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Morse-Transue space MΨ, the subspace of the Orlicz space LΨ generated by
L∞.
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1 Introduction and Notation.

In 1975, C. Niculescu established a characterization of weakly compact
operators T from C(S), where S is a compact space, into a Banach space Z
([14, 15], see [3] Theorem 15.2 too): T : C(S) → Z is weakly compact if and
only if there exists a Borel probability measure µ on S such that, for every
ǫ > 0, there exists a constant C(ǫ) > 0 such that:

‖Tf‖ ≤ C(ǫ) ‖f‖L1(µ) + ǫ ‖f‖∞ , ∀f ∈ C(S).

The same kind of result was proved by H. Jarchow for C∗-algebras in [7],
and by the first author for A(D) and H∞ (see [11]). The criterion for H∞

played a key role to give an elementary proof of the equivalence between
weak compactness and compactness for composition operators on H∞.

Beside these spaces, one natural class of Banach spaces is the class of
Orlicz spaces LΨ. Unfortunately, we shall see that the above criterion is in
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general not true for Orlicz spaces. However, it remains true when we restrict
ourselves to subspaces of the Morse-Transue space MΨ. This space is the
closure of L∞ in the Orlicz space LΨ.

In this paper, we first give a characterization of the operators from a
subspace of MΨ which fix no copy of c0. When the complementary function
of Ψ satisfies ∆2, that gives a criterion of weak compactness. If moreover Ψ
satisfies a growth condition, that we call ∆0, the criterion has a more usable
formulation, analogous to those described above.

As in the case of H∞ (but this is far less elementary), this new version
obtained for subspaces of Morse-Transue spaces (Theorem 4), combined with
a study of generalized Carleson measures, may be used to prove the equiva-
lence between weak compactness and compactness for composition operators
on Hardy-Orlicz spaces (see [13]), when Ψ satisfies ∆0.

However, we think that this characterization has an intrinsic interest for
Orlicz spaces, and will be useful not only for composition operators (see
Remark 5 at the end of the paper).

In this note, we shall consider Orlicz spaces defined on a probability space
(Ω,P), that we shall assume non purely atomic.

By an Orlicz function, we shall understand that Ψ: [0,∞] → [0,∞] is
a non-decreasing convex function such that Ψ(0) = 0 and Ψ(∞) = ∞. To
avoid pathologies, we shall assume that we work with an Orlicz function
Ψ having the following additional properties: Ψ is continuous at 0, strictly
convex (hence strictly increasing), and such that

Ψ(x)

x
−→
x→∞

∞.

This is essentially to exclude the case of Ψ(x) = ax. The Orlicz space LΨ(Ω)
is the space of all (equivalence classes of) measurable functions f : Ω → C

for which there is a constant C > 0 such that
∫

Ω

Ψ
( |f(t)|

C

)

dP(t) < +∞

and then ‖f‖Ψ (the Luxemburg norm) is the infimum of all possible constants
C such that this integral is ≤ 1.
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To every Orlicz function is associated the complementary Orlicz function
Φ = Ψ∗ : [0,∞] → [0,∞] defined by:

Φ(x) = sup
y≥0

(

xy − Ψ(y)
)

.

The extra assumptions on Ψ ensure that Φ is itself strictly convex.

Throughout this paper, we shall assume, except explicit mention of the
contrary, that the complementary Orlicz function satisfies the ∆2 condition
(Φ ∈ ∆2), i.e., for some constant K > 0, and some x0 > 0, we have:

Φ(2x) ≤ K Φ(x), ∀x ≥ x0.

This is usually expressed by saying that Ψ satisfies the ∇2 condition (Ψ ∈
∇2). This is equivalent to say that for some β > 1 and x0 > 0, one has Ψ(x) ≤
Ψ(βx)/(2β) for x ≥ x0, and that implies that Ψ(x)

x
−→
x→∞

∞. In particular, this

excludes the case LΨ = L1.

When Φ satisfies the ∆2 condition, LΨ is the dual space of LΦ.

We shall denote by MΨ the closure of L∞ in LΨ. Equivalently (see [16],
page 75), MΨ is the space of (classes of) functions such that:

∫

Ω

Ψ
( |f(t)|

C

)

dP(t) < +∞, ∀C > 0.

This space is the Morse-Transue space associated to Ψ, and (MΨ)∗ = LΦ,
isometrically if LΦ is provided with the Orlicz norm, and isomorphically if it
is equipped with the Luxemburg norm (see [16], Chapter IV, Theorem 1.7,
page 110).

We have MΨ = LΨ if and only if Ψ satisfies the ∆2 condition, and LΨ

is reflexive if and only if both Ψ and Φ satisfy the ∆2 condition. When the
complementary function Φ = Ψ∗ of Ψ satisfies it (but Ψ does not satisfy this
∆2 condition, to exclude the reflexive case), we have (see [16], Chapter IV,
Proposition 2.8, page 122, and Theorem 2.11, page 123):

(∗) (LΨ)∗ = (MΨ)∗ ⊕1 (MΨ)⊥,

or, equivalently, (LΨ)∗ = LΦ ⊕1 (MΨ)⊥, isometrically, with the Orlicz norm
on LΦ.

For all the matter about Orlicz functions and Orlicz spaces, we refer
to [16], or to [9].
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2 Main result.

Our goal in this section is the following criterion of weak compactness for
operators. We begin with:

Theorem 1 Let Ψ be an arbitrary Orlicz function, and let X be a subspace
of the Morse-Transue space MΨ. Then an operator T : X → Y from X into
a Banach space Y fixes no copy of c0 if and only if for each ε > 0, there
exists Cε > 0 such that

(1) ‖Tf‖ ≤
[

Cε

∫

Ω

Ψ
(

ε
|f |
‖f‖Ψ

)

dP + ε

]

‖f‖Ψ, ∀f ∈ X.

Recall that saying that T fixes a copy of c0 means that there exists a
subspace X0 of X isomorphic to c0 such that T realizes an isomorphism
between X0 and T (X0).

Before proving that, we shall give some consequences. First, we have:

Corollary 2 Assume that the complementary function of Ψ has ∆2

(Ψ ∈ ∇2). Then for every subspace X of MΨ, and every operator T : X → Y ,
T is weakly compact if and only if it satisfies (1).

Proof. When the complementary function of Ψ has ∆2, one has the
decomposition (∗), which means that MΨ is M-ideal in its bidual (see [6],
Chapter III); this result was first shown by D. Werner ([17]; see also [6],
Chapter III, Example 1.4 (d), page 105) by a different way, using the ball
intersection property; note that in these references, it is moreover assumed
that Ψ does not satisfy the ∆2 condition, but if it satisfies it, the space LΨ

is reflexive, and so the result is obvious. But every subspace X of a Banach
space which is M-ideal of its bidual has Pe lczyńki’s property (V ) ([4, 5]; see
also [6], Chapter III, Theorem 3.4), which means that operators from X are
weakly compact if and only if they fix no copy of c0. �

With Ψ satisfying the following growth condition, the characterization
(1) takes on a more usable form.

Definition 3 We say that the Orlicz function Ψ satisfies the ∆0 condition
if for some β > 1, one has:

lim
x→+∞

Ψ(βx)

Ψ(x)
= +∞.
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This growth condition is a strong negation of the ∆2 condition and it implies
that the complementary function Φ = Ψ∗ of Ψ satisfies the ∆2 condition.

Note that in the following theorem, we cannot content ourselves with
Ψ /∈ ∆2 (i.e. lim supx→+∞ Ψ(βx)/Ψ(x) = +∞), instead of Ψ ∈ ∆0 (see
Remark 3 in Section 3). An interesting question is whether the condition
Ψ ∈ ∆0 is actually necessary for this characteriztion.

Theorem 4 Assume that Ψ satisfies the ∆0 condition, and let X be
a subspace of MΨ. Then every linear operator T mapping X into some
Banach space Y is weakly compact if and only if for some (and then for all)
1 ≤ p <∞ and all ε > 0, there exists Cε > 0 such that:

(W) ‖T (f)‖ ≤ Cε‖f‖p + ε ‖f‖Ψ, ∀f ∈ X.

Remark 5 This theorem extends [12] Theorem II.1. As in the case of
C

∗-algebras (see [3], Notes and Remarks, Chap. 15), there are miscellaneous
applications of such a characterization.

Remark 6 Contrary to the ∆2 condition where the constant 2 may be
replaced by any constant β > 1, in this ∆0 condition, the constant β cannot
be replaced by another, as the following example shows.

Example 7 There exists an Orlicz function Ψ such that:

(2) lim
x→+∞

Ψ(5x)

Ψ(x)
= +∞,

but

(3) lim inf
x→+∞

Ψ(2x)

Ψ(x)
< +∞.

Indeed, let (cn)n be an increasing sequence of positive numbers such that

lim
n→∞

cn+1

cn
= +∞, take ψ(t) = cn for t ∈ (4n, 4n+1] and Ψ(x) =

∫ x

0
ψ(t) dt.

Then (2) is verified. On the other hand, if xn = 2 ·4n, one has Ψ(xn) ≥ cn4n,
and Ψ(2xn) ≤ cn4n+1, so we get (3).

Before proving Theorem 4, let us note that it has the following straight-
forward corollary.
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Corollary 8 Let X be like in Theorem 4, and assume that F is a family
of operators from X into a Banach space Y with the following property: there
exists a bounded sequence (gn)n in X such that limn→∞ ‖gn‖1 = 0 and such
that an operator T ∈ F is compact whenever

lim
n→∞

‖Tgn‖ = 0.

Then every weakly compact operator in T ∈ F is actually compact.

In the forthcoming paper [13], we prove, using a generalization of the
notion of Carleson measure, that a composition operator Cφ : HΨ → HΨ

(HΨ is the space of analytic functions on the unit disk D of the complex
plane whose boundary values are in LΨ(∂D), and φ : D → D is an analytic
self-map) is compact whenever

lim
r→1−

sup
|ξ|=1

Ψ−1
(

1/(1 − r)
)

‖Cφ(uξ,r)‖Ψ = 0,

where

uξ,r(z) =
( 1 − r

1 − ξ̄rz

)2

, |z| < 1,

and we have
lim
r→1−

sup
|ξ|=1

Ψ−1
(

1/(1 − r)
)

‖Cφ(uξ,r)‖Ψ = 0

when Cφ is weakly compact and Ψ ∈ ∆0.

Though the situation does not fit exactly as in Corollary 8 (not because of
the space HΨ, which is not a subspace of MΨ: we actually work in HMΨ =
HΨ ∩MΨ since uξ,r ∈ HMΨ, but because of the fact that we ask a uniform
limit for |ξ| = 1), the same ideas allow us to get, when Ψ satisfies the
condition ∆0, that Cφ is compact if and only if it is weakly compact.

Proof of Theorem 4. Assume that we have (W). We may assume that p >
1, since if (W) is satisfied for some p ≥ 1, it is satisfied for all q ≥ p. Moreover,

we may assume that LΨ j→֒ Lp since Ψ satisfies condition ∆0 (since we have:

limx→+∞
Ψ(x)
xr = +∞, for every r > 0). Then T

[

(1/Cε)BLp ∩ (1/ε)BX

]

⊆
2BY . Taking the polar of these sets, we get T ∗(BY ∗) ⊆ (2Cε)Bj∗[(Lp)∗] +
(2ε)BX∗ , for every ε > 0. By a well-known lemma of Grothendieck, we get,
since Bj∗[(Lp)∗] is weakly compact, that T ∗(BY ∗) is relatively weakly compact,
i.e. T ∗, and hence also T , is weakly compact.
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Conversely, assume in Theorem 4 that T is weakly compact. We are going
to show that (W) is satisfied with p = 1 (hence for all finite p ≥ 1). Let
ε > 0. Since the ∆0 condition implies that the complementary function of Ψ
satisfies the ∆2 condition, Corollary 2 implies that, when ‖f‖Ψ = 1:

‖Tf‖ ≤ Cε/2

∫

Ω

Ψ
(

(ε/2)|f |
)

dP + ε/2.

As Ψ satisfies the ∆0 condition, there is some β > 1 such that
Ψ(x)

Ψ(βx)
→ 0 as

x→ ∞; hence, with κ = ε/2Cε/2, there exists some xκ > 0 such that Ψ(x) ≤
κΨ(βx) for x ≥ xκ. By the convexity of Ψ, one has Ψ(x) ≤ Ψ(xκ)

xκ
x =: Kκx

for 0 ≤ x ≤ xκ. Hence, for every x ≥ 0 Ψ(x) ≤ κΨ(βx) + Kκx. It follows
that, for f ∈ X, with ‖f‖Ψ = 1

∫

Ω

Ψ
(

(ε/2)|f |
)

dP ≤ κ

∫

Ω

Ψ
(

β(ε/2)|f |
)

dP +Kκ
ε

2
‖f‖1 ≤ κ+Kκ

ε

2
‖f‖1

if we have chosen ε ≤ 2/β. Hence:

‖Tf‖ ≤ Cε/2

(

κ+Kκ
ε

2
‖f‖1

)

+
ε

2
= Cε/2

ε

2
Kκ‖f‖1+

(

Cε/2κ+
ε

2

)

= C ′
ε‖f‖1+ε,

which is (W). �

Remark 9 The sufficient condition is actually a general fact, which is
surely well known (see [11], Theorem 1.1, for a similar result, and [3], The-
orem 15.2 for C(K); see also [8], page 81), and has close connection with
interpolation (see [2], Proposition 1), but we have found no reference, and so
we shall state it separately without proof (the proof follows that given in [3],
page 310).

Proposition 10 Let T : X → Y be an operator between two Banach
spaces. Assume that there is a Banach space Z and a weakly compact map
j : X → Z such that: for every ε > 0, there exists Cε > 0 such that

‖Tx‖ ≤ Cε‖jx‖Z + ε ‖x‖X , ∀x ∈ X.

Then T is weakly compact.
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Note that, by the Davis-Figiel-Johnson-Pe lczyński factorization theorem,
we may assume that Z is reflexive. We may also assume that j is injective,
because ker j ⊆ kerT , so T induces a map T̃ : X/ ker j → Y with the same
property as T . Indeed, if jx = 0, then ‖Tx‖ ≤ ε‖x‖ for every ε > 0, and
hence Tx = 0.

Proof of Theorem 1. Assume first that T fixes a copy of c0. There are
hence some δ > 0 and a sequence (fn)n in X equivalent to the canonical
basis of c0 such that ‖fn‖Ψ = 1 and ‖Tfn‖ ≥ δ. In particular, there is some
M > 0 such that, for every choice of εn = ±1

∥

∥

∥

N
∑

n=1

εnfn

∥

∥

∥

Ψ
≤ M, ∀N ≥ 1.

Let (rn)n be a Rademacher sequence. We have, first by Khintchine’s inequal-
ity, then by Jensen’s inequality and Fubini’s Theorem

∫

Ω

Ψ

(

1

M
√

2

(

N
∑

n=1

|fn|2
)1/2

)

dP ≤
∫

Ω

Ψ

[

1

M

∫ 1

0

∣

∣

∣

N
∑

n=1

rn(t)fn

∣

∣

∣
dt

]

dP

≤
∫

Ω

∫ 1

0

Ψ

[

1

M

∣

∣

∣

N
∑

n=1

rn(t)fn

∣

∣

∣
dt

]

dP

=

∫ 1

0

∫

Ω

Ψ

[

1

M

∣

∣

∣

N
∑

n=1

rn(t)fn

∣

∣

∣
dP

]

dt ≤ 1.

The monotone convergence Theorem gives then

∫

Ω

Ψ

(

1

M
√

2

(

∞
∑

n=1

|fn|2
)1/2

)

dP ≤ 1.

In particular,
∑∞

n=1 |fn|2 is finite almost everywhere, and hence fn → 0

almost everywhere. Since Ψ
(

1
M

√
2

(
∑∞

n=1 |fn|2
)1/2

)

∈ L1, by the above in-

equalities, Lebesgue’s dominated convergence Theorem gives:
∫

Ω

Ψ
( |fn|
M

√
2

)

dP −→
n→∞

0.

But that contradicts (1) with ε ≤ 1/M
√

2 and ε < δ, since ‖Tfn‖ ≥ δ.
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The converse follows from the following lemma.

Lemma 11 Let X be a subspace of MΨ, and let (hn)n be a sequence in
X, with ‖hn‖Ψ = 1 for all n ≥ 1, and such that, for some M > 0

∫

Ω

Ψ(|hn|/M) dP −→
n→∞

0.

Then (hn)n has a subsequence equivalent to the canonical basis of c0.

Indeed, if condition (1) is not satisfied, there exist some ε0 > 0 and
functions hn ∈ X with ‖hn‖Ψ = 1 such that ‖Thn‖ ≥ 2n

∫

Ω
Ψ(ε0|hn|) dP+ε0.

That implies that
∫

Ω
Ψ(ε0|hn|) dP tends to 0, so Lemma 11 ensures that (hn)n

has a subsequence, which we shall continue to denote by (hn)n, equivalent
to the canonical basis of c0. Then (Thn)n is weakly unconditionally Cauchy.
Since ‖Thn‖ ≥ ε0, (Thn)n has, by Bessaga-Pe lczyński’s Theorem, a further
subsequence equivalent to the canonical basis of c0. It is then obvious that T
realizes an isomorphism between the spaces generated by these subsequences.

�

Proof of Lemma 11. The proof uses the idea of the construction made
in the proof of Theorem II.1 in [12], which it generalizes, but with some
additional details.

By the continuity of Ψ, there exists a > 0 such that Ψ(a) = 1. Then,

since Ψ is increasing, we have, for every g ∈ L∞,
∫

Ω
Ψ

(

a |g|
‖g‖∞

)

dP ≤ 1 , and

so ‖g‖Ψ ≤ (1/a) ‖g‖∞.
Now, choose, for every n ≥ 1, positive numbers αn < a/2n+2 such that

Ψ(αn/2M) ≤ 1.

We are going to construct inductively a subsequence (fn)n of (hn)n, a
sequence of functions gn ∈ L∞ and two sequences of positive numbers βn
and εn ≤ min{1/2n+1,M/2n+1}, such that, for every n ≥ 1

(i) if we set M1 = 1 and, for n ≥ 2

Mn = max
{

1,Ψ
(‖g1‖∞ + · · · + ‖gn−1‖∞

2M

)}

,

then Mnβn ≤ 1/2n+1;

(ii) ‖fn‖Ψ = 1;
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(iii) ‖fn − gn‖Ψ ≤ εn, with εn such that βnΨ(αn/2εn) ≥ 2;

(iv) P({|gn| > αn}) ≤ βn;

(v) ‖ğn‖Ψ ≥ 1/2, with ğn = gn 1I{|gn|>αn}.

We shall give only the inductive step, since the starting one unfolds
identically. Suppose hence that the functions f1, . . . , fn−1, g1, . . . , gn−1 and
the numbers β1, . . . , βn−1 and ε1, . . . , εn−1 have been constructed. Choose
then βn > 0 such that Mnβn ≤ 1/2n+1. Note that Mn ≥ 1 implies that
βn ≤ 1/2n+1. Since

∫

Ω
Ψ(|hk|/M) dP → 0 as n → ∞, we can find fn = hkn

such that ‖fn‖Ψ = 1, and moreover

P({|fn| > αn/2}) ≤ 1

Ψ(αn/2M)

∫

Ω

Ψ
( |fn|
M

)

dP ≤ βn
2
·

Take now εn ≤ min{1/2n+1,M/2n+1} such that 0 < εn ≤ αn/2Ψ−1(2/βn)
and gn ∈ L∞ such that ‖fn − gn‖Ψ ≤ εn. Then, since

P({|fn − gn| > αn/2})Ψ
( αn

2εn

)

≤
∫

Ω

Ψ
( |fn − gn|

εn

)

dP ≤ 1,

we have

P({|gn| > αn}) ≤ P({|fn| > αn/2}) + P({|fn − gn| > αn/2})

≤ βn
2

+
1

Ψ(αn/2εn)
≤ βn.

To end the construction, it remains to note that

‖fn − ğn‖Ψ ≤ ‖fn − gn‖Ψ + ‖ğn − gn‖Ψ ≤ εn +
1

a
‖ğn − gn‖∞

≤ 1

2n+1
+
αn
a

≤ 1

2n
≤ 1

2

and so

‖ğn‖Ψ ≥ ‖fn‖Ψ − ‖fn − ğn‖Ψ ≥ 1 − 1

2
=

1

2
·

This ends the inductive construction.

Consider now

ğ =
+∞
∑

n=1

|ğn| .
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Set An = {|gn| > αn} and, for n ≥ 1

Bn = An \
⋃

j>n

Aj .

We have P
(

lim supAn
)

= 0, because

∑

n≥1

P(An) ≤
∑

n≥1

βn ≤
∑

n≥1

1

2n
< +∞.

Now ğ vanishes out of
⋃

n≥1

Bn ∪
(

lim supAn
)

and we have

∫

Bn

Ψ
( |ğn|

2M

)

dP ≤
∫

Ω

Ψ
( |gn|

2M

)

dP

≤
∫

Ω

Ψ
( |gn − fn|

2M
+

|fn|
2M

)

dP

≤ 1

2

∫

Ω

Ψ
( |gn − fn|

M

)

dP +
1

2

∫

Ω

Ψ
( |fn|
M

)

dP.

The first integral is less than εn/M , because Ψ(at) ≤ aΨ(t) for 0 ≤ a ≤ 1
and εn/M ≤ 1, so that

∫

Ω

Ψ
( |gn − fn|

M

)

dP ≤ εn
M

∫

Ω

Ψ
( |gn − fn|

εn

)

dP ≤ εn
M

≤ 1

2n+1

(since ‖fn − gn‖Ψ ≤ εn). Since

∫

Ω

Ψ
( |fn|
M

)

dP ≤ βn
2

Ψ
(

αn/2M) ≤ βn/2,

we obtain
∫

Bn

Ψ
( |ğn|

2M

)

dP ≤ 1

2n+2
+
βn
4

·
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Therefore, since P(Bn) ≤ P(An) ≤ βn, we have

∫

Ω

Ψ
( |ğ|

4M

)

dP =
+∞
∑

n=1

∫

Bn

Ψ
( |ğ|

4M

)

dP

≤
+∞
∑

n=1

∫

Bn

1

2

[

Ψ
(‖g1‖∞ + · · · + ‖gn−1‖∞

2M

)

+ Ψ
( |ğn|

2M

)

]

dP

by convexity of Ψ and because ğj = 0 on Bn for j > n

≤ 1

2

+∞
∑

n=1

(

Mnβn +
1

2n+2
+
βn
4

)

≤ 1

2

+∞
∑

n=1

( 1

2n+1
+

1

2n+2
+

1

2n+2

)

≤ 1,

which proves that ğ ∈ LΨ, and consequently that the series
∑

n≥1 ğn is weakly

unconditionally Cauchy in LΨ:

sup
n≥1

sup
θk=±1

∥

∥

∥

n
∑

k=1

θkğk

∥

∥

∥

Ψ
≤ sup

n≥1

∥

∥

∥

n
∑

k=1

|ğk|
∥

∥

∥

Ψ
≤ ‖ğ‖Ψ ≤ 4M.

Since ‖ğn‖ψ ≥ 1/2, (ğn)n≥1 has, by Bessaga-Pe lczyński’s theorem, a sub-
sequence (ğnk

)k≥1 which is equivalent to the canonical basis of c0. The corre-
sponding subsequence (fnk

)k≥1 of (fn)n≥1 remains equivalent to the canonical
basis of c0, since

+∞
∑

n=1

‖fn − ğn‖Ψ ≤
+∞
∑

n=1

εn +
αn
a

≤
+∞
∑

n=1

1

2n+1
+

1

2n+2
< 1

and the assertion follows. �

3 Comments

Remark 12 Let us note that the assumption X ⊆ MΨ in Theorem 4
cannot be relaxed in general. In fact, suppose that X is a subspace of LΨ

containing L∞, and let ξ ∈ (Mψ)⊥ ⊆ (LΨ)∗, ξ 6= 0. Being of rank one, ξ
is trivially weakly compact. Suppose that it satisfies (W). Let f ∈ X with

12



norm 1, and let ε > 0. For t large enough and ft = f1I{|f |≤t}, we have
‖f − ft‖2 ≤ ε/Cε. Moreover, ft ∈ L∞ ⊆ X and ‖ft‖Ψ ≤ ‖f‖Ψ = 1. Since ξ
vanishes on L∞ and f − ft ∈ X, we get

|ξ(f)| = |ξ(f − ft)| ≤ Cε‖f − ft‖2 + ε‖f − ft‖Ψ ≤ 3ε.

This implies that ξ(f) = 0. Since this occurs for every ξ ∈ (MΨ)⊥, we get
that X ⊆MΨ (and actually X = MΨ since X contains L∞).

In particular Theorem 4 does not hold for X = LΨ.

Remark 13 However, condition (W) remains true for bi-adjoint opera-
tors coming from subspaces of MΨ: if T : X ⊆ MΨ → Y satisfies the condi-
tion (W), then T ∗∗ : X∗∗ → Y ∗∗ also satisfies it. Indeed, for every ε > 0, we
get an equivalent norm ‖| . |‖ε on X by putting

‖|f |‖ε = Cε‖f‖2 + ε‖f‖Ψ.

Hence if f ∈ X∗∗, there exists a net (fα)α of elements in X, with ‖|fα|‖ε ≤
‖|f |‖ε which converges weak-star to f . Then (Tfα)α converges weak-star to
T ∗∗f , and

‖T ∗∗f‖ ≤ lim inf
α

‖Tfα‖ ≤ lim inf
α

(Cε‖fα‖2 + ε‖fα‖Ψ)

= lim inf
α

‖|fα|‖ε ≤ ‖|f |‖ε = Cε‖f‖2 + ε‖f‖Ψ.

Hence, from Proposition 10 above, for such a T , T ∗∗ is weakly compact if and
only if it satisfies (W). We shall use this fact in the forthcoming paper [13].

Remark 14 In Theorem 4, we cannot only assume that Ψ /∈ ∆2, instead
of Ψ ∈ ∆0, as the following example shows. It also shows that in Corollary 2,
we cannot obtain condition (W) instead of condition (1).

Example 15 Let us define:

ψ(t) =

{

t for 0 ≤ t < 1,
(k!)(k + 2)t− k!(k + 1)! for k! ≤ t ≤ (k + 1)!, k ≥ 1,

(ψ(k!) = (k!)2 for every integer k ≥ 1 and ψ is linear between k! and (k+1)!),
and

Ψ(x) =

∫ x

0

ψ(t) dt.

13



Since t2 ≤ ψ(t) for all t ≥ 0, one has x3/3 ≤ Ψ(x) for all x ≥ 0. Then

Ψ(2.n!) ≥
∫ 2.n!

n!

ψ(t) dt = n!(n + 2)
3

2
(n!)2 − (n!)2(n+ 1)! = (n!)3

(n

2
+ 2

)

,

whereas

Ψ(n!) =

∫ n!

0

ψ(t) dt ≤ (n!)2 n! = (n!)3 ;

hence
Ψ(2.n!)

Ψ(n!)
≥ n

2
+ 2,

and so

lim sup
x→+∞

Ψ(2x)

Ψ(x)
= +∞,

which means that Ψ /∈ ∆2. On the other hand, for every β > 1

Ψ(n!/β) ≥ 1

3

( n!

β

)3

=
(n!)3

3β3
,

so
Ψ(n!)

Ψ(n!/β)
≤ (n!)3

(n!)3/3β3
= 3β3 ;

hence

lim inf
x→+∞

Ψ(2x)

Ψ(x)
≤ 3β3 ,

and Ψ /∈ ∆0 (actually, this will follow too from the fact that Theorem 4 is
not valid for this Ψ).

Moreover, the conjugate function of Ψ satisfies the condition ∆2. Indeed,
since ψ is convex, one has ψ(2u) ≥ 2ψ(u) for all u ≥ 0, and hence:

Ψ(2x) =

∫ 2x

0

ψ(t) dt = 2

∫ x

0

ψ(2u) du ≥ 2

∫ x

0

2ψ(u) du = 4Ψ(x),

and as it was seen in the Introduction that means that Ψ ∈ ∇2.

Now, we have x3/3 ≤ Ψ(x) for all x ≥ 0; therefore ‖ . ‖3 ≤ 31/3‖ . ‖Ψ.
In particular, we have an inclusion map j : MΨ →֒ L3, which is, of course,
weakly compact. Nevertheless, assuming that P is diffuse, condition (W)
is not verified by j, when ε < 1. Indeed, as we have seen before, one has
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Ψ(n!) ≤ (n!)3. Hence, if we choose a measurable set An such that P(An) =
1/Ψ(n!), we have

‖1IAn
‖Ψ =

1

Ψ−1
(

1/P(An)
) =

1

n!
;

whereas:

‖1IAn
‖3 = P(An)1/3 =

1

Ψ(n!)1/3
≥ 1

n!

and

‖1IAn
‖2 = P(An)1/2 ≤

[

3

(n!)3

]1/2

=

√
3

(n!)3/2
·

If condition (W) were true, we should have, for every n ≥ 1

1

n!
≤ Cε

√
3

(n!)3/2
+ ε

1

n!
,

that is
√
n! ≤

√
3 Cε

1−ε , which is of course impossible for n large enough.

Remark 16 In the case of the whole space MΨ, we can give a direct proof
of the necessity in Theorem 4. Indeed, suppose that T : MΨ → X is weakly
compact. Then T ∗ : X∗ → LΦ = (MΨ)∗ is weakly compact, and so the set
K = T ∗(BX∗) is relatively weakly compact.

Since Φ satisfies the ∆0 condition, it follows from [1] (Corollary 2.9) that
K has equi-absolutely continuous norms. Hence, for every ε > 0, we can find
δε > 0 such that:

m(A) ≤ δε ⇒ ‖g1IA‖Φ ≤ ε/2 , ∀g ∈ T ∗(BX∗).

But (the factor 1/2 appears because we use the Luxemburg norm on the
dual, and not the Orlicz norm: see [16], Proposition III.3.4)

sup
g∈T ∗(BX∗ )

‖g1IA‖Φ ≥ 1

2
sup
u∈BX∗

sup
‖f‖Ψ≤1

| < f, (T ∗u)1IA > |

=
1

2
sup
u∈BX∗

sup
‖f‖Ψ≤1

∣

∣

∣

∫

f(T ∗u)1IA dm
∣

∣

∣

=
1

2
sup
u∈BX∗

sup
‖f‖Ψ≤1

| < T (f1IA), u > | =
1

2
sup

‖f‖Ψ≤1

‖T (f1IA)‖;
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so
m(A) ≤ δε ⇒ sup

‖f‖Ψ≤1

‖T (f1IA)‖ ≤ ε.

Now, we have

m(|f | ≥ ‖f‖2/δε) ≤
δε

‖f‖2

∫

|f | dm =
δε

‖f‖2

‖f‖1 ≤ δε;

hence, with A = {|f | ≥ ‖f‖2/δε}, we get, for ‖f‖Ψ ≤ 1:

‖Tf‖ ≤ ‖T (f1IA)‖ + ‖T (f1IAc)‖ ≤ ε+ ‖T‖‖f‖2

δε

since |f1IAc| ≤ ‖f‖2/δε implies ‖f1IAc‖Ψ ≤ ‖f1IAc‖∞ ≤ ‖f‖2/δε.

Remark 17 Conversely, E. Lavergne ([10]) recently uses our Theorem 4
to give a proof of the above quoted result of J. Alexopoulos ([1], Corol-
lary 2.9), and uses it to show that, when Ψ ∈ ∆0, then the reflexive subspaces
of LΦ (where Φ is the conjugate of Ψ) are closed for the L1-norm.
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