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), 105-138, namely that there exist 4 3 -Rider sets which are sets of uniform convergence and Λ(q)-sets for all q < ∞, but which are not Rosenthal sets. In a second part, we show, using an older result of Kashin and Tzafriri that, for p > 4 3 , the p-Rider sets which we had constructed in that paper are almost surely not of uniform convergence.

Introduction

It is well-known that the Fourier series S n (f, x) = n -n f (k)e ikx of a 2πperiodic continuous function f may be badly behaved: for example, it may diverge on a prescribed set of values of x with measure zero. Similarly, the Fourier series of an integrable function may diverge everywhere. But it is equally wellknown that, as soon as the spectrum Sp (f ) of f (the set of integers k at which the Fourier coefficients of f do not vanish, i.e. f (k) = 0) is sufficiently "lacunary", in the sense of Hadamard e.g., then the Fourier series of f is absolutely convergent if f is continuous and almost everywhere convergent if f is merely integrable (and in this latter case f ∈ L p for every p < ∞). Those facts have given birth to the theory of thin sets Λ of integers, initiated by Rudin [START_REF] Rudin | Trigonometric series with gaps[END_REF]: those sets Λ such that, if Sp (f ) ⊆ Λ (we shall write f ∈ B Λ when f is in some Banach function space B contained in L 1 (T)) and Sp (f ) ⊆ Λ), then S n (f ), or f itself, is better behaved than in the general case. Let us for example recall that the set Λ is said to be: -a p-Sidon set (1 ≤ p < 2) if f ∈ l p (and not only f ∈ l 2 ) as soon as f is continuous and Sp (f ) ⊆ Λ; this amounts to an "a priori inequality" f p ≤ C f ∞ , for each f ∈ C Λ ; the case p = 1 is the celebrated case of Sidon (= 1-Sidon) sets; -a p-Rider set (1 ≤ p < 2) if we have an a priori inequality f p ≤ C [[f ]], for every trigonometric polynomial with spectrum in Λ; here [[f ]] is the so-called 1 Pisier norm of f = f (n)e n , where e n (x) = e inx , i.e. [[f ]] = E f ω ∞ , where f ω = ε n (ω) f (n)e n , (ε n ) being an i.i.d. sequence of centered, ±1-valued, random variables defined on some probability space (a Rademacher sequence), and where E denotes the expectation on that space; this apparently exotic notion (weaker than p-Sidonicity) turned out to be very useful when Rider [START_REF] Rider | Randomly continuous functions and Sidon sets[END_REF] reformulated a result of Drury (proved in the course of the result that the union of two Sidon set sets is a Sidon set) under the form: 1-Rider sets and Sidon sets are the same (in spite of some partial results, it is not yet known whether a p-Rider set is a p-Sidon set: see [START_REF] Lefèvre | p-Rider sets are q-Sidon sets[END_REF] however, for a partial result); -a set of uniform convergence (in short a U C-set) if the Fourier series of each f ∈ C Λ converges uniformly, which amounts to the inequality

S n (f ) ∞ ≤ C f ∞ , ∀f ∈ C Λ ; Sidon sets are U C, but the converse is false; -a Λ(q)-set, 1 < q < ∞, if every f ∈ L 1
Λ is in fact in L q , which amounts to the inequality f q ≤ C q f 1 , ∀f ∈ L 1 Λ . Sidon sets are Λ(q) for every q < ∞ (and even C q ≤ C √ q); the converse is false, except when we require C q ≤ C √ q

([11]); -a Rosenthal set if every f ∈ L ∞
Λ is almost everywhere equal to a continuous function. Sidon sets are Rosenthal, but the converse in false. This theory has long suffered from a severe lack of examples: those examples were always, more or less, sums of Hadamard sets, and in that case the banachic properties of the corresponding C Λ -spaces were very rigid. The use of random sets (in the sense of the selectors method) of integers has significantly changed the situation (see [START_REF] Li | Introduction l'tude des espaces de Banach, Analyse et probabilités[END_REF], and our paper [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF]). Let us recall more in detail the notation and setting of our previous work [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF]. The method of selectors consists in the following: let (ε k ) k≥1 be a sequence of independent, (0, 1)-valued random variables, with respective means δ k , defined on a probability space Ω, and to which we attach the random set of integers Λ = Λ(ω), ω ∈ Ω, defined by

Λ(ω) = {k ≥ 1 ; ε k (ω) = 1}.
The properties of Λ(ω) of course highly depend on the δ k 's, and roughly speaking the smaller the δ k 's, the better C Λ , L 1 Λ , . . . . In [START_REF] Li | A remark about Λ(p)-sets and Rosenthal sets[END_REF], and then, in a much deeper way, in [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF], relying on a probabilistic result of J. Bourgain on ergodic means, and on a deterministic result of F. Lust-Piquard ( [START_REF]Lust-Piquard, Bohr local properties of C Λ (T)[END_REF]) on those ergodic means, we had randomly built new examples of sets Λ of integers which were both: locally thin from the point of view of harmonic analysis (their traces on big segments [M n , M n+1 ] of integers were uniformly Sidon sets); regularly distributed from the point of view of number theory, and therefore globally big from the point of view of Banach space theory, in that the space C Λ contained an isomorphic copy of the Banach space c 0 of sequences vanishing at infinity. More precisely, we have constructed subsets Λ ⊆ N which are thin in the following respects: Λ is a U C-set, a p-Rider set for various p ∈ [1, 2[, a Λ(q)-set for every q < ∞, and large in two respects: the space C Λ contains an isomorphic copy of c 0 , and, most often, Λ is dense in the integers equipped with the Bohr topology. Now, taking δ k bigger and bigger, we had obtained sets Λ which were less and less thin (p-Sidon for every p > 1, q-Rider, but s-Rider for no s < q, s-Rider for every s > q, but not q-Rider), and, in any case Λ(q) for every q < ∞, and such that C Λ contains a subspace isomorphic to c 0 . In particular, in Theorem II.7, page 124, and Theorem II.10, page 130, we take respectively

δ k ≈ log k k and δ k ≈ (log k) α k(log log k) α+1 , where α = 2(p-1)
2-p is an increasing function of p ∈ [1, 2), and which becomes ≥ 1 as p becomes ≥ 4/3. The case δ k = 1 k would correspond (randomly) to Sidon sets (i.e. 1-Sidon sets).

After the proofs of Theorem II.7 and Theorem II.10, we were asking two questions:

1) (p. 129) Our construction is very complicated and needs a second random construction of a set E inside the random set Λ. Is it possible to give a simpler proof?

2) (p. 130) In Theorem II.10, can we keep the property for the random set Λ to be a U C-set, with high probability, when α > 1 (equivalently when p > 4 3 )? The goal of this work is to answer affirmatively the first question (relying on a recent deviation inequality of Boucheron, Lugosi and Massart [START_REF] Boucheron | Concentration inequalities using the entropy method[END_REF]) and negatively the second one (relying on an older result of Kashin and Tzafriri [START_REF] Kashin | Random sets of uniform convergence[END_REF]). This work is accordingly divided into three parts. In Section 2, we prove a (onesided) concentration inequality for norms of Rademacher sums. In Section 3, we apply the concentration inequality to get a substantially simplified proof of Theorem II.7 in [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF]. Finally, in Section 4, we give a (stochastically) negative answer to question 2 when p > 4 3 : almost surely, Λ will not be a U C-set; here, we use the above mentionned result of Kashin and Tzafriri [START_REF] Kashin | Random sets of uniform convergence[END_REF] on the non-U C character of big random subsets of integers.

A one-sided inequality for norms of Rademacher sums

Let E be a (real or complex) Banach space, v 1 , . . . , v n be vectors of E, X 1 , . . . , X n be independent, real-valued, centered, random variables, and let

Z = n 1 X j v j . If |X j | ≤ 1 a.s.
, it is well-known (see [START_REF] Ledoux | Probability in Banach spaces[END_REF]) that:

P (|Z -E (Z)| > t) ≤ 2 exp - t 2 8 n 1 v j 2 , ∀t > 0. (2.1) But often, the "strong" l 2 -norm of the n-tuple v = (v 1 , . . . , v n ), namely v strong = ( n j=1 v j 2 ) 1/2
, is too large for (2.1) to be interesting, and it is advisable to work with the "weak" l 2 -norm of v, defined by:

σ = v weak = sup ϕ∈B E * n 1 |ϕ(v j )| 2 1/2 = sup P |aj | 2 ≤1 n 1 a j v j , (2.2) 
where B E * denotes the closed unit ball of the dual space E * . If (X j ) j is a standard gaussian sequence (E X j = 0, E X 2 j = 1), this is what Maurey and Pisier suceeded in doing, using either the Itô formula or the rotational invariance of the X j 's; they proved the following (see [START_REF] Li | Introduction l'tude des espaces de Banach, Analyse et probabilités[END_REF], Chapitre 8, Théorème I.4):

P (|Z -E Z| > t) ≤ 2 exp - t 2 Cσ 2 , ∀t > 0, (2.3) 
where σ is as in (2.2), and C is a numerical constant, e.g. C = π 2 /2.

To the best of our knowledge, no inequality as simple and direct as (2.3) is available for non-gaussian (e.g. for Rademacher variables) variables, although several more complicated deviation inequalities are known: see e.g. [START_REF] Johnson | Remarks on Talagrand's deviation inequality for Rademacher functions[END_REF], [START_REF] Ledoux | Probability in Banach spaces[END_REF].

For the applications to Harmonic analysis which we have in view, where we use the so-called "selectors method", we precisely need an analogue of (2.3), in the non-gaussian, uniformly bounded (and centered) case; we shall prove that at least a one-sided version of (2.3) holds in this case, by showing the following result, which is interesting for itself.

Theorem 2.1 With the previous notations, assume that |X j | ≤ 1 a.s. . Then, we have the one-sided estimate:

P (Z -E Z > t) ≤ exp - t 2 Cσ 2 , ∀t > 0, (2.4) 
where C > 0 is a numerical constant (C = 32, for example).

The proof of (2.4) will make use of a recent deviation inequality due to Boucheron, Lugosi and Massart [START_REF] Boucheron | Concentration inequalities using the entropy method[END_REF]. Before stating this inequality, we need some notation.

Let X 1 , . . . , X n be independent, real-valued random variables (here, we temporarily forget the assumptions of the previous Theorem), and let (X ′ 1 , . . . , X ′ n ) be an independent copy of (X 1 , . . . , X n ).

If f : R n → R is a given measurable function, we set Z = f (X 1 , . . . , X n ) and

Z ′ i = f (X 1 , . . . , X i-1 , X ′ i , X i+1 , . . . , X n ), 1 ≤ i ≤ n.
With those notations, the Boucheron-Lugosi-Massart Theorem goes as follows:

Theorem 2.2 Assume that there is some constant a, b ≥ 0, not both zero, such that:

n i=1 (Z -Z ′ i ) 2 1I (Z>Z ′ i ) ≤ aZ + b a.s. (2.5)
Then, we have the following one-sided deviation inequality:

P (Z > E Z + t) ≤ exp - t 2 4a E Z + 4b + 2at) , ∀t > 0. (2.6)
Proof of Theorem 2.1. We shall in fact use a very special case of Theorem 2.2, the case when a = 0; but, as the three fore-named authors remark, this special case is already very useful, and far from trivial to prove! To prove (2.4), we are going to check that, for f (X 1 , . . . , X n ) = n 1 X j v j = Z, the assumption (2.5) holds for a = 0 and b = 4σ 2 . In fact, fix ω ∈ Ω and denote by I = I ω the set of indices i such that Z(ω) > Z ′ i (ω). For simplicity of notation, we assume that the Banach space E is real. Let ϕ = ϕ ω ∈ E * such that ϕ = 1 and

Z = ϕ n j=1 X j v j ) = n j=1 X j ϕ(v j ). For i ∈ I, we have Z ′ i (ω) = Z ′ i ≥ ϕ j =i X j v j + X ′ i v i , so that 0 ≤ Z -Z ′ i ≤ n j=1 X j ϕ(v j ) -j =i X j ϕ(v j ) -X ′ i ϕ(v i ) = (X i -X ′ i )ϕ(v i ), implying (Z -Z ′ i ) 2 ≤ 4|ϕ(v i )| 2
. By summing those inequalities, we get:

n i=1 (Z -Z ′ i ) 2 1I (Z>Z ′ i ) = i∈I (Z -Z ′ i ) 2 ≤ 4 i∈I |ϕ(v i )| 2 ≤ 4 n i=1 |ϕ(v i )| 2 ≤ 4σ 2 = 0.Z + 4σ 2 .
Let us observe the crucial role of the "conditioning" Z > Z ′ i when we want to check that (2.5) holds. Now, (2.4) is an immediate consequence of (2.6).

Construction of 4/3-Rider sets

We first recall some notations of [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF]. Ψ 2 denotes the Orlicz function Ψ 2 (x) = e x 2 -1, and Ψ2 is the corresponding Luxemburg norm. If A is a finite subset of the integers, Ψ A denotes the quantity n∈A e n Ψ2 , where e n (t) = e int , t ∈ R/2πZ = T, and T is equipped with its Haar measure m. Λ will always be a subset of the positive integers N. Recall that Λ is uniformly distributed if the ergodic means A N (t) = 1 |ΛN | n∈ΛN e n (t) tend to zero as N → ∞, for each t ∈ T, t = 0. Here, Λ N = Λ ∩ [1, N ]. If Λ is uniformly distributed, C Λ contains c 0 , and if C Λ contains c 0 , Λ cannot be a Rosenthal set (see [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF]). According to results of J. Bourgain (see [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF]) and F. Lust-Piquard ( [START_REF]Lust-Piquard, Bohr local properties of C Λ (T)[END_REF]), respectively, a random set Λ corresponding to selectors of mean δ k with kδ k → ∞ is almost surely uniformly distributed and if a subset E of a uniformly distributed set Λ has positive upper density in Λ, i.e. if lim sup N

|E∩[1,N ]|

|Λ∩[1,N ] > 0, then C E contains c 0 , and E is non-Rosenthal.

In [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF], we had given a fairly complicated proof of the following theorem (labelled as Theorem II.7): Theorem 3.1 There exists a subset Λ of the integers, which is uniformly distributed, and contains a subset E of positive integers with the following properties:

1) E is a 4 3 -Rider set, but is not q-Rider for q < 4/3, a U C-set, and a Λ(q)-set for all q < ∞;

2) E is of positive upper density inside Λ; in particular, C E contains c 0 and E is not a Rosenthal set.

We shall show here that the use of Theorem 2.1 allows a substantially simplified proof, which avoids a double random selection. We first need the following simple lemma. Lemma 3.2 Let A be a finite subset of the integers, of cardinality n ≥ 2; let v = (e j ) j∈A , considered as an n-tuple of elements of the Banach space E = L Ψ2 = L Ψ2 (T, m), and let σ be its weak l 2 -norm. Then:

σ ≤ C 0 n log n , (3.1)
where C 0 is a numerical constant.

Proof. Let a = (a j ) j∈A be such that j∈A |a j | 2 = 1. Let f = f a = j∈A a j e j , and M = f ∞ . By Hölder's inequality, we have

f p √ p ≤ M √ p M 2/p for 2 < p < ∞.
Since M ≤ √ n, we get

f p √ p ≤ √ n √ p n 1/p ≤ C n log n . By Stirling's formula, f Ψ2 ≈ sup p>2 f p √ p , so the lemma is proved, since σ = sup a f a Ψ2
We now turn to the shortened proof of Theorem 3.1.

Let I n = [2 n , 2 n+1 [, n ≥ 2 ; δ k = c n 2 n if k ∈ I n (c > 0). Let (ε k ) k be
a sequence of "selectors", i.e. independent, (0, 1)-valued, random variables of expectation E ε k = δ k , and let Λ = Λ(ω) be the random set of positive integers defined by Λ = {k ≥ 1 ; ε k = 1}. We set also Λ n = Λ ∩ I n and

σ n = E |Λ n | = k∈In δ k = cn.
We shall now need the following lemma (the notation Ψ A is defined at the beginning of the section). Lemma 3.3 Almost surely, for n large enough:

c 2 n ≤ |Λ n | ≤ 2cn ; (3.2) 
Ψ Λn ≤ C ′′ |Λ n | 1/2 . (3.3) 
Proof : (3.2) is the easier part of Lemma II.9 in [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF]. To prove (3.3), we recall an inequality due to G. Pisier [START_REF] Pisier | Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues[END_REF]: if (X k ) is a sequence of independent, centered and square-integrable, random variables of respective variances V (X k ), we have:

E k X k e k Ψ2 ≤ C 1 k V (X k ) 1/2 . (3.4) 
Applying (3.4) to the centered variables X k = ε kδ k , we get, assuming c ≤ 1:

E k∈In (ε k -δ k )e k Ψ2 ≤ C 1 k∈In δ k (1 -δ k ) 1/2 ≤ C 1 k∈In δ k 1/2 ≤ C 1 √ n. Now, set Z n = k∈In (ε k -δ k )e k Ψ2 .
Let λ be a fixed real number > 1, and C 0 be as in Lemma 3.2. Applying Theorem 2.1 with C = 32, and t n = λ 32C 2 0 n, we get, using Lemma 3.2:

P (Z n -E Z n > t n ) ≤ exp - t 2 n 32σ 2 ≤ exp - 32λ 2 C 2 0 n log n 32C 2 0 n = n -λ 2 .
By the Borel-Cantelli Lemma, we have almost surely, for n large enough:

Z n ≤ E Z n + t n ≤ (C 1 + 4C 0 λ) √ n = C 2 √ n.
For such ω's and n's, it follows that:

Ψ Λn = k∈In ε k e k Ψ2 ≤ Z n + k∈In δ k e k Ψ2 ≤ Z n + n 2 n k∈In e k Ψ2 ≤ C 2 √ n + n 2 n C 0 2 n √ log 2 n =: C 3 √ n,
because, with the notations of Lemma 3.2, we have:

k∈In e k Ψ2 ≤ |I n |σ ≤ 2 n/2 C 0 2 n 2 √ log 2 n •
This ends the proof of Lemma 3.3, because we know that n ≤ 2 c |Λ n | for large n, almost surely, and therefore

Ψ Λn ≤ C 3 2 c |Λ n | 1/2 =: c ′′ |Λ n | 1/2 ,
a.s. . We now prove Theorem 3.1 as follows: let us fix a point ω ∈ Ω in such a way that Λ = Λ(ω) is uniformly distributed and that Λ n verifies (3.2) and (3.3) for n ≥ n 0 ; this is possible from [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF] and from Lemma 3.3. We then use a result of the third-named author ( [START_REF] Rodríguez-Piazza | Caractérisation des ensembles p-Sidon p.s[END_REF]), asserting that there is a numerical constant δ > 0 such that each finite subset A of Z * contains a quasi-independent subset B such that |B| ≥ δ |A| ΨA 2 (recall that a subset Q of Z is said to be quasi-independent if, whenever n 1 , . . . , n k ∈ Q, the equality k j=1 θ j n j = 0 with θ j = 0, -1, +1 holds only when θ j = 0 for all j). This allows us to select inside each Λ n a quasi-independent subset E n such that:

|E n | ≥ δ |Λ n | Ψ Λn 2 ≥ δ c ′′ 2 |Λ n | =: δ ′ |Λ n | . (3.5) 
A combinatorial argument (see [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF], p. 128-129) shows that, if E = ∪ n>n0 E n , then each finite A ⊂ E contains a quasi-independent subset B ⊆ A such that |B| ≥ δ|A| 1/2 . By [START_REF] Rodríguez-Piazza | Caractérisation des ensembles p-Sidon p.s[END_REF], E is a 4 3 -Rider set. The set E has all the required properties. Indeed, it follows from Lemma 3.2, a) that

|E ∩ [1, N ]| ≥ δ(log N ) 2 . If now E is p-Rider, we must have |E ∩[1, N ]| ≤ C(log N ) p 2-p ; therefore 2 ≤ p
2-p , so p ≥ 4/3. The fact that E is both U C and Λ(q) is due to the local character of these notions, and to the fact that the sets E∩[2 n , 2 n+1 [= E n are by construction quasi-independent (as detailed in [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF]). On the other hand, since each E n is approximately proportional to Λ n , E is of positive upper density in Λ. Now Λ is uniformly distributed (by Bourgain's criterion: see [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF], p. 115). Therefore, by the result of F. Lust-Piquard ( [START_REF]Lust-Piquard, Bohr local properties of C Λ (T)[END_REF], and see Theorem I.9, p. 114 in [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF]), C E contains c 0 , which prevents E from being a Rosenthal set. Λ is p-Rider, but q-Rider for no q < p; b) Λ is Λ(q) for all q < ∞; c) Λ is uniformly distributed; in particular, it is dense in the Bohr group and

C Λ contains c 0 ; d) Λ is not a U C-set.
Remark. This supports the conjecture that p-Rider sets with p > 4/3 are not of the same nature as p-Rider sets for p < 4/3 (see also [START_REF] Lefèvre | Lacunary sets and function spaces with finite cotype[END_REF], Theorem 3.1. and [START_REF] Lefèvre | p-Rider sets are q-Sidon sets[END_REF]).

The novelty here is d), which answers in the negative a question of [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF] and we shall mainly concentrate on it, although we shall add some details for a),b), c), since the proof of Theorem II.10 in [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF] is too sketchy and contains two small misprints (namely ( * ) and ( * * ), p. 130). 

Recall that the

U C-constant U (E) of a set E of positive integers is the smallest constant M such that S N f ∞ ≤ M f ∞ for every f ∈ C E and
P U σ(ω) ≤ γ log 2 + δN log N ≤ 5 N 3 , (4.1)
where γ is a positive numerical constant.

We now turn to the proof of Theorem 4.1. As in [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF], we set, for a fixed β > α:

M n = n βn ; Λ n = Λ ∩ [1, n] ; Λ * n = Λ ∩ [M n , M n+1 [. (4.2) 
We need the following technical lemma, whose proof is postponed (and is needed only for a), b), c)). , where σ j = δ 1 + . . . + δ j , and C is a numerical constant.

In our case, with M = M n , this lemma gives :

P [Ω n (M )] ≪ C n n n j>M (log j) 2α j 2 (log log j) 2α+2 (log j) α+1 (log log j) α+1 n-2 ≪ C n n n ∞ M (log t) (α+1)n+2α (log log t) (α+1)n+2α+2 dt t 2
and an integration by parts (see [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF], p. 117-118) now gives:

P [Ω n (M )] ≪ C n n n 1 M (log M ) (α+1)n+2α (log log M ) (α+1)n+2α+2 ≪ C n n n 1 n βn (n log n) (α+1)n+2α (log n) (α+1)n+2α+2 ≪ n 2α C n n (β-α)n (log n) 2 ;
then the assumption β > α (which reveals its importance here!) shows that n P [Ω n (M n )] < ∞, so that, almost surely Λ(ω) ∩ [M n , ∞[ contains no relation of length n, for n ≥ n 0 . Having this property at our disposal, we prove (exactly as in [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF], p. 119-120) that Λ is p-Rider. It is not q-Rider for q < p, because then |Λ Mn | ≪ (log M n ) q 2-q ≪ (n log n) q 2-q , whereas (4.3) of Lemma 4.3 shows that |Λ Mn | ≫ n α+1 , with α + 1 = p 2-p > q 2-q • This proves a). Conditions b),c) are clearly explained in [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF].

4Theorem 4 . 1

 41 p-Rider sets, with p > 4/3, which are not U Csets Let p ∈]4 3 , 2[, so that α = 2(p-1) 2-p > 1. As we mentioned in the Introduction, the random set Λ = Λ(ω) of integers in Theorem II.10 of[START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF] corresponds to selectors ε k with mean δ k = c (log k) α k(log log k) α+1 • We shall prove the following: The random set Λ corresponding to selectors of mean δ k = c (log k) α k(log log k) α+1 has almost surely the following properties: a)

  every non-negative integer N , where S N f = N -N f (k)e k . We shall use the following result of Kashin and Tzafriri [3]: Theorem 4.2 Let N ≥ 1 be an integer and ε ′ 1 , . . . , ε ′ N be selectors of equal mean δ. Set σ(ω) = {k ≤ N ; ε ′ k (ω) = 1}. Then:

Lemma 4 . 3 . 3 ) 4 . 4

 43344 We have almost surely for large n|Λ Mn | ≈ n α+1 ; |Λ * n | ≈ n α . (4Lemma Let n ≥ 2 and M be integers. SetΩ n (M ) = {ω | Λ(ω) ∩ [M, ∞[ contains at least a relation of length n}.

Observe that, for k ∈ Λ * n , one has:

where N n = M n+1 -M n is the number of elements of the support of Λ * n (note that N n ∼ M n+1 ), and where q n is such that

We can adjust the constants so as to have

) and the fact that U (E + a) = U (E) for any set E of positive integers and any non-negative integer a that:

for n large enough. But we see from (4.3) and (4.2) that:

and this tends to infinity since α > 1. This shows that Λ ′ is almost surely non-U C. And due to the construction of the ε ′ k 's, we have: Λ ⊇ Λ ′ almost surely. This of course implies that Λ is not a U C-set either (almost surely), ending the proof of d) in Theorem 4.1.

We now indicate a proof of the lemma. Almost surely, |Λ Mn | behaves for large n as:

Similarly, |Λ * n | behaves almost surely as:

To finish the proof, we shall use a lemma of [START_REF] Li | Some new thin sets of integers in Harmonic Analysis[END_REF] (recall that a relation of length n in A ⊆ Z * is a (-1, 0, +1)-valued sequence (θ k ) k∈A such that k∈A θ k k = 0 and k∈A |θ k | = n):