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On some random thin sets of integers

Daniel Li – Hervé Queffélec – Luis Rodŕıguez-Piazza

Abstract

We show how different random thin sets of integers may have differ-

ent behaviour. First, using a recent deviation inequality of Boucheron,

Lugosi and Massart, we give a simpler proof of one of our results in

Some new thin sets of integers in Harmonic Analysis, Journal d’Analyse
Mathématique 86 (2002), 105–138, namely that there exist 4

3
-Rider sets

which are sets of uniform convergence and Λ(q)-sets for all q < ∞, but

which are not Rosenthal sets. In a second part, we show, using an older re-

sult of Kashin and Tzafriri that, for p >
4

3
, the p-Rider sets which we had

constructed in that paper are almost surely not of uniform convergence.

2000 MSC : primary : 43 A 46 ; secondary : 42 A 55 ; 42 A 61

Key words : Boucheron-Lugosi-Massart’s deviation inequality; Λ(q)-sets; p-
Rider sets; Rosenthal sets; selectors; sets of uniform convergence

1 Introduction

It is well-known that the Fourier series Sn(f, x) =
∑n

−n f̂(k)eikx of a 2π-
periodic continuous function f may be badly behaved: for example, it may di-
verge on a prescribed set of values of x with measure zero. Similarly, the Fourier
series of an integrable function may diverge everywhere. But it is equally well-
known that, as soon as the spectrum Sp (f) of f (the set of integers k at which

the Fourier coefficients of f do not vanish, i.e. f̂(k) 6= 0) is sufficiently “lacu-
nary”, in the sense of Hadamard e.g., then the Fourier series of f is absolutely
convergent if f is continuous and almost everywhere convergent if f is merely
integrable (and in this latter case f ∈ Lp for every p < ∞). Those facts have
given birth to the theory of thin sets Λ of integers, initiated by Rudin [15]:
those sets Λ such that, if Sp (f) ⊆ Λ (we shall write f ∈ BΛ when f is in some
Banach function space B contained in L1(T)) and Sp (f) ⊆ Λ), then Sn(f), or
f itself, is better behaved than in the general case. Let us for example recall
that the set Λ is said to be:
- a p-Sidon set (1 ≤ p < 2) if f̂ ∈ lp (and not only f̂ ∈ l2) as soon as f is contin-

uous and Sp (f) ⊆ Λ; this amounts to an “a priori inequality” ‖f̂‖p ≤ C‖f‖∞,
for each f ∈ CΛ; the case p = 1 is the celebrated case of Sidon (= 1-Sidon) sets;

- a p-Rider set (1 ≤ p < 2) if we have an a priori inequality ‖f̂‖p ≤ C [[f ]], for
every trigonometric polynomial with spectrum in Λ; here [[f ]] is the so-called
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Pisier norm of f =
∑

f̂(n)en, where en(x) = einx, i.e. [[f ]] = E ‖fω‖∞, where

fω =
∑

εn(ω)f̂(n)en, (εn) being an i.i.d. sequence of centered, ±1-valued, ran-
dom variables defined on some probability space (a Rademacher sequence), and
where E denotes the expectation on that space; this apparently exotic notion
(weaker than p-Sidonicity) turned out to be very useful when Rider [12] refor-
mulated a result of Drury (proved in the course of the result that the union of
two Sidon set sets is a Sidon set) under the form: 1-Rider sets and Sidon sets
are the same (in spite of some partial results, it is not yet known whether a
p-Rider set is a p-Sidon set: see [5] however, for a partial result);
- a set of uniform convergence (in short a UC-set) if the Fourier series of each
f ∈ CΛ converges uniformly, which amounts to the inequality ‖Sn(f)‖∞ ≤
C‖f‖∞, ∀f ∈ CΛ; Sidon sets are UC, but the converse is false;
- a Λ(q)-set, 1 < q < ∞, if every f ∈ L1

Λ is in fact in Lq, which amounts to
the inequality ‖f‖q ≤ Cq‖f‖1, ∀f ∈ L1

Λ. Sidon sets are Λ(q) for every q < ∞
(and even Cq ≤ C

√
q); the converse is false, except when we require Cq ≤ C

√
q

([11]);
- a Rosenthal set if every f ∈ L∞

Λ is almost everywhere equal to a continuous
function. Sidon sets are Rosenthal, but the converse in false.

This theory has long suffered from a severe lack of examples: those examples
were always, more or less, sums of Hadamard sets, and in that case the banachic
properties of the corresponding CΛ-spaces were very rigid. The use of random
sets (in the sense of the selectors method) of integers has significantly changed
the situation (see [8], and our paper [9]). Let us recall more in detail the
notation and setting of our previous work [9]. The method of selectors consists
in the following: let (εk)k≥1 be a sequence of independent, (0, 1)-valued random
variables, with respective means δk, defined on a probability space Ω, and to
which we attach the random set of integers Λ = Λ(ω), ω ∈ Ω, defined by
Λ(ω) = {k ≥ 1 ; εk(ω) = 1}.

The properties of Λ(ω) of course highly depend on the δk’s, and roughly
speaking the smaller the δk’s, the better CΛ, L1

Λ, . . . . In [7], and then, in
a much deeper way, in [9], relying on a probabilistic result of J. Bourgain on
ergodic means, and on a deterministic result of F. Lust-Piquard ([10]) on those
ergodic means, we had randomly built new examples of sets Λ of integers which
were both: locally thin from the point of view of harmonic analysis (their traces
on big segments [Mn, Mn+1] of integers were uniformly Sidon sets); regularly
distributed from the point of view of number theory, and therefore globally big
from the point of view of Banach space theory, in that the space CΛ contained an
isomorphic copy of the Banach space c0 of sequences vanishing at infinity. More
precisely, we have constructed subsets Λ ⊆ N which are thin in the following
respects: Λ is a UC-set, a p-Rider set for various p ∈ [1, 2[, a Λ(q)-set for every
q < ∞, and large in two respects: the space CΛ contains an isomorphic copy of
c0, and, most often, Λ is dense in the integers equipped with the Bohr topology.

Now, taking δk bigger and bigger, we had obtained sets Λ which were less and
less thin (p-Sidon for every p > 1, q-Rider, but s-Rider for no s < q, s-Rider for
every s > q, but not q-Rider), and, in any case Λ(q) for every q < ∞, and such
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that CΛ contains a subspace isomorphic to c0. In particular, in Theorem II.7,
page 124, and Theorem II.10, page 130, we take respectively δk ≈ log k

k and

δk ≈ (log k)α

k(log log k)α+1
, where α = 2(p−1)

2−p is an increasing function of p ∈ [1, 2), and

which becomes ≥ 1 as p becomes ≥ 4/3. The case δk = 1
k would correspond

(randomly) to Sidon sets (i.e. 1-Sidon sets).
After the proofs of Theorem II.7 and Theorem II.10, we were asking two

questions:
1) (p. 129) Our construction is very complicated and needs a second random

construction of a set E inside the random set Λ. Is it possible to give a simpler
proof?

2) (p. 130) In Theorem II.10, can we keep the property for the random set Λ
to be a UC-set, with high probability, when α > 1 (equivalently when p > 4

3 )?

The goal of this work is to answer affirmatively the first question (relying
on a recent deviation inequality of Boucheron, Lugosi and Massart [1]) and
negatively the second one (relying on an older result of Kashin and Tzafriri [3]).
This work is accordingly divided into three parts. In Section 2, we prove a (one-
sided) concentration inequality for norms of Rademacher sums. In Section 3,
we apply the concentration inequality to get a substantially simplified proof of
Theorem II.7 in [9]. Finally, in Section 4, we give a (stochastically) negative
answer to question 2 when p > 4

3 : almost surely, Λ will not be a UC-set; here,
we use the above mentionned result of Kashin and Tzafriri [3] on the non-UC
character of big random subsets of integers.

2 A one-sided inequality for norms of Rademacher
sums

Let E be a (real or complex) Banach space, v1, . . . , vn be vectors of E,
X1, . . . , Xn be independent, real-valued, centered, random variables, and let
Z =

∥

∥

∑n
1 Xjvj‖.

If |Xj | ≤ 1 a.s., it is well-known (see [6]) that:

P (|Z − E (Z)| > t) ≤ 2 exp

(

− t2

8
∑n

1 ‖vj‖2

)

, ∀t > 0. (2.1)

But often, the “strong” l2-norm of the n-tuple v = (v1, . . . , vn), namely
‖v‖strong = (

∑n
j=1 ‖vj‖2)1/2, is too large for (2.1) to be interesting, and it is

advisable to work with the “weak” l2-norm of v, defined by:

σ = ‖v‖weak = sup
ϕ∈BE∗

(

n
∑

1

|ϕ(vj)|2
)1/2

= sup
P |aj |2≤1

∥

∥

∥

n
∑

1

ajvj

∥

∥

∥
, (2.2)

where BE∗ denotes the closed unit ball of the dual space E∗.
If (Xj)j is a standard gaussian sequence (E Xj = 0, E X2

j = 1), this is
what Maurey and Pisier suceeded in doing, using either the Itô formula or the
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rotational invariance of the Xj ’s; they proved the following (see [8], Chapitre 8,
Théorème I.4):

P (|Z − E Z| > t) ≤ 2 exp
(

− t2

Cσ2

)

, ∀t > 0, (2.3)

where σ is as in (2.2), and C is a numerical constant, e.g. C = π2/2.

To the best of our knowledge, no inequality as simple and direct as (2.3) is
available for non-gaussian (e.g. for Rademacher variables) variables, although
several more complicated deviation inequalities are known: see e.g. [2], [6].

For the applications to Harmonic analysis which we have in view, where we
use the so-called “selectors method”, we precisely need an analogue of (2.3), in
the non-gaussian, uniformly bounded (and centered) case; we shall prove that
at least a one-sided version of (2.3) holds in this case, by showing the following
result, which is interesting for itself.

Theorem 2.1 With the previous notations, assume that |Xj | ≤ 1 a.s. . Then,
we have the one-sided estimate:

P (Z − E Z > t) ≤ exp
(

− t2

Cσ2

)

, ∀t > 0, (2.4)

where C > 0 is a numerical constant (C = 32, for example).

The proof of (2.4) will make use of a recent deviation inequality due to
Boucheron, Lugosi and Massart [1]. Before stating this inequality, we need
some notation.

Let X1, . . . , Xn be independent, real-valued random variables (here, we tem-
porarily forget the assumptions of the previous Theorem), and let (X ′

1, . . . , X
′
n)

be an independent copy of (X1, . . . , Xn).
If f : R

n → R is a given measurable function, we set Z = f(X1, . . . , Xn) and
Z ′

i = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn), 1 ≤ i ≤ n. With those notations, the

Boucheron-Lugosi-Massart Theorem goes as follows:

Theorem 2.2 Assume that there is some constant a, b ≥ 0, not both zero, such
that:

n
∑

i=1

(Z − Z ′
i)

21I(Z>Z′

i)
≤ aZ + b a.s. (2.5)

Then, we have the following one-sided deviation inequality:

P (Z > E Z + t) ≤ exp
(

− t2

4a E Z + 4b + 2at)

)

, ∀t > 0. (2.6)

Proof of Theorem 2.1. We shall in fact use a very special case of Theorem 2.2,
the case when a = 0; but, as the three fore-named authors remark, this special
case is already very useful, and far from trivial to prove! To prove (2.4), we
are going to check that, for f(X1, . . . , Xn) = ‖∑n

1 Xjvj‖ = Z, the assumption
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(2.5) holds for a = 0 and b = 4σ2. In fact, fix ω ∈ Ω and denote by I = Iω the
set of indices i such that Z(ω) > Z ′

i(ω). For simplicity of notation, we assume
that the Banach space E is real. Let ϕ = ϕω ∈ E∗ such that ‖ϕ‖ = 1 and
Z = ϕ

(
∑n

j=1 Xjvj) =
∑n

j=1 Xjϕ(vj).

For i ∈ I, we have Z ′
i(ω) = Z ′

i ≥ ϕ
(
∑

j 6=i Xjvj + X ′
ivi

)

, so that 0 ≤
Z −Z ′

i ≤
∑n

j=1 Xjϕ(vj)−
∑

j 6=i Xjϕ(vj)−X ′
iϕ(vi) = (Xi −X ′

i)ϕ(vi), implying

(Z − Z ′
i)

2 ≤ 4|ϕ(vi)|2. By summing those inequalities, we get:

n
∑

i=1

(Z − Z ′
i)

21I(Z>Z′

i)
=

∑

i∈I

(Z − Z ′
i)

2 ≤ 4
∑

i∈I

|ϕ(vi)|2 ≤ 4

n
∑

i=1

|ϕ(vi)|2 ≤ 4σ2

= 0.Z + 4σ2.

Let us observe the crucial role of the “conditioning” Z > Z ′
i when we want to

check that (2.5) holds. Now, (2.4) is an immediate consequence of (2.6). �

3 Construction of 4/3-Rider sets

We first recall some notations of [9]. Ψ2 denotes the Orlicz function Ψ2(x) =

ex2 − 1, and ‖ ‖Ψ2
is the corresponding Luxemburg norm. If A is a finite subset

of the integers, ΨA denotes the quantity ‖
∑

n∈A en‖Ψ2
, where en(t) = eint,

t ∈ R/2πZ = T, and T is equipped with its Haar measure m. Λ will always
be a subset of the positive integers N. Recall that Λ is uniformly distributed if
the ergodic means AN (t) = 1

|ΛN |
∑

n∈ΛN
en(t) tend to zero as N → ∞, for each

t ∈ T, t 6= 0. Here, ΛN = Λ ∩ [1, N ]. If Λ is uniformly distributed, CΛ contains
c0, and if CΛ contains c0, Λ cannot be a Rosenthal set (see [9]). According
to results of J. Bourgain (see [9]) and F. Lust-Piquard ([10]), respectively, a
random set Λ corresponding to selectors of mean δk with kδk → ∞ is almost
surely uniformly distributed and if a subset E of a uniformly distributed set Λ

has positive upper density in Λ, i.e. if lim supN
|E∩[1,N ]|
|Λ∩[1,N ] > 0, then CE contains

c0, and E is non-Rosenthal.

In [9], we had given a fairly complicated proof of the following theorem
(labelled as Theorem II.7):

Theorem 3.1 There exists a subset Λ of the integers, which is uniformly dis-
tributed, and contains a subset E of positive integers with the following proper-
ties:

1) E is a 4
3 -Rider set, but is not q-Rider for q < 4/3, a UC-set, and a

Λ(q)-set for all q < ∞;
2) E is of positive upper density inside Λ; in particular, CE contains c0 and

E is not a Rosenthal set.

We shall show here that the use of Theorem 2.1 allows a substantially simpli-
fied proof, which avoids a double random selection. We first need the following
simple lemma.

5



Lemma 3.2 Let A be a finite subset of the integers, of cardinality n ≥ 2; let
v = (ej)j∈A, considered as an n-tuple of elements of the Banach space E =
LΨ2 = LΨ2(T, m), and let σ be its weak l2-norm. Then:

σ ≤ C0

√

n

log n
, (3.1)

where C0 is a numerical constant.

Proof. Let a = (aj)j∈A be such that
∑

j∈A |aj |2 = 1. Let f = fa =
∑

j∈A ajej ,

and M = ‖f‖∞. By Hölder’s inequality, we have
‖f‖p√

p ≤ M√
p M2/p for 2 < p < ∞.

Since M ≤ √
n, we get

‖f‖p√
p ≤

√
n√

p n1/p ≤ C
√

n
log n . By Stirling’s formula,

‖f‖Ψ2
≈ supp>2

‖f‖p√
p , so the lemma is proved, since σ = supa ‖fa‖Ψ2

�

We now turn to the shortened proof of Theorem 3.1.

Let In = [2n, 2n+1[, n ≥ 2 ; δk = c n
2n if k ∈ In (c > 0).

Let (εk)k be a sequence of “selectors”, i.e. independent, (0, 1)-valued, ran-
dom variables of expectation E εk = δk, and let Λ = Λ(ω) be the random set of
positive integers defined by Λ = {k ≥ 1 ; εk = 1}. We set also Λn = Λ∩ In and
σn = E |Λn| =

∑

k∈In
δk = cn.

We shall now need the following lemma (the notation ΨA is defined at the
beginning of the section).

Lemma 3.3 Almost surely, for n large enough:

c

2
n ≤ |Λn| ≤ 2cn ; (3.2)

ΨΛn ≤ C′′|Λn|1/2 . (3.3)

Proof : (3.2) is the easier part of Lemma II.9 in [9]. To prove (3.3), we recall an
inequality due to G. Pisier [11]: if (Xk) is a sequence of independent, centered
and square-integrable, random variables of respective variances V (Xk), we have:

E

∥

∥

∥

∑

k

Xkek

∥

∥

∥

Ψ2

≤ C1

(

∑

k

V (Xk)
)1/2

. (3.4)

Applying (3.4) to the centered variables Xk = εk − δk, we get, assuming c ≤ 1:

E

∥

∥

∥

∑

k∈In

(εk − δk)ek

∥

∥

∥

Ψ2

≤ C1

(

∑

k∈In

δk(1 − δk)
)1/2

≤ C1

(

∑

k∈In

δk

)1/2

≤ C1

√
n.

Now, set Zn =
∥

∥

∑

k∈In
(εk−δk)ek

∥

∥

Ψ2
. Let λ be a fixed real number > 1, and C0

be as in Lemma 3.2. Applying Theorem 2.1 with C = 32, and tn = λ
√

32C2
0n,

we get, using Lemma 3.2:

P (Zn − E Zn > tn) ≤ exp
(

− t2n
32σ2

)

≤ exp
(

− 32λ2C2
0n log n

32C2
0n

)

= n−λ2

.
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By the Borel-Cantelli Lemma, we have almost surely, for n large enough:

Zn ≤ E Zn + tn ≤ (C1 + 4C0λ)
√

n = C2

√
n.

For such ω’s and n’s, it follows that:

ΨΛn =
∥

∥

∥

∑

k∈In

εkek

∥

∥

∥

Ψ2

≤ Zn +
∥

∥

∥

∑

k∈In

δkek

∥

∥

∥

Ψ2

≤ Zn +
n

2n

∥

∥

∥

∑

k∈In

ek

∥

∥

∥

Ψ2

≤ C2

√
n +

n

2n
C0

2n

√
log 2n

=: C3

√
n,

because, with the notations of Lemma 3.2, we have:

∥

∥

∥

∑

k∈In

ek

∥

∥

∥

Ψ2

≤
√

|In|σ ≤ 2n/2C0
2

n
2

√
log 2n

·

This ends the proof of Lemma 3.3, because we know that n ≤ 2
c |Λn| for large

n, almost surely, and therefore ΨΛn ≤ C3

√

2
c |Λn|1/2 =: c′′|Λn|1/2, a.s. . �

We now prove Theorem 3.1 as follows: let us fix a point ω ∈ Ω in such a way
that Λ = Λ(ω) is uniformly distributed and that Λn verifies (3.2) and (3.3) for
n ≥ n0; this is possible from [9] and from Lemma 3.3. We then use a result of
the third-named author ([13]), asserting that there is a numerical constant δ > 0
such that each finite subset A of Z

∗ contains a quasi-independent subset B such

that |B| ≥ δ
( |A|

ΨA

)2
(recall that a subset Q of Z is said to be quasi-independent

if, whenever n1, . . . , nk ∈ Q, the equality
∑k

j=1 θjnj = 0 with θj = 0,−1, +1
holds only when θj = 0 for all j). This allows us to select inside each Λn a
quasi-independent subset En such that:

|En| ≥ δ
( |Λn|

ΨΛn

)2

≥ δ

c′′2
|Λn| =: δ′|Λn| . (3.5)

A combinatorial argument (see [9], p. 128–129) shows that, if E = ∪n>n0
En,

then each finite A ⊂ E contains a quasi-independent subset B ⊆ A such that
|B| ≥ δ|A|1/2. By [13], E is a 4

3 -Rider set. The set E has all the required
properties. Indeed, it follows from Lemma 3.2, a) that |E ∩ [1, N ]| ≥ δ(log N)2.

If now E is p-Rider, we must have |E∩[1, N ]| ≤ C(log N)
p

2−p ; therefore 2 ≤ p
2−p

,

so p ≥ 4/3. The fact that E is both UC and Λ(q) is due to the local character of
these notions, and to the fact that the sets E∩[2n, 2n+1[= En are by construction
quasi-independent (as detailed in [9]). On the other hand, since each En is
approximately proportional to Λn, E is of positive upper density in Λ. Now Λ
is uniformly distributed (by Bourgain’s criterion: see [9], p. 115). Therefore,
by the result of F. Lust-Piquard ([10], and see Theorem I.9, p. 114 in [9]), CE

contains c0, which prevents E from being a Rosenthal set. �
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4 p-Rider sets, with p > 4/3, which are not UC-
sets

Let p ∈]43 , 2[, so that α = 2(p−1)
2−p > 1. As we mentioned in the Introduction,

the random set Λ = Λ(ω) of integers in Theorem II.10 of [9] corresponds to

selectors εk with mean δk = c (log k)α

k(log log k)α+1 · We shall prove the following:

Theorem 4.1 The random set Λ corresponding to selectors of mean δk =

c (log k)α

k(log log k)α+1 has almost surely the following properties:

a) Λ is p-Rider, but q-Rider for no q < p;
b) Λ is Λ(q) for all q < ∞;
c) Λ is uniformly distributed; in particular, it is dense in the Bohr group

and CΛ contains c0;
d) Λ is not a UC-set.

Remark. This supports the conjecture that p-Rider sets with p > 4/3 are not
of the same nature as p-Rider sets for p < 4/3 (see also [4], Theorem 3.1. and
[5]).

The novelty here is d), which answers in the negative a question of [9] and
we shall mainly concentrate on it, although we shall add some details for a),b),
c), since the proof of Theorem II.10 in [9] is too sketchy and contains two small
misprints (namely (∗) and (∗∗), p. 130).

Recall that the UC-constant U(E) of a set E of positive integers is the
smallest constant M such that ‖SNf‖∞ ≤ M‖f‖∞ for every f ∈ CE and every

non-negative integer N , where SNf =
∑N

−N f̂(k)ek. We shall use the following
result of Kashin and Tzafriri [3]:

Theorem 4.2 Let N ≥ 1 be an integer and ε′1, . . . , ε
′
N be selectors of equal

mean δ. Set σ(ω) = {k ≤ N ; ε′k(ω) = 1}. Then:

P

(

U
(

σ(ω)
)

≤ γ log
(

2 +
δN

log N

))

≤ 5

N3
, (4.1)

where γ is a positive numerical constant.

We now turn to the proof of Theorem 4.1. As in [9], we set, for a fixed
β > α:

Mn = nβn ; Λn = Λ ∩ [1, n] ; Λ∗
n = Λ ∩ [Mn, Mn+1[. (4.2)

We need the following technical lemma, whose proof is postponed (and is needed
only for a), b), c)).

Lemma 4.3 We have almost surely for large n

|ΛMn | ≈ nα+1 ; |Λ∗
n| ≈ nα. (4.3)
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Observe that, for k ∈ Λ∗
n, one has:

δk = c
(log k)α

k(log log k)α+1
≫ (n log n)α

Mn+1(log n)α+1
=

nα

Mn+1 log n
=:

qn

Nn

,

where Nn = Mn+1 − Mn is the number of elements of the support of Λ∗
n (note

that Nn ∼ Mn+1), and where qn is such that

qn ≈ nα

log n
· (4.4)

We can adjust the constants so as to have δk ≥ qn/Nn for k ∈ Λ∗
n. Now,

we introduce selectors (ε′′k) independent of the εj’s, of respective means δ′′k =
qn/(Nnδk). Then the selectors ε′k = εkε′′k have means δ′k = qn/Nn for k ∈ Λ∗

n,
and we have δk ≥ δ′k for each k ≥ 1.

Let Λ′ = {k ; ε′k = 1} and Λ′∗
n = Λ′ ∩ [Mn, Mn+1[. It follows from (4.1)

and the fact that U(E + a) = U(E) for any set E of positive integers and any
non-negative integer a that:

P

(

U(Λ′∗
n) ≤ γ log

(

2 +
qn

log Nn

))

≤ 5N−3
n .

By the Borel-Cantelli Lemma, we have almost surely U(Λ′∗
n) > γ log

(

2+ qn

log Nn

)

for n large enough. But we see from (4.3) and (4.2) that:
qn

log Nn
≈ nα

(log n)(n log n)
=

nα−1

(log n)2
,

and this tends to infinity since α > 1. This shows that Λ′ is almost surely non-
UC. And due to the construction of the ε′k’s, we have: Λ ⊇ Λ′ almost surely.
This of course implies that Λ is not a UC-set either (almost surely), ending the
proof of d) in Theorem 4.1. �

We now indicate a proof of the lemma. Almost surely, |ΛMn | behaves for
large n as:

E (|ΛMn |) =

Mn
∑

1

(log k)α

k(log log k)α+1
≈

∫ Mn

e2

(log t)α

t(log log t)α+1
dt

=

∫ log Mn

2

xαdx

(log x)α+1
≈ 1

(log n)α+1

∫ log Mn

2

xαdx ≈ (log Mn)α+1

(log n)α+1
≈ nα+1.

Similarly, |Λ∗
n| behaves almost surely as:

∫ Mn+1

Mn

(log t)α

t(log log t)α+1
dt =

∫ log Mn+1

log Mn

xα

(log x)α+1
dx ≈ 1

(log n)α+1
xαdx

≈ 1

(log n)α+1
(log Mn+1 − log Mn)(log Mn)α

≈ 1

(log n)α+1
log n(n log n)α ≈ nα. �

To finish the proof, we shall use a lemma of [9] (recall that a relation of length
n in A ⊆ Z

∗ is a (−1, 0, +1)-valued sequence (θk)k∈A such that
∑

k∈A θk k = 0
and

∑

k∈A |θk| = n):

9



Lemma 4.4 Let n ≥ 2 and M be integers. Set

Ωn(M) = {ω | Λ(ω) ∩ [M,∞[ contains at least a relation of length n}.

Then:
P [Ωn(M)] ≤ Cn

nn

∑

j>M

δ2
j σn−2

j ,

where σj = δ1 + . . . + δj, and C is a numerical constant.

In our case, with M = Mn, this lemma gives :

P [Ωn(M)] ≪ Cn

nn

∑

j>M

(log j)2α

j2(log log j)2α+2

[

(log j)α+1

(log log j)α+1

]n−2

≪ Cn

nn

∫ ∞

M

(log t)(α+1)n+2α

(log log t)(α+1)n+2α+2

dt

t2

and an integration by parts (see [9], p. 117–118) now gives:

P [Ωn(M)] ≪ Cn

nn

1

M

(log M)(α+1)n+2α

(log log M)(α+1)n+2α+2

≪ Cn

nn

1

nβn

(n log n)(α+1)n+2α

(log n)(α+1)n+2α+2
≪ n2αCn

n(β−α)n(log n)2
;

then the assumption β > α (which reveals its importance here!) shows that
∑

n P [Ωn(Mn)] < ∞, so that, almost surely Λ(ω)∩ [Mn,∞[ contains no relation
of length n, for n ≥ n0. Having this property at our disposal, we prove (exactly
as in [9], p. 119–120) that Λ is p-Rider. It is not q-Rider for q < p, because then

|ΛMn | ≪ (log Mn)
q

2−q ≪ (n log n)
q

2−q , whereas (4.3) of Lemma 4.3 shows that
|ΛMn | ≫ nα+1, with α + 1 = p

2−p > q
2−q · This proves a). Conditions b),c) are

clearly explained in [9]. �
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[9] D. Li, H. Queffélec, L. Rodŕıguez-Piazza, Some new thin sets of
integers in Harmonic Analysis, Journal d’Analyse Mathématique 86 (2002),
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