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1 Introduction.

Recall that a Banach space X is said to have Pe lczyński’s property (V ) if
one has a good weak-compactness criterion in the dual space X∗ of X , namely:
every subset A of X∗ is relatively weakly compact whenever it has the following
property (easily seen necessary):

lim
n→+∞

sup
x∗∈A

|x∗(xn)| = 0

for every weakly unconditionaly Cauchy sequence (xn)n in X (i.e. such that
∑

n≥1 |x∗(xn)| < ∞ for any x∗ ∈ X∗). Equivalently, X has Pe lczyński’s prop-
erty (V ) if and only if for every Banach space Z and every non-weakly compact
operator T : X → Z, there exists a subspace X0, isomorphic to c0, such that
T is an isomorphism between X0 and T (X0). Beside the reflexive spaces (and
in particular the Lp spaces for 1 < p < ∞), the spaces C(S) of continuous
functions on compact spaces S have property (V ); in particular L∞ has (V ).
Another general class of Banach spaces having property (V ) is that of Banach
spaces which are M -ideal in their bidual, i.e. those for which the canonical
decomposition of their third dual is an ℓ1 decomposition:

X∗∗∗ = X∗ ⊕1 X⊥

(see [8, 9]). Note that every subspace of a Banach space M -ideal of its bidual
is itself M -ideal of its bidual; hence every such subspace has property (V ).

On the contrary, a non-reflexive Banach space that does not contain c0

cannot have property (V ). In particular, L1 does not have this property. Thus,
the Lp spaces have (V ) for 1 < p ≤ ∞, whereas L1 does not have it. For the
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Orlicz spaces, which are, in a natural sense, intermediate between L1 and L∞,
D. Leung [12] proved, when the dual space is weakly sequentially complete, not
only that these Orlicz spaces have property (V ), but that they actually have
the local property (V ), i.e. all their ultrapowers have property (V ).

D. Leung’s proof uses non trivial properties of Banach lattices. In this paper,
we shall give an elementary proof of the (weaker) result that the Orlicz space
LΨ has property (V ), when the complementary function of Ψ satifies the ∆2

condition.

Acknowledgement. This work was made during the stay in Lens, in May–
June 2005, of the fourth-named author, as Professeur invité of the Université
d’Artois.

We are very grateful to the referee for having simplified the proof of The-
orem 2, making it shorter and very more elegant and conceptual, by giving us
the statement and the proof of Proposition 5.

2 The Morse-Transue space

In this paper, we shall consider Orlicz spaces defined on a probability space
(Ω, P), that we shall assume non purely atomic.

By an Orlicz function, we shall understand that Ψ: [0,∞] → [0,∞] is a
non-decreasing convex function such that Ψ(0) = 0 and Ψ(∞) = ∞. To avoid
pathologies, we shall assume that we work with an Orlicz function Ψ having
the following additional properties: Ψ is continuous at 0, strictly convex (hence
strictly increasing), and such that

Ψ(x)

x
−→
x→∞

∞.

This is essentially to exclude the case of Ψ(x) = ax. The Orlicz space LΨ(Ω)
is the space of all (equivalence classes of) measurable functions f : Ω → C for
which there is a constant C > 0 such that

∫

Ω

Ψ
( |f(t)|

C

)

dP(t) < +∞

and then ‖f‖Ψ (the Luxemburg norm) is the infinimum of all possible constants
C such that this integral is ≤ 1.

To every Orlicz function is associated the complementary Orlicz function
Φ = Ψ∗ : [0,∞] → [0,∞] defined by:

Φ(x) = sup
y≥0

(

xy − Ψ(y)
)

.

The extra assumptions on Ψ ensure that Φ is itself strictly convex.

Throughout this paper, we shall assume that the complementary Orlicz func-
tion satisfies the ∆2 condition (Φ ∈ ∆2), i.e., for some constant K > 0, and
some x0 > 0, we have:

Φ(2x) ≤ K Φ(x), ∀x ≥ x0.
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This is usually expressed by saying that Ψ satisfies the ∇2 condition (Ψ ∈ ∇2).
This is equivalent to say that for some β > 1 and x0 > 0, one has Ψ(x) ≤
Ψ(βx)/(2β) for x ≥ x0, and that implies that Ψ(x)

x −→
x→∞

∞. In particular, this

excludes the case LΨ = L1.

When Φ satisfies the ∆2 condition, LΨ is the dual space of LΦ.

We shall denote by MΨ the closure of L∞ in LΨ. Equivalently (see [15],
page 75), MΨ is the space of (classes of) functions such that:

∫

Ω

Ψ
( |f(t)|

C

)

dP(t) < +∞, ∀C > 0.

This space is the Morse-Transue space associated to Ψ, and (MΨ)∗ = LΦ,
isometrically if LΦ is provided with the Orlicz norm, and isomorphically if it is
equipped with the Luxemburg norm (see [15], Chapter IV, Theorem 1.7, page
110).

We have MΨ = LΨ if and only if Ψ satisfies the ∆2 condition, and LΨ

is reflexive if and only if both Ψ and Φ satisfy the ∆2 condition. When the
complementary function Φ = Ψ∗ of Ψ satisfies it (but Ψ does not satisfy this
∆2 condition, to exclude the reflexive case), we have (see [15], Chapter IV,
Proposition 2.8, page 122, and Theorem 2.11, page 123):

(∗) (LΨ)∗ = (MΨ)∗ ⊕1 (MΨ)⊥,

or, equivalently, (LΨ)∗ = LΦ ⊕1 (MΨ)⊥, isometrically, with the Orlicz norm on
LΦ.

For all the matter about Orlicz functions and Orlicz spaces, we refer to [15],
or to [11].

It follows from the preceding equation (∗) that MΨ is an M -ideal in its
bidual. Hence MΨ and all its subspaces have Pe lczyński’s property (V ) ([8, 9];
see also [10], Chapter III, Theorem 3.4, and the end of this paper). This result
was shown by D. Werner ([19]; see also [10], Chapter III, Example 1.4 (d),
page 105), by a different way, using the ball intersection property (in these
references, it is assumed moreover that Ψ does not satisfies the ∆2 condition,
but if it satisfies it, the space LΨ is reflexive, and so the result is obvious).

The proof given in [8, 9] of the fact that Banach spaces which are M -ideal in
their bidual have property (V ) uses local reflexivity and the notion of pseudo-
ball. We are going to give below a slightly different proof, which does not use
this last notion, and seems to us more transparent. Let us note that, however,
a stronger property, namely Pe lczyński’s property (u), was shown since then to
be satisfied by the spaces M -ideal of their bidual (see [7] and, in a more general
setting, [6]; that follows also from [17]).

Theorem 1 (Godefroy-Saab, [8, 9])] Every Banach space which is M -ideal in
its bidual have property (V ).
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Proof. Assume that X∗∗∗ = X∗ ⊕1 X⊥ and let T : X → Y be a non weakly
compact map. By Gantmacher’s Theorem, T ∗∗ : X∗∗ → Y ∗∗ is not weakly
compact either. This means that T (4)(X(4)) 6⊆ Y ∗∗. Since X(4) = X∗∗⊕ (X∗)⊥

(canonical decomposition of the third dual of X∗), there exists some u ∈ (X∗)⊥,
with ‖u‖ = 1 such that T (4)(u) 6= 0. Now the M -ideal property of X gives
X(4) = (X∗)⊥ ⊕∞ X⊥⊥. It follows that

‖x + au‖ = max{‖x‖, |a|}, ∀x ∈ X, ∀a ∈ C.

By local reflexivity, we can construct a sequence (xn)n≥1 in X equivalent to
the canonical basis of c0 and such that ‖Txn‖ ≥ δ > 0 for every n ≥ 1.

For that, let 0 < δ < ‖T (4)u‖, εn > 0 be such that (1 − εn)‖T (4)u‖ > δ and
∏

n≥1(1 + εn) ≤ 2,
∏

n≥1(1 − εn) ≥ 1/2.
Assume that x1, . . . , xn have been constructed in such a way that ‖Txk‖ > δ

and

n
∏

k=1

(1 − εk) max{|a1|, . . . , |an|} ≤ ‖a1x1 + · · · + anxn‖

≤
n

∏

k=1

(1 + εk) max{|a1|, . . . , |an|}

for every scalars a1, . . . , an.
Let Vn be the linear subspace of X(4) generated by {u, x1, . . . , xn}. By

Bellenot’s version of the principle of local reflexivity ([1], Corollary 7), there
exists an operator An : Vn → X such that ‖An‖, ‖A−1

n ‖ are less or equal than
(1 + εn+1), An is the identity on the linear span of {x1, . . . , xn} and

∣

∣ ‖T (4)u‖ − ‖TAnu‖
∣

∣ ≤ εn+1‖T (4)u‖.

If xn+1 = Anu, it is now clear that

n+1
∏

k=1

(1 − εk) max{|a1|, . . . , |an+1|} ≤ ‖a1x1 + · · · + an+1xn+1‖

≤
n+1
∏

k=1

(1 + εk) max{|a1|, . . . , |an+1|}

for every scalars a1, . . . , an+1 and ‖Txn+1‖ > δ.
Hence

1

2
max{|a1|, . . . , |an|} ≤ ‖a1x1 + · · · + anxn‖ ≤ 2 max{|a1|, . . . , |an|}

for every scalars a1, . . . , an. Since ‖Txn‖ > δ, this ends the proof. �
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3 Pe lczyński’s property (V ) for L
Ψ.

As we said, the following result is a particular case of that of D. Leung ([12]),
but we shall give an elementary proof.

Theorem 2 ([12]) Suppose that the conjugate function Φ of Ψ satisfies the ∆2

condition. Then, the space LΨ has Pe lczyński’s property (V ).

As it is well-known (and easy to prove), every dual space with Pe lczyński’s
property (V ) is a Grothendieck space: every weak-star convergent sequence in
its dual is weakly convergent. Hence, we have:

Corollary 3 Suppose that the conjugate function Φ of Ψ satisfies the ∆2 con-
dition. Then the space LΨ is a Grothendieck space.

Proof of Theorem 2. We may assume that LΨ is a real Banach space.
The proof arises directly from the two following results, since E = MΨ is a

Banach lattice having property (V ) and LΨ = (MΨ)∗∗.

Lemma 4 Suppose that the Orlicz function Ψ does not satisfy the ∆2 condition.
Then for every sequence (gn)n in the unit ball of LΨ, there exist a sequence (fn)n

in MΨ and a positive function g ∈ LΨ such that |gn − fn| ≤ g.

Proposition 5 Let E be a Banach lattice that has property (V ). Suppose that
for every sequence (x∗∗

n )n in BE∗∗, there are a sequence (xn)n in E and a positive
x∗∗ ∈ E∗∗ such that |x∗∗

n − xn| ≤ x∗∗. Then E∗∗ has property (V ).

Proof of Lemma 4. Since, by dominated convergence,

lim
t→+∞

∫

Ω

Ψ
(

|gn| 1I{|gn|>t}

)

dP = 0,

we can choose, for every n ≥ 1, a positive number tn so big that:

∫

Ω

Ψ
(

|gn| 1I{|gn|>tn}

)

dP ≤ 1

2n
,

and, moreover such that:

+∞
∑

n=1

P(|gn| > tn) < +∞.

This last condition implies, by Borel-Cantelli’s lemma, that, almost surely,
|gn| ≤ tn for n large enough. Equivalently, by setting:

g̃n = gn 1I{|gn|>tn},
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we have, almost surely g̃n = 0 for n large enough. It follows that almost surely
supn |g̃n| is attained. Set now:

An = {ω ∈ Ω ; |g̃1(ω)|, . . . , |g̃n−1(ω)| < |g̃n(ω)| and |g̃k(ω)| ≤ |g̃n(ω)|, ∀k ≥ n}

(ω ∈ An if and only if n is the first time for which supk |g̃k(ω)| is attained).
The sets An are disjoint and

sup
n≥1

|g̃n| =

+∞
∑

n=1

|g̃n| 1IAn
.

Hence, if we set:
g = sup

n≥1
|g̃n|,

we have g ∈ LΨ, since, using the disjointness of the An’s:

∫

Ω

Ψ(g) dP =
+∞
∑

n=1

∫

An

Ψ(|g̃n|) dP ≤
+∞
∑

n=1

∫

Ω

Ψ(|g̃n|) dP ≤
+∞
∑

n=1

1

2n
= 1.

That proves the lemma, by taking fn = gn − g̃n, which is in L∞ ⊆ MΨ. �

Proof of Proposition 5. Suppose that T : E∗∗ → Y is not weakly compact.
Then there exists a sequence (x∗∗

n )n in BE∗∗ such that (Tx∗∗
n )n is not relatively

weakly compact. Choose (xn)n and x∗∗ as in the statement of the Proposition,
and set y∗∗

n = x∗∗
n − xn for all n. We have either:

(a) (Txn)n is not weakly compact, or
(b) (Ty∗∗

n )n is not weakly compact.
If (a) holds, T|E : E → Y is not weakly compact; hence T|E fixes a copy of

c0.
If (b) holds, let I be the closed lattice ideal generated by x∗∗ in E∗∗, normed

so that [−x∗∗, x∗∗] is the unit ball, and let i : I → E∗∗ be the inclusion map.
Since (y∗∗

n )n lies in [−x∗∗, x∗∗], T ◦ i is not weakly compact. But I is lattice
isomorphic to a C(K) space, and hence has property (V ). Thus T ◦ i fixes a
copy of c0. So T fixes a copy of c0. �

Remark. We cannot expect that, for tn big enough, the functions g̃n could
have a small norm. For example, let G be a standard gaussian random variable
N (0, 1). For Ψ = Ψ2 (Ψ2(x) = ex2 − 1), we have, for every t > 0:

∫

Ω

Ψ2

( |G|1I{|G|>t}

ε

)

dP =
1√
2π

∫

|x|>t

(ex2/ε2 − 1) e−x2/2 dx = +∞

for every ε <
√

2; that means that ‖G1I{|G|>t}‖Ψ2
≥

√
2 for every t > 0 (recall

that ‖G‖Ψ2
=

√

8/3: see [13], page 31).
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4 Concluding remarks and questions

1. The full D. Leung’s result that LΨ have the local property (V ), i.e. every
ultrapower of LΨ have the property (V ) (see [3]) cannot be obtained straight-
forwardly from our proof. Indeed, since LΨ = (MΨ)∗∗ is 1-complemented in
every ultrapower of MΨ, it would suffice to prove that every such ultrapower
has property (V ); but if

[

(MΨ)U
]∗

contains (LΦ)U as a w∗-dense subspace, it
is bigger. The ultraprower (LΦ)U is not exactly known in general. In the par-

ticular case of Ψ = Ψ2 (Ψ2(x) = ex2 − 1), we have ([4], Proposition 4.1 and
Proposition 4.2):

(LΦ2)U ∼= LΦ2(PU ) ⊕ L1(µU ).

However, since (LΨ)∗ = (LΦ)∗∗ ∼= LΦ ⊕1 L1(µ), all the odd duals of LΨ can
be written

(LΨ)(2n+1) ∼= (LΨ)∗ ⊕1 L1(µn).

Hence we get that all the even duals of LΨ have the property (V ).

2. We can define the Hardy-Orlicz spaces HΨ, in a natural way: it is the
subspace of LΨ consisting of the functions on the unit circle T = ∂D which have
an analytic extension in D; equivalently, it is the subspace of LΨ whose negative
Fourier coefficients vanish. In [2], J. Bourgain proved that H∞ has property
(V ). Does HΨ have property (V )?

Note that the answer cannot follow trivially from our Theorem 2 since HΨ is
complemented in LΨ if and only if LΨ is reflexive: indeed, the Riesz projection
from LΨ onto HΨ is bounded if and only if LΨ is reflexive ([18]; see [16], Chapter
VI, Theorem 2.8, page 196), and we have:

Proposition 6 Assume that Ψ ∈ ∇2. Then the Hardy-Orlicz space HΨ is
complemented in LΨ if and only if the Riesz projection is bounded on LΨ. Hence
HΨ is complemented in LΨ if and only if LΨ is reflexive.

Proof. Only the necessary condition needs a proof. Assume that there is a
bounded projection P from LΨ onto HΨ. For every f ∈ MΨ, and for every
g ∈ LΦ, the translations t 7→ ft and t 7→ gt are continuous. Hence we can define
P̃ by setting:

〈P̃ f, g〉 =

∫

T

〈P (ft), gt〉 dt.

One has ‖P̃ f‖Ψ ≤ ‖P‖ ‖f‖Ψ, so that P̃ is bounded from MΨ into LΨ. On the
other hand, it is immediate to see that for every trigonometric polynomial f ,
one has, if en(x) = einx:

P̃ (f) =
∑

n∈Z

f̂(n)P̂ (en)(n) en.

Since P is a projection, we have P (en) = en for n ≥ 0; and since P takes its

values in HΨ, we have P̂ (en)(k) = 0 for k < 0; in particular P̂ (en)(n) = 0 for
n < 0.
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We get therefore:

P̃ (f) =
∑

n≥0

f̂(n)en,

that is P̃ is the restriction to MΨ of the Riesz projection. Hence the Riesz
projection is bounded on MΨ. By taking its bi-adjoint, we get that it is bounded
on LΨ. �

In Ryan’s paper ([18]), it is assumed that Ψ is an N -function, that is

limx→0
Ψ(x)

x = 0. But we may modify Ψ on [0, 1] to get an N -function Ψ1.
Since we work on a probability space (Ω, P), the new space LΨ1 is equal, as a
vector space, to LΨ, but with an equivalent norm. Hence Ryan’s result remains
true without this assumption.

Note that, when the probability space (Ω, P) is separable, since we have
assumed that Ψ ∈ ∇2, the reflexivity of LΨ is equivalent to its separability (see
[15], Chapter III, Theorem 5.1, pages 87–88).

3. Property (V ) allows us to say that LΨ looks like Lp, 1 < p ≤ ∞. In some
sense, it may be seen as close to L∞ when Ψ /∈ ∆2, since it is not reflexive.
However, from other points of view, it is closer to Lp with p < ∞; on the one
hand, it is a bidual space; on the other hand, one has:

Proposition 7 If Ψ ∈ ∇2, then LΨ never has the Dunford-Pettis property.

Proof. We are actually going to show that MΨ does not have the Dunford-
Pettis property. That will prove the proposition, since LΨ = (MΨ)∗∗.
Since Ψ ∈ ∇2, there is some α > 1 and some c > 0 such that Ψ(x) ≥ cxα. It
follows that LΨ ⊆ Lα and the natural injection i : LΨ → Lα is bounded, and
hence weakly compact, since Lα is reflexive.
Take now an orthonormal sequence (rn)n≥1 in L2 with constant modulus equal
to 1 (for example, an independent sequence of random variables taking the
values ±1 each with probability 1/2). One has

∫

Ω
rnf dP −→

n→+∞
0 for every

f ∈ L2. By density, this remains true for every f ∈ L1, and in particular for
every f ∈ LΦ, since LΦ ⊆ L1. Therefore, (rn)n≥1 weakly converges to 0 in MΨ.
Since ‖rn‖α = 1,

(

i(rn)
)

n
does not norm-converge to 0, and hence the weakly

compact map i : MΨ → Lα is not a Dunford-Pettis operator. Therefore MΨ

does not have the Dunford-Pettis property. �

A slightly different way to prove this is to use that for every Banach space
X which has the Dunford-Pettis property and which does not contain ℓ1, its
dual X∗ has the Schur property ([5, 14]; see also [13], Chapitre 7, Exercice 7.2).
But MΨ does not contain ℓ1 (because all its subspaces have property (V ); or
because its dual LΦ is separable). Hence LΦ would have the Schur property.
The same argument as above shows that is not the case.

4. We have required in this paper that the complementary function Φ satisfies
the ∆2 condition. Hence, in some sense, the space LΨ is far from L1. We may
ask what happens when we are in the other side of the scale, namely when LΨ
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is close to L1. But if Ψ satisfies the ∆2 condition, then LΨ = (MΦ)∗ and MΦ,
being M -ideal of its bidual, has property (V ), as said in the Introduction. It
follows that LΨ is weakly sequentially complete (and in fact has property (V ∗)),
and if we assume that Φ /∈ ∆2 (so as LΨ is not reflexive), then LΨ does not
have property (V ).
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Jean Perrin, Rue Jean Souvraz, S.P. 18,
62 307 LENS Cedex, FRANCE
pascal.lefevre@euler.univ-artois.fr – daniel.li@euler.univ-artois.fr
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