coefficientd’;, could be considered as an estimator 1
of the PSD S, (f) of the discrete signaly, at discrete = (Tht2m = 2Tkym + Tk) - (62)

frequenciesfy:
A 9 Let N the length of the discrete time seriag,. The dgf)
Sy (fx) = N|Yk|2 for 0<EKE<P (58) filter length is2m and the outputuy, length isN — 2m + 1.

. o . , , According to equation| (48), the sample variance of is:
This equation is known in the literature as the periodogram

spectrum estimator. The factor 2 58) is due to the fadt tha
the PSDS,(f) is one-sided. OAVAR (m) = 62 (m) (63)
Replacing equation§ (58) ifi {57), we get an estimator of the N—2m

S . . . 1 2
PSD Sy (f) of the band-limited continuous time signel(t): =5 E (Throm — 2Tkym + Tk)
2m? (N —2m +1)

. [k 2T (7k)* |- |2 - _ _ . .
Sy (ﬁ) = m ‘Yk‘ . (59) which is the classical estimator of the Overlapping estimat
N of Allan Variance [20].
Using this expression in equatioEkSS) leads to an expres-The computation in@3) fromaxy, requires four additions
sion identical to the sample variance of equatiE (54). Thimd one multiplication for each term inside the sum. The sum
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over k requiresN — 2m + 1 addition. The whole computation It's obvious that the AVAR requires less computation than
requires roughlyp x N operation and is linear V. the OAVAR. In fact, for eachm value there areV/m — 1
When the available measurement are frequency fluctuatidesms. The largest acceptable value is N/2. In this case
( lyx|), it's more efficient (in number of floating point operathe sample variance is estimated from one sample only. The
tions but not in memory use) to compute the phase signal confidence levels for AVAR and OAVAR are equals far= 1
using (34 and then usé {63) to compute the OAVAR variane@d m = N/2. Values of m betweem: = 1 andm = N/2
than to computez, from y; and then wy. give a better confidence levels in the OAVAR than in the AVAR
Replacingn by 1 in equation 4) we get an expressionariance.
of the Overlapped Allan Variance versus the one-sided set ofBecause the OAVAR confidence levels are globally better
DFT coefficient Y}, of the measurement time serieg, by:  than those of AVAR , the only interest to use the AVAR instead
P 4 (nkm of OAVAR is its computation efficiency.
OAVAR () = 62, (m) = 4 3 o 2( i1 ) V2|2, Though decimation operation of equatign|(65) is very sim-
' m2N? o S (%) ple in the time domain it has no interest in the frequency
(64) domain. In fact, the computation of the DFT coefficief,

The DFT computation complexity is N log(N) when usingf 1, versus the DFT coefficients ofu, is given by:
a Fast Fourier Transform (FFT) algorithm. But the most CPU

consuming in @4) is the computation of the sine trigonometr

functions inside the sum symbol. It's trivial that the cortgpu

tion using equation@3) is more efficient than using equmatio

(@)_ Computing the sample variance of;, according to @2)
It's worth recalling that the discrete time formufa}63) useequire an additional loop to computa,,. For this reason we

N —2m + 1 terms. The largest acceptabte value is N/2. don’t propose a formula to compute the AVAR in the frequency

In this case the variance is estimated from one sample orflgmain as we did for OAVAR in equatiop (64).

The DFT formula [(4) use” terms whatever then value.

Whenm = N/2 the half of the sine terms i (64) is null. 5 1o vodified Allan Variance (MAVAR)

The computation of the confidence levels when using equation

(B4) has shown that the confidence levels are better thanl he modified Allan Variance was introduced [5] to over-

that of the discrete time formula of equatiof](63) becau§@me the relatively poor discrimination capability of théah

filtering in frequency domain use all the available samplé&riance against white and flicker phase noise.

while filtering in the time domain useéV minus the filter ~ Let~y; be the signal obtained fromy, by a moving average

length samples. In fact, Filtering in the DFT domain is donféiter M (m) of lengthm (See Figurd]1):

by multiplication of the DFT. This multiplication is equileant 1

to circular convolution in the time domain. Circular or agcl Tk = (ug + Ups1 + -+ Ukpm—1) - (68)

convolution of two signal of lengttV is equivalent to classical ) _ )

sum convolution with indices moduly. This means that DFT ~ USing us expression from[(§2) in[(§8) we get:

m—1
1
Ry =— kz_; Um—pn/m)y Modulo  N. (67)

formulg (64 is equivalentto a k_md_ of Total Varlancg _[1] wae VImye = T4+ Thrmet

the seriesyy, is extended by periodic (circular) repetitions. The

Total Hadamard Variance [9] uses an extended versiomy;of =2 (@t + o F Thpam—1)

where the extension use a reflected copyaf +Tptom + 0+ Thtsm—1- (69)

i i Using this expression directly to compute; requires a
C. The “Non Overlapping” Allan Variance (AVAR) summation loop with8 x (m -+ 1) floating point operation. The
The “Non overlapping” Allan variance is a special case dfiggest acceptable: value in this equation i;» = N/3. This
the classical Allan Variance that doesn’t use overlappéubga yields a computation complexity ofvV2.
when computing 3" u? in the sample variance ofu;. This  In order to reduce the computation complexity we propose
means that onlyN —2m+1)/m values are considered whera recursive formula. Expressingdy1 = v2m2v,,1 using
forming the sum. equation [69) we can write:
In other words, the Allan Variance AVAR is obtained from
uy, by a decimation operation of order (See Figurd]1). If Ap+1 = Ak + Thizm — 3Tptam + 3Tppm — 2k (70)
we start the decimation & = 0 we can useV/m — 1 values.

The decimated signaty is given by: with a startingA4, value computed usind (59) with = 0.

Allan [21] already proposed a recursive method in order

e = Upm , 0< k< N 9. (65) to r_educe the com.pgtation complexity of the quified Al!an
m Variance without giving the details of the recursive equiti
Replacing [6p) in [(§3) we get the non overlapping Allan The computation complexity of4; according to [(70) is
variance as the sample variance of: linear in N.
R The length of the time seriesi; is N — 2m + 1 and the
— A2
AVAR (m) = &, (m) 2(66) length of the filterM (m) is m. we conclude that the length

= sty Lt (T(et2)m — 20kt 1ym + Thm) of ~ is N —3m +2.
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The Modified Allan Variance MAVAR is the sample vari- As for formulas [6§) and[(J4), equatiof [77) is a new

ance of ~g: formula that allows to compute the OHAVAR in the frequency
N—3m—1 domain.
MAVAR (m) = 53 (m) = — 1 Z |Ag|?. IF’s clea_r from _equationK]'S) that th(_a Hadar_nard var_iance
2m* (N —3m+2) &~ estimator in the time domain cancels linear drifts. In fakt,

_ _ . (7)) y, =k then @y = k(k— 1) /2 according to equation| (34).
The PSD 5, (f) of the discrete time signahy is related Replacing this value in equatiop 75) leadsgp = 0 whatever

to that of y;, by: the value of m.
Sy (f) = [M*(f)D*(f) M (f) Sy (f) _
2sin® (rmf) F. The Hadamard Variance (HVAR)
mAsin? (rf) "¢ (f)- (72) The Hadamard variance is a special case of the Overlapping

Hadamard Variance that doesn’t use overlapped values when
computing " g7 in the sample variance ofj;,. This means
/N e (TN L (T V2sin® (tm4) that only(N —3m+1)/m values are considered when forming
Lo =M () D" (5) M (5) Yo = g o Yo
N N N m2 sin (W%) the sum.
(73) In other words, the Hadamard Variance HVAR is obtained
According to the Parseval’s equatidn](52) for the serigs from g by a decimation operation of order (See Figure
we can express the MAVAR versus the one-sided set of DFJ. If we start the decimation &t = 0 we can useV/m — 2

The DFT coefficientsT,, of the series~; are given by:

coefficients of the measured signal by: values. The decimated signal; is given by:
P . 6 (xmk N
. 4 sin” (%) | hy, = 0<k<=—-3
A2 _ N 2 Jkm > =~ . (78)
MAVAR (m)p = 6., (m) = — k; S (25 V|2 k= gk —

(74)  Replacing [@8) in [(75) we get the non overlapping
As for the OAVAR formula in the frequency domain thisHadamard variance as the sample variancepf

equation is an estimator of the MAVAR in the frequency HVAR(m) = &7 (m)

domain. The main difference with the discrete time formula N/m—3

(73) is the number of terms involved in the suin the case _ 1 Z (2

of equation [(7§) andV — 2m + 1 in equation [(71). 6m (N —2m) (ym

2
E. The Overlapping Hadamard Variance (OHVAR) =3 2)m + 3L (4 1ym — Lhm ) - (79)

This is a special case of the above processing whenAS for the Non Overlapping Allan Variance AVAR we don't
the order of the difference filter. is equal to two. The Propose aformulain the frequency domain for HVAR because
normalization factor ¢, is given by equation[(21) and isthe decimation operation doesn’t simplify computationfie t

equal to /6. The filter d,(f) of equation ) is equal to frequency domain as it does in the time-domain.
Ok — 30k+m + 30k+2m — Oktam- We denote g, = up Where

uy, is given by ) withn, = 2 IV. FREQUENCY VARIANCESEQUIVALENT DEGREE OF
FREEDOM
1 We can express the frequency-domain variance estimator by
9k = —\/(—),m (Th+3m — 3Tkr2m + 3Thym — Tk)- (75) the general form :
Let N the length of the discrete time seriag,. The d,(f) P ’ > ‘2
filter length is 3m and the outpugk_ Iengt_h iSN —3m + 1._ U — Z Hy(n,m) (80)
The Overlapping Hadamard Variance is the sample variance P N
of gi: Wheren is the difference filter ordenmn is the averaging
OHVAR(m) = 67 (m) (76)actor andHy(n,m) is given by :
1
= 22n+1 Sin2n+2 (M)
Ne—3m K ) 2m2N  gin? (%k) (81)
X Z (@k+3m — 3Tkt2m + 3Tk 1m — 2)°. for the non-modified variances and :
k=0
Replacingn by 2 in equation 4) we get an expression of Hy(n,m) — 92n+1 gjp2ntd (me) )
the Overlapping Hadamard Variance versus the one-sided set P c2m*N  sint (”Wk)

of DFT coefficientY}, of the measurement time serigg by: - .
for the modified yariances.

16 XP: sin® (Z2E) i The quantity‘f" /N is the periodogranP(f) evaluated
~ 3m2N?2 = sin® (5F) M at discrete frequency valuef =% Equation (80 ) can be
(77) written as :

OHVARE (m) = 6%,9 (m)
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P
U =" Hy(n,m)P(fy)
k=0
The perjodogranP(f) is an estimator of the PSS, (f)
L P(f)=5(f) -

(83)

We estimate the Equivalent Degree of Freedom (edfy of

by :
_2(BE(W)°
edf = Var (0) (84)
The mean valugZ (V) is given by :
P
E(¥) =) Hi(n,m)E (P (fy)) (85)
k=0

TABLE IlI
COMPUTATION TIME IN MS OF THE DIFFERENT STABILITY VARIANCES,
N = 400000
AVAR | OAVAR | MAVAR | HVAR | OHVAR
Time Domain 16 47 78 16 47
Frequency Domain| - 265 265 - 265
TABLE IV
COMPUTATION TIME IN MS OF THE DIFFERENT STABILITY VARIANCES,
N = 2000000
AVAR | OAVAR | MAVAR | HVAR | OHVAR
Time Domain 63 265 484 63 360
Frequency Domain — 1453 1500 — 1485

Therefore, the covariancE[93) is is seen to go to zero when

It is well know that the periodogram is a biased estimatdi7 J - The variance is therefore :

of the PSDS,(f) and that :

E(P(f)=Ws(f)®S5(f) (86)
WhereWp (f) is the Bartlett window defined by :
_ sin® (7N f)
VoD = N ep) (87)

and® denotes the circular convolution defined by :

1/2
W5 (0)S(f —0)do
—1/2

Ws (f)@S(f) = (88)

P
Var(¥) = Z Hi(n, m)Si(fk)

(94)
k=0
The edf is, according to @4), given by :
P 2
> k=0 Hi (1, m)SZ(fk)
For power law spectrum we get :
P a 2
edf = 20> 4o k“Hi(n,m)) (96)

S k2o HE (n,m)

It's clear that the periodogram is asymptotically .unbiased With Hy, (n,m) given by [8R) for the modified variances
since asV becomes very largd’s ( f) approaches an impulsegng (8L) for the non-modified variances.

in the frequency domain. Then we can write for lafge

P
E ()= Hi(n,m)S (fx) (89)
k=0
and for power law spectrum :
P k «
E () = h, kz:;)Hk(n,m) <ﬁ) (90)
The varianceéV ar (V) is given by :
Var (¥) = E (¥?)
_ ¥ (91)
= kZO ZO Hy(n,m)H;(n,m)Couv (P (fx), P (f;))
—0j=
The covariance of the periodogram is given by :
Cov(P(f1),P(f2) = (92)
sin (7 1—J2 2
Sy (f1) Sy (f2) (Fetitiztel))
Replacingf, by fi = % and f, by f; = % in equation
we get :
Cov (P (fr). P (f;)) = (93)

5,005, () (et )

N2 sin? (£ (k—j)

10

V. TIME DOMAIN VERSUS FREQUENCY DOMAIN:
NUMERICAL RESULTS

We have simulated time series datg, of length N =
400000, 2000000 and65536 for the different power law spec-
tra for —4 < o < 2. Table[ll] and[1Y show the computation
time on a personnal computer (pentium IV or equivalent @
2.8 GHz) in ms of the different stability variances mentidne
in this paper. The computation time of the FFT was included
in the computation time of the frequency variances.

For the computation in the frequency domain we used the
FFT algorithm of Cooley and Tuckey[22]. The FFT com-
putation time is 45 ms fotNV= = 400000 and 250 ms for
N = 2000000.

We presented in equatioE[54) a new way to compute the
different stability variances using the DFT of the data. We
demonstrated that this equation is equivalent to the egpsti
in the time domain with a slight difference in the number of
samples when computing the sample variance. For example,
equation @3) in the time domain uses only unambiguous
samples in the sense that a filter of len@th will produce
N —2m + 1 unambiguous output samples when applied to an
input data of lengthV.

In the following we present numerical results of the differ-
ent frequency domain variances estimators presented $n thi
paper. The error bars on the plots were computed using one
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F-OAVAR edf TABLE V
- ‘ ‘ ‘ FRTEvIYS COMPARISON OF THE EQUIVALENT DEGREES OF FREEDOKedf) OF THE
h . e TIME T-OAVAR ESTIMATES, THE SPECTRALF-OAVAR ESTIMATES AND
—— WHFMTH
0L ——FLFMTH || THE TOTAL VARIANCE ESTIMATES FOR AWHITE FREQUENCYNOISE
& —— RWFM TH

SEQUENCE OF LENGTHN = 65536.

10°F 7 | T-OAVAR | F-OAVAR | TotVar

5 1 46591 42297 | 45368

’ 2 40640 37232 | 34379

w2k 4 24186 23639 | 22460

8 11870 12338 | 11451

16 5865 6786 6375

X 32 2937 3255 2945

¥ 64 1493 1515 | 1555

128 746 740 832

L a a a . 256 383 372 | 414

10 1 A\}Sraglng Factor 1 10 512 199 194 215

1024 93 89 104

2048 43 43 53

Fig. 2. F-OAVAR edf for three noise types for sequences of length= 4096 20 22 26

65536. WHFM for White frequency noise, FLFM for Flicker frequenogise 8192 10 12 12

and RWFM for Random Walk frequency noise. The continoussli@enoted 16384 4 6.4 6.2

“TH" on the Figure legend) represent the theoretiedd computed by equation 32768 1.0 3.0 2.9
@{). The symbols (denoted “MC” on the Figure legend) repmeshe edf

obtained by Monte Carlo simulation with 1000 trials.

is visible between these computations and the theoretical
T-OAVAR —+—— response (less than 1 %). On the other side, the error bars
s F-OAVAR e of OAVAR computed in the frequency domain are clearly
01 g smaller as the ones of OAVAR computed in the time domain,
RS as expected in sectiop Il}B. Tablg V shows the equivalent
g degrees of freedone(f) of the Total Variance and the OAVAR
* estimates in the time domain (T-OAVAR) and in the frequency
domain (F-OAVAR), assuming a Chi-square statistics [28}. F
g the highestr value ¢ = N/2), theedf of the spectral estimate
- is 3 times higher than thedf of the time estimate, i.e. the
Ejﬁ spectral estimate is/3 times more accurate than the time
1e-05 ! J[ estimate.

0.001

W

£

0.0001

Overlapping Allan Variance: O'yz(I)

Such an advantage is particularly useful for detecting and
16-06 measuring the level of the low frequency noises (e.g. random
1 10 lmi‘)o 1000 10000 100000 walk FM) sooner as with time variances, i.e. for shorter
gration tme: (3 duration. Considering that thedf decreases approximately as
Fig. 3. OAVAR computed in the time domain and in the frequedoynain 7~ %, an estimator with an edf 3 times higher than another
g);\?A\F/{Vhiti Frfqueﬂcy Nf?ifﬁl Seﬂ};tendce of Lenﬁtfh=b 62,53&@1 hdefspeC:Lal one provides a noise level estimatigf8 times sooner than
lime GAVAR estimates. The dashed continuous line represbtheoretical N Other one (.g. 7 month instead of 1 year) with the same
responsehg/(27). accuracy.
Figure Gl) presents a comparaison between the Overlapping
Allan variance computed in the frequency domain (F-OAVAR)
sigma Chi-squareg?distribution with an equivalent degree ofand the Total variance for three noise types : WHFM, FLFM
freedom édf) estimated by making Monte Carlo simulation@and RWFM. The upper plot depicts theslf ratio computed
of 1000 trials. using Monte Carlo simulations with 1000 trials. we notice
that theedf of the F-OAVAR and the Total variance are nearly
identical. The lower plot depicts the bias defined Bius =
A. OAVAR 100 x (1 — \/F-OAVAR/Totvai). The bias of the F-OAVAR
Figure [P) depicts thedf of the Overlapping Allan Variance with respect to the Total variance is less than 10%.
computed in the frequency domain (F-OAVAR) for three noise In the same way, figurd](5) presents a comparaison between
types: a White frequency noise (WHFM), a Flicker frequendape Overlapping Allan variance computed in the frequency
noise (FLFM) and a Random Walk frequency noise (RWFMyglomain and the classical Overlapping Allan variance comgbut
It shows a very good agreement between the theoretidhl in the time domain. The upper plot shows that the F-OAVAR
formula of equation@G) and thedf obtained by Monte Carlo edf is two to three times higher than tleglf of the T-OAVAR
simulations. for the higherr value ¢ = N/2) .The lower plot depicts the
Figure [B) compares the Overlapping Allan variance of kias defined byBias = 100 x (1 — /F-OAVAR/T-OAVAR).
white frequency noise sequence computed in the time domairFigure ES) shows the Total Variance, the Overalpping Allan
and in the frequency domain from relations (64). No biadariance computed in the time domain (T-OAVAR) and in the

11



IEEE Transactions on Ultrasonics, Ferroelectrics, andjieacy Control, 2009

F-OAVAR / TotVar

b —&— =0, T-OAVAR
—&— 0=0, TotVar
—4— 0=0, F-OAVAR
—w¥— a=-1, T-OAVAR
—&A— g=-1, TotVar
—*— a=-1, F-OAVAR

edf Ratio

Bias %

—&— WHFM /
-5 | —m—FLFM / 1
—4— RWFM /

Fig. 4. Comparaison of the F-OAVAR and the Total variancetfwee noise
types. The upper plot depicts tleef ratio and the lower plot depicts the bias.
N = 56536. Results were obtained using Monte Carlo with 1000 trials.

10 10 10° 10 10
Averaging Factor

Fig. 6. The T-OAVAR, the Total variance and the F-OAVAR for ahité
frequence noisea( = 0) and a Ficker frequency noisex(= —1) . A linear
frequency drift was added to the noise sequences of lengtk= 56536

F-OAVAR / T-OAVAR (Monte Carlo trials = 1000).
3
N
o 2f1 J
&
B gL | A
‘ ‘ ‘ ‘
107 107 107 107 107 10°
m/N
15
1ol —e— wHEm o
—=— FLFM /
£
8 5t 1
-5
B
of J
s .
10
C

Fig. 5. Comparaison of the F-OAVAR and the T-OAVAR for threeise Fig 7. Random Walk Frequency Noise sequence: rough (Af}, rénoved
types. The upper plot depicts the edf ratio and the lower gépiicts the bias. (B) and circularized (C).
N = 56536. Results were obtained using Monte Carlo with 1000 trials.

_ ) _ « by removing the linear drift of this sequence (see figure
frequency domain (F-OAVAR) for a White frequence noise and f]-B; let us notice that there is still an edge at the end of
a flicker noise with a linear frequency drift. The added linea ¢ sequence). The removed line is estimated by a least
drifts is equal toD(t) = 15t . Like the the Total variance and squares fit of the data sequence to a line.

the classical Allan variance, the F-OAVAR does not cancel th by circularizing the sequence (see figlﬂe 7-C), i.e. by

linear drift. We can notice also that the F-OAVAR for a linear removing the linear drift in such a way that the last

drift var|e23 asr , while the Total variance and the T-OAVAR sample of the residuals is equal to the first one. Denoting

vary ast-. by D(t) = a -t + b the drift we have to substract from
Unfortunately, the last result shows that the computation 0 the sequence, the linear coefficients then:

OAVAR in the frequency domain presents a severe drawback:

it is unable to discriminate between a linear frequencyt drifl a=N"U (97)

a f~2 frequency noise (random walk FM). This effect is due tn =t

to the assumption of periodicity of the sequence impligitel ~ and the constant terthmay be choosen equal to 0 since

induced by the use of the FFT algorithm. Figjfe 7-A shows OAVAR is not sensitive to additive constants.

that connecting the last sample to the first one may induce dt is worth recalling that Figure[k?) shows the side effect

high edge, altering the variance measurements. So we decidé periodization (induced by multiplication in the discret

to process the frequency deviation sequence with 2 differdrequency domain) of a sequence without processing, after a

ways: line removal, and after circularization. But when compgtin

12
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TABLE VI 1
COMPARISON OF THE EQUIVALENT DEGREES OF FREEDOM OF THE TIME *Se\%
OAVAR ESTIMATES AND THE SPECTRALOAVAR ESTIMATES ROUGH 0.1 m%é
AFTER REMOVING A LINEAR DRIFT AND AFTER CIRCULARIZING THE £ e
SEQUENCE FOR ARANDOM WALK FREQUENCYNOISE SEQUENCE OF S 0.01 %\%\
LENGTH N = 65536. g W%%
}>% 0.001 1
T ] Time OAVAR Spectral OAVAR < *ﬁix%
rough | without drift | circularized T 1e-04 B
1 68540 | 65660 39 56735 2 ﬁ%
2 35289 | 33269 39 27589 § %\se X
4 15498 | 15410 39 13009 £ 1e05 SN
8 7324 7725 38 6392 3
16 3621 | 3997 38 3258 1e-06 | | TOAVAR e
32 1812 2091 37 1737 —>— F-OAVAR without drift
64 900 1040 36 860 le-07 —o—i1 F—QAVAR C|rcula|1|zed
128 455 477 35 436 1 10 100 1000 10000 100000
256 225 219 34 224 Integration time: 1 (s)
512 110 106 31 109
1024 52 54 25 50 Fig. 8. OAVAR for a White Frequency Noise sequence of length=
2048 25 28 17 23 65536 computed in the time domain and in the frequency domain, hpug
4096 12 14 10 11 after removing the linear frequency drift and after circiziag the sequence.
8192 5.3 6.7 4.8 5.3
16384 2.4 3.1 2.0 2.6
32768 1.0 2.0 15 2.1 F—OAVAR after drift removal / T-OAVAR
25
21| —@— WHFM b
—&— FLFM

the frequency domain variances we don't realize any ex@@nsi
of data manually as done in the computation of the Tot

edf Ratio

variance. sl e |
Table ) compares thedf of the OAVAR for a Random N
Walk Frequency Noise computed after these processings. ~ O 10°
best estimates are obtained by using the circularized seque
since theedf of the estimates are higher than for for the 40
sequence after removing a linear frequency drift. Thus, tl s0f [—e—wrFm 1
—8—FLFM

edf of the last estimater(= N/2) is 2 times higher than the
one of the estimate obtained in the time domain. This mea
that this estimate provides a noise level estimatjdhtimes
sooner than the estimate computed in the time domain (e
265 days instead of 1 year) with the same accuracy. -0 4
However, applying the circularization processing to aroth
type of noise induced is a bias that has the same charaicterist
as a linear frequency drift on an Allan variance plot. Besid®g. 9. Comparaison of the F-OAVAR computed after drift remiofrom

the 7= behaviour characteristic of a white FM, figuﬂ3 ghoise sequences by least squares fit and the classical T-R#fwthree noise
types. The upper plot depicts tleef ratio and the lower plot depicts the bias.

exhibits .theT signature of a Imee}r frequency drift in theN = 56536. Results were obtained using Monte Carlo with 1000 trials.
Allan variance curve of the circularized sequence. Let 8e al

notice the very long errorbars of the circularized sequence
estimates. Therefore, the circularization process cam®ot values. The lower plot shows that the F-OAVAR presents a bias
used in a real frequency deviation sequence which conta@ys.109% for Random Walk noise. This bias can be explained
always different types of noise. Thus, we recommand to appiy the fact the drift removal from a Random Walk sequance
the spectral OAVAR over the residuals of a frequency demti ajters the spectrum of the noise at all the frequency values
sequence, after removing the linear frequency drift. For gcause a Random Walk contains a kind of linear drift feature
random walk FM, the estimate of OAVAR computed in thentrinsicly.

frequency domain after drift removal has adf 1.5 times et us remember that for a sequence without random walk

higher than the classical time domain OAVAR. It means th@y (for atomic clocks), OAVAR computed in the frequency
spectral OAVAR after drift removal is able to measure thgomain may be used directly and is more accurate than

random walk level of a sequengél.5 times sooner than time oaAR computed in the time domain.
OAVAR (e.g. 300 days instead of 1 year).

Figure @) compares the F-OAVAR variance computed after
linear drift removal by least squares fit and the classical . OHVAR
OAVAR variance. As shown in Tabl@/l) the upper plot shows Figure ) depicts thedf of the Overlapping Hadamard
that the edf of the F-OAVAR after drift removal for a Randonvariance computed in the frequency domain F-OHVAR. It
Walk noise is less than the edf of the T-OAVAR for small shows a very good agreement between the theoretidél

20 | —%— RWFM

Bias %
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F-OHVAR edf F-MAVAR vs T-MAVAR
T

[czalalo]

BEE o8
BEe @@
5 oEE & @

(1)
®

Averaging Factor .

Fig. 10. F-OHVARedf for five noise typesd from -4 to 0) for sequences Fig. 12. F-MAVAR and T-MAVAR for five noise typesa( from -2 to +2)
of length N = 65536.. The continous lines represent the theoretiedf for sequences of lengtth = 65536. The squares represent the F-MAVAR

computed by equatior] (96). The symbols represeneti@btained by Monte yajues and the dots represent the T-MAVAR values. MontecCsirhulation
Carlo simulation with 1000 trials. with 1000 trials.

OHVAR-F / OHVAR-T

OHVAR also, the circularization should not be recommanded

o | O =0 P for processing frequency deviation sequences becausenlyis
—&—a=-1 ‘ . . . .
kg2 / useful for noises with < —2 and it degrades the variance

estimates for the noises with > —2 . On the other hand, the
drift removal by substracting the best least squares liomfr
the data gives good results for noises with> —2 . Hence, it

i i ‘ is better to use the F-OHVAR directly without preprocessing
10° 10° 107 107 10 10 in order to get better statistics than the T-OHVAR if the data
does not contain a linear drift.

edf Ratio

5
I s T C. MAVAR
. e ' - Figure (IP) shows a comparaison of the modified Allan
BOST e s : 1\- 1 variance computed in the frequency domain (F-MAVAR) and
—4—a=-3 L in the time domain (T-MAVAR) for five noise types with
1oy +“f’4 ‘ ‘ ‘ | from -2 to +2. We can notice clearly a huge bias of the F-
10° 10 107 107 10" 10° MAVAR for aa = +2.

For this reason, the use of MAVAR computed in the
frequency domain should be avoided.
Fig. 11. Comparaison of the F-OHVAR and the T-OHVAR for fiveis®o
types. The upper plot depicts tleef ratio and the lower plot depicts the bias.
N = 56536. Results were obtained using Monte Carlo with 1000 trials. VI. CONCLUSION
We have presented a filter approach to analyze the different
_ . known frequency stability variances. Using this approaeh w
formula of equation[(96) and trelf obtained by Monte Carlo derived formulae in the time domain identical to those known
simulations. in the literature. We also demonstrated for the first time tina
Figure {1lL) shows that edf of the OHVAR estimator itomputation of these variances can be done in the frequency
the frequency domain is 2 to 4.5 higher than the edf efomain using a Discrete Fourier Transform of the studied
the classical OHVAR for the higher = N/3 value. The signals. Such a computation provides estimates with better

lower plot depicts the bias defined Wyias = 100 x (1 — accuracy than the ones computed in the time domain, allowing
\/F-OHVAR/T-OHVAR). It is less than 10% for the five noisethe measurement of the low frequency noise levels sooner,
types and for all the- values. i.e. with a shorter sequence. This advantage is partigularl

The Hadamard variance is not sensitive to linear frequenageful for studying the long term stability of atomic clocks
drifts. However, computing OHVAR in the frequency domaitdowever, in the presence of linear drift, the periodicitytioé
by using a FFT assumes also the periodicity of the sequerssgjuence implicitely assumed by the use of the FFT algorithm
and may induce a high edge by connecting the last samptay induce edges which degrade variance measurements if
to the first one (see figurB 7-A). We performed then the saraerandom walk FM is present in the sequence. We have
processings as previously in order to compare the effedtseof demonstrated that, in this case, we must first remove tharline
drift removal and of the circularization of the sequencer Férequency drift on a sequence before to compute a variance

14
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in the frequency domain. Our work has proved that OAVAR[5]
computed in the frequency domain is the estimator whichggive
the quickest low frequency noise level (9 month instead of 1
year). New estimators improving these characteristich it [6]
more simple transfer function will be described in another

paper [24]. 7]
(8]
9]

APPENDIX: EQUIVALENCE OF THE DISCRETETIME AND
THE CONTINUOUS-TIME VARIANCES

We have assumed = 1 in (@). Without this assumption
the variancer2 (m)could be written using[(31):

on (m) = T/+2_T SeE(f)df (98) [10]
_ 22n tor sin?nt? (mfmT) s
= Taw |, Tl v Dd W
Using expression (k9) of,,(f) in (€8) we can write: [12]
22n +2LT Sin2n+2 (meT)
G = 2.2 R —
o.(m) = 2m? /_%T { Sin2 (7 fT) (99) [13]
in? [14]
3057 (g BTEU Z g
; v ( nfs) [TFT(f_nfs)]2 5

The sine functions outside the sum sign are periodic, they
can be passed inside the sum sign. Doing this and making
variable changer = f — nf, we can write:

9 92n X rter—# [gin? 2 (mumT) (17]
o,(m) = 2002 / T2
cam? £ T sin® (mvT")
h (18]
2
S (”Tf) STS ()| dv (100)
(xTv) [19]

where we have interchanged the sum sign and the integration

symbol. [20]
Equation [(100) simplifies to:
220 [T gin? 2 (rymT)
o2 (m) = =— LS () dy [21]
u( ) C% C (7T’ITLTV)2 Y ( )
= 0% (1) () lr=mr- (101) [22

The only difference betweerf (J01) ar{d](24) is the integray;
tion bounds. In equatio (24)Sy (f) is the single-sided PSD
while ST (u) in (L03) is the two-sided PSD. We conclude
that (4}) and[(34) represent the same variance. [24]
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