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We analyze the asymptotic stability of a nonlinear system of two differential equations with delay describing the dynamics of blood cell production. This process takes place in the bone marrow where stem cells differentiate throughout divisions in blood cells. Taking into account an explicit role of the total population of hematopoietic stem cells on the introduction of cells in cycle, we are lead to study a characteristic equation with delay-dependent coefficients. We determine a necessary and sufficient condition for the global stability of the first steady state of our model, which describes the population's dying out, and we obtain the existence of a Hopf bifurcation for the only nontrivial positive steady state, leading to the existence of periodic solutions. These latter are related to dynamical diseases affecting blood cells known for their cyclic nature.

Introduction

Blood cell production process is based upon the differentiation of so-called hematopoietic stem cells, located in the bone marrow. These undifferentiated and unobservable cells have unique capacities of differentiation (the ability to produce cells committed to one of the three blood cell types: red blood cells, white cells or platelets) and self-renewal (the ability to produce cells with the same properties).

Mathematical modelling of hematopoietic stem cells dynamics has been introduced at the end of the seventies by Mackey [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF]. He proposed a system of two differential equations with delay where the time delay describes the cell cycle duration. In this model, hematopoietic stem cells are separated in proliferating and nonproliferating cells, these latter being introduced in the proliferating phase with a nonlinear rate depending only upon the nonproliferating cell population. The resulting system of delay differential equations is then uncoupled, with the nonproliferating cells equation containing the whole information about the dynamics of the hematopoietic stem cell population. The stability analysis of the model in [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF] highlighted the existence of periodic solutions, through a Hopf bifurcation, describing in some cases diseases affecting blood cells, characterized by periodic oscillations [START_REF] Haurie | Cyclical neutropenia and other hematological disorders: A review of mechanisms and mathematical models[END_REF].

The model of Mackey [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF] has been studied by many authors, mainly since the beginning of the nineties. Mackey and Rey [START_REF] Mackey | Multistability and boundary layer development in a transport equation with retarded arguments[END_REF][START_REF] Mackey | Propagation of population pulses and fronts in a cell replication problem: non-locality and dependence on the initial function[END_REF][START_REF] Mackey | Transitions and kinematics of reaction-convection fronts in a cell population model[END_REF] numerically studied the behavior of a structured model based on the model in [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF], stressing the existence of strange behaviors of the cell populations (like oscillations, or chaos). Mackey and Rudnicky [START_REF] Mackey | Global stability in a delayed partial differential equation describing cellular replication[END_REF][START_REF] Mackey | A new criterion for the global stability of simultaneous cell replication and maturation processes[END_REF] developed the description of blood cell dynamics through an age-maturity structured model, stressing the influence of hematopoietic stem cells on blood production. Their model has been further developed by Dyson et al. [START_REF] Dyson | A nonlinear age and maturity structured model of population dynamics. I: Basic theory[END_REF][START_REF] Dyson | A nonlinear age and maturity structured model of population dynamics. II: Chaos[END_REF][START_REF] Dyson | Asynchronous exponential growth in an age structured population of proliferating and quiescent cells[END_REF], Adimy and Pujo-Menjouet [START_REF] Adimy | Asymptotic behaviour of a singular transport equation modelling cell division[END_REF], Adimy and Crauste [START_REF] Adimy | Global stability of a partial differential equation with distributed delay due to cellular replication[END_REF][START_REF] Adimy | Existence, positivity and stability for a nonlinear model of cellular proliferation[END_REF] and Adimy et al. [START_REF] Adimy | On the stability of a maturity structured model of cellular proliferation[END_REF]. Recently, Adimy et al. [START_REF] Adimy | A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia[END_REF][START_REF] Adimy | Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics[END_REF] studied the model proposed in [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF] taking into account that cells in cycle divide according to a density function (usually gamma distributions play an important role in cell cycles durations), contrary to what has been assumed in the above-cited works, where the division has always been assumed to occur at the same time.

More recently, Pujo-Menjouet and Mackey [START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF] and Pujo-Menjouet et al. [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF] gave a better insight into the model of Mackey [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF], highlighting the role of each parameter of the model on the appearance of oscillations and, more particularly, of periodic solutions, when the model is applied to the study of chronic myelogenous leukemia [START_REF] Fortin | Periodic chronic myelogenous leukemia: Spectral analysis of blood cell counts and etiological implications[END_REF].

Contrary to the assumption used in all of the above-cited works, we study, in this paper, the model introduced by Mackey [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF] considering that the rate of introduction in the proliferating phase, which contains the nonlinearity of this model, depends upon the total population of hematopoietic stem cells, and not only upon the nonproliferating cell population. The introduction in cell cycle is partly known to be a consequence of an activation of hematopoietic stem cells due to molecules fixing on them. Hence, the entire population is in contact with these molecules and it is reasonable to think that the total number of hematopoietic stem cells plays a role in the introduction of nonproliferating cells in the proliferating phase.

The first consequence is that the model is not uncoupled, and the nonproliferating cell population equation does not contain the whole information about the dynamics of blood cell production, contrary to the model in [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF][START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF]. Therefore, we are lead to the study of a modified system of delay differential equations (system (3)-( 4)), where the delay describes the cell cycle duration, with a nonlinear part depending on one of the two populations.

Secondly, while studying the local asymptotic stability of the steady states of our model, we have to determine roots of a characteristic equation taking the form of a first degree exponential polynomial with delay-dependent coefficients. For such equations, Beretta and Kuang [START_REF] Beretta | Geometric stability switch criteria in delay differential systems with delay dependent parameters[END_REF] developed a very useful and powerful technic, that we will apply to our model.

Our aim is to show, through the study of the steady states' stability, that our model, described in (3)-( 4), exhibits similar properties than the model in [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF] and that it can be used to model blood cells production dynamics with good results, in particularly when one is interested in the appearance of periodic solutions in blood cell dynamics models. We want to point out that the usually accepted assumption about the introduction rate may be limitative and that our model can display interesting dynamics, such as stability switches, that have never been noted before.

The present work is organized as follows. In the next section we present our model, stated in equations ( 3) and (4). We then determine the steady states of this model. In section 3, we linearize the system (3)-( 4) about a steady state and we deduce the associated characteristic equation. In section 4, we establish necessary and sufficient conditions for the global asymptotic stability of the trivial steady state (which describes the extinction of the hematopoietic stem cell population). In section 5, we focus on the asymptotic stability of the unique nontrivial steady state. By studying the existence of pure imaginary roots of a first degree exponential polynomial with delay-dependent coefficients, we obtain the existence of a critical value of the time delay for which a Hopf bifurcation occurs at the positive steady state, leading to the appearance of periodic solutions. Using numerical illustrations, we show how these solutions can be related to periodic hematological diseases in section 6, and we note the existence of a stability switch. We conclude with a discussion.

A Nonlinear Model of Blood Cell Production

Let consider a population of hematopoietic stem cells, located in the bone marrow. These cells actually perform a succession of cell cycles, in order to differentiate in blood cells (white cells, red blood cells and platelets). According to early works, by Burns and Tannock [START_REF] Burns | On the existence of a G 0 phase in the cell cycle[END_REF] for example, we assume that cells in cycle are divided in two groups: proliferating and nonproliferating cells. The respective proliferating and nonproliferating cell populations are denoted by P and N .

All hematopoietic stem cells die with constant rates, namely γ > 0 for proliferating cells and δ > 0 for nonproliferating cells. These latter are introduced in the proliferating phase, in order to mature and divide, with a rate β. At the end of the proliferating phase, cells divide in two daughter cells which immediately enter the nonproliferating phase.

Then the populations P and N satisfy the following evolution equations (see Mackey [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF] or Pujo-Menjouet and Mackey [START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF]),

dP dt (t) = -γP (t) + βN (t) -e -γτ βN (t -τ ), (1) 
dN dt (t) = -δN (t) -βN (t) + 2e -γτ βN (t -τ ). ( 2 
)
In each of the above equations, τ denotes the average duration of the proliferating phase. The term e -γτ then describes the survival rate of proliferating cells. The last terms in the right hand side of equations ( 1) and (2) account for cells that have performed a whole cell cycle and leave (enter, respectively) the proliferating phase (the nonproliferating phase, respectively). These cells are in fact nonproliferating cells introduced in the proliferating phase a time τ earlier. The factor 2 in equation ( 2) represents the division of each proliferating hematopoietic stem cell in two daughter cells. We assume that the rate of introduction β depends upon the total population of hematopoietic stem cells, that we denote by S. With our notations, S = P +N . This assumption stresses the fact that the nature of the trigger signal for introduction in the proliferating phase is the result of an action on the entire cell population. For example, it can be caused by molecules entering the bone marrow and fixing on hematopoietic stem cells, activating or inhibiting their proliferating capacity. This occurs in particularly for the production of red blood cells. Their regulation is mainly mediated by an hormone (a growth factor, in fact) called erythropoietin, produced by the kidneys under a stimulation by circulating blood cells (see Bélair et al. [START_REF] Bélair | Age-structured and two-delay models for erythropoiesis[END_REF], Mahaffy et al. [START_REF] Mahaffy | Hematopoietic model with moving boundary condition and state dependent delay[END_REF]).

Hence we assume that β = β(S(t)).

The function β is supposed to be continuous and positive on [0, +∞), and strictly decreasing. This latter assumption describes the fact that the less hematopoietic stem cells in the bone marrow, the more cells introduced in the proliferative compartment [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF][START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF]. Furthermore, we assume that lim S→∞ β(S) = 0.

Adding equations ( 1) and (2) we can then deduce an equation satisfied by the total population of hematopoietic stem cells S(t). We assume, for the sake of simplicity, that proliferating and nonproliferating cells die with the same rate, that is δ = γ. Then the populations N and S satisfy the following nonlinear system with time delay τ , corresponding to the cell cycle duration,

dS dt (t) = -δS(t) + e -δτ β(S(t -τ ))N (t -τ ), (3) 
dN dt (t) = -δN (t) -β(S(t))N (t) + 2e -δτ β(S(t -τ ))N (t -τ ). ( 4 
)
From Hale and Verduyn lunel [START_REF] Hale | Introduction to functional differential equations[END_REF], for each continuous initial condition, system (3)-( 4) has a unique continuous solution (S(t), N (t)), well-defined for t ≥ 0. Lemma 2.1. For all nonnegative initial condition, the unique solution (S(t), N (t)) of ( 3)-( 4) is nonnegative.

Proof. First assume that there exists ξ > 0 such that N (ξ) = 0 and N (t) > 0 for t < ξ. Then, from (4) and since β is a positive function,

dN dt (ξ) = 2e -δτ β(S(ξ -τ ))N (ξ -τ ) > 0.
Consequently, N (t) ≥ 0 for t > 0.

If there exists ζ > 0 such that S(ζ) = 0 and S(t) > 0 for t < ζ, then the same reasoning, using (3), leads to dS dt

(ζ) = e -δτ β(S(ζ -τ ))N (ζ -τ ) > 0,
and we deduce that S(t) ≥ 0 for t > 0.

Remark 1. The positivity of S and N , solutions of system (3)-( 4), does not a priori implies that P = S -N is nonnegative. Using a classical variation of constant formula, the solutions P (t) of ( 1) are given, for t ≥ 0, by

P (t) = e -δt P (0) + e -δt t 0 e δθ β(S(θ))N (θ) -e δ(θ-τ ) β(S(θ -τ ))N (θ -τ )dθ.
Setting the change of variable σ = θτ , we obtain

P (t) = e -δt P (0) - 0 -τ e δθ β(S(θ))N (θ)dθ + e -δt t t-τ e δθ β(S(θ))N (θ)dθ.
Consequently, P (t) ≥ 0 for t ≥ 0 if

P (0) ≥ 0 -τ e δθ β(S(θ))N (θ)dθ, that is if S(0) ≥ N (0) + 0 -τ e δθ β(S(θ))N (θ)dθ.
This condition is biologically relevant since 0 -τ e δθ β(S(θ))N (θ)dθ represents the population of cells that have been introduced in the proliferating phase at time θ ∈ [-τ, 0] and that have survived at time t = 0. Hence, from a biological point of view, the population in the proliferating phase at time t = 0 should be larger than this quantity.

In the stability analysis of system (3)-( 4), the existence of stationary solutions, called steady states, is relevant since these particular solutions are potential limits of system (3)- [START_REF] Adimy | On the stability of a maturity structured model of cellular proliferation[END_REF].

A steady state of system ( 3)-( 4) is a solution (S, N ) satisfying

dS dt = dN dt = 0.
Let (S, N ) be a steady state of ( 3)-( 4). Then

δS = e -δτ β(S)N , (5) 
(δ + β(S))N = 2e -δτ β(S)N . (6) 
We immediately notice that (0, 0) is a steady state of system ( 3)-( 4), that we will denote, in the following, by E 0 . This steady state always exists. It describes the extinction of the hematopoietic stem cell population.

Assume that (S, N ) is a steady state of ( 3)-( 4) with S, N = 0. Then, from ( 5) and ( 6),

(2e -δτ -1)β(S) = δ and N = δS e -δτ β(S)
.

A necessary condition to obtain a nontrivial steady state is then 2e -δτ -1 > 0, that is

τ < ln(2) δ .
Under this condition, since the function β is decreasing, positive, and tends to zero at infinity, there exists S > 0 satisfying (2e -δτ -1)β(S) = δ,

if and only if (2e -δτ -1)β(0) > δ.

One can easily check that condition ( 8) is equivalent to

δ < β(0) and 0 ≤ τ < τ := 1 δ ln 2β(0) δ + β(0) . (9) 
In this case, S > 0 solution of ( 7) is unique, and

N = 2e -δτ -1 e -δτ S.
One can check that N ≤ S. These results are summed up in the next proposition.

Proposition 2.1. If inequality [START_REF] Bélair | Age-structured and two-delay models for erythropoiesis[END_REF] holds true, the system ( 3)-( 4) has exactly two steady states: E 0 = (0, 0) and E * = (S * , N * ), where S * > 0 is the unique solution of equation [START_REF] Adimy | Asymptotic behaviour of a singular transport equation modelling cell division[END_REF] and

N * = (2e -δτ -1)e δτ S * . If (2e -δτ -1)β(0) ≤ δ,
then system (3)-( 4) has only one steady state, namely E 0 = (0, 0).

In the next section, we linearize the system (3)-( 4) about one of its steady states in order to analyze its local asymptotic stability.

Linearization and Characteristic Equation

We are interested in the asymptotic stability of the steady states of system (3)-(4). To that aim, we linearize system (3)-( 4) about one of its steady state and we determine the associated characteristic equation. We assume that β is continuously differentiable on [0, +∞).

Let (S, N ) be a steady state of system (3)-( 4). From Proposition 2.1, (S, N ) is either E 0 or E * . The linearization of system ( 3)-( 4) about (S, N ) leads to the following system,

dS dt (t) = -δS(t) + e -δτ β(S)N (t -τ ) + e -δτ N β ′ (S)S(t -τ ), ( 10 
)
dN dt (t) = -(δ + β(S))N (t) -N β ′ (S)S(t) +2e -δτ β(S)N (t -τ ) + N β ′ (S)S(t -τ ) , (11) 
where we have used the notations S(t) and N (t) instead of S(t) -S and N (t) -N for the sake of simplicity.

The system ( 10)-( 11) can be written

   dS dt (t) dN dt (t)    = A 1 S(t) N (t) + A 2 S(t -τ ) N (t -τ ) ,
where

A 1 := -δ 0 -α -(δ + β(S)) , A 2 := e -δτ α β(S)
2α 2β(S) ,

and α = α(N , S) := N β ′ (S). ( 12 
)
The characteristic equation of system ( 10)-( 11) associated with the steady state (S, N ) is defined by det(λ -A 1e -λτ A 2 ) = 0.

After calculations, this equation reduces to

(λ + δ) λ + δ + β(S) -(2β(S) + α(N , S))e -δτ e -λτ = 0. ( 13 
)
We recall that the steady state (S, N ) is locally asymptotically stable when all roots of (13) have negative real parts and the stability can only be lost if eigenvalues cross the imaginary axis, that is if pure imaginary roots appear. One can notice that λ = -δ < 0 is always an eigenvalue of [START_REF] Dyson | A nonlinear age and maturity structured model of population dynamics. I: Basic theory[END_REF]. Therefore, we only focus on the equation

λ + δ + β(S) -(2β(S) + α(N , S))e -δτ e -λτ = 0. ( 14 
)
We first analyze, in the next section, the stability of the trivial steady state E 0 . We establish necessary and sufficient conditions for the population's dying out. Then, in section 5, we concentrate on the behavior of the positive steady state E * .

Global Asymptotic Stability of the Trivial Steady State:

Cell's Dying Out

We concentrate, in this section, on the stability of the steady state E 0 = (0, 0). From [START_REF] Dieudonné | Foundations of Modern Analysis[END_REF], α(0, 0) = 0, so, for S = N = 0, the characteristic equation ( 14) becomes

λ + δ + β(0) -2β(0)e -δτ e -λτ = 0. ( 15 
)
It is straightforward to see that equation ( 15) has a unique real eigenvalue, say λ 0 , and all other eigenvalues λ = λ 0 of (15) satisfy Re(λ) < λ 0 . Let consider the mapping λ → λ + δ + β(0) -2β(0)e -δτ e -λτ as a function of real λ. Then it is an increasing function from -∞ to +∞, yielding the existence and uniqueness of λ 0 .

Assume that λ = µ + iω = λ 0 satisfies [START_REF] Dyson | Asynchronous exponential growth in an age structured population of proliferating and quiescent cells[END_REF]. Then, considering the real part of ( 15), we get µλ 0 = 2β(0)e -δτ e -µτ cos(ωτ )e -λ0τ .

By contradiction, we assume that µ > λ 0 . Then e -µτ cos(ωτ )e -λ0τ < 0 and we obtain a contradiction. So µ ≤ λ 0 . Now if µ = λ 0 , then the previous equality implies that cos(ωτ ) = 1, for τ ≥ 0.

It follows that sin(ωτ ) = 0 and, considering the imaginary part of ( 15) with λ = µ + iω, given by ω + 2β(0)e -δτ e -µτ sin(ωτ ) = 0, we obtain ω = 0 and λ = λ 0 , which gives a contradiction. Therefore, µ < λ 0 . The real root λ 0 is negative if

(2e -δτ -1)β(0) < δ,
and all eigenvalues of (15) have negative real parts in this case. When condition (8) holds, λ 0 is positive. We can then conclude in the next proposition to the stability of E 0 .

Proposition 4.1. The trivial steady state E 0 = (0, 0) of system ( 3)-( 4) is locally asymptotically stable when

(2e -δτ -1)β(0) < δ, (16) 
and unstable when (2e -δτ -1)β(0) > δ.

Remark 2. When (2e -δτ -1)β(0) = δ,
then the unique real root of ( 15) is λ 0 = 0, and all other eigenvalues have negative real parts. One can easily check that λ 0 = 0 is a simple root of [START_REF] Dyson | Asynchronous exponential growth in an age structured population of proliferating and quiescent cells[END_REF], since the first derivative of the mapping λ → λ + δ + β(0) -2β(0)e -δτ e -λτ at λ 0 = 0 is

1 + 2β(0)τ e -δτ > 0.
Then the linear system is stable, but we cannot conclude to the asymptotic stability of the trivial steady state E 0 = (0, 0) of system ( 3)-( 4) without further analysis. This is done in Proposition 4.2.

When condition (16) holds true, E 0 is in fact the only steady state of system (3)-(4) (see Proposition 2.1). In this case, we can show that E 0 is globally asymptotically stable.

We first show the following result.
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Stability of a blood cell production model Lemma 4.1. Let (S(t), N (t)) be a solution of ( 3)-( 4). If lim t→+∞ N (t) = 0, then lim t→+∞ S(t) = 0.

Proof. Using (3), a classical variation of constant formula gives us, for t ≥ 0,

S(t) = e -δt S(0) + e -δt t 0 e δ(θ-τ ) β(S(θ -τ ))N (θ -τ )dθ.
Setting σ = θτ , this expression becomes

S(t) = e -δt S(0) + e -δt t-τ -τ e δσ β(S(σ))N (σ)dσ.
Let ε > 0 be fixed. Since N is assumed to tend to zero when t tends to ∞, there exists T > 0 such that

N (t) < ε δe δτ 2β(0) , for t ≥ T. (17) 
Then, for t ≥ T + τ ,

S(t) = e -δt S(0) + T -τ e δσ β(S(σ))N (σ)dσ + e -δt t-τ T e δσ β(S(σ))N (σ)dσ.
Using [START_REF] Gopalsamy | Stability and oscillations in delay differential equations of population dynamics[END_REF] and the fact that β(0) is a bound of β, we obtain, for t ≥ T + τ , Let t > 0 be such that e -δt S(0)

S(t) ≤ e -δt S(0) + T -τ e δσ β(S(σ))N (σ)dσ + ε δe δτ 2 e -δt
+ T -τ e δσ β(S(σ))N (σ)dσ < ε 2 , for t ≥ t.
Then, for t ≥ max{t, T + τ }, we obtain

S(t) < ε.
Thus, S(t) tends to zero as t tends to +∞, and the proof is complete.

We recall a very useful lemma, proved by Barbȃlat (see Gopalsamy [START_REF] Gopalsamy | Stability and oscillations in delay differential equations of population dynamics[END_REF]).

Lemma 4.2. Let f : [a, +∞) → R, a ∈ R, be a differentiable function. If lim t→+∞ f (t)
exists and f ′ (t) is uniformly continuous on (a, +∞), then

lim t→+∞ f ′ (t) = 0.
We then prove the following result, dealing with the global asymptotic stability of E 0 .

Proposition 4.2. Assume that

(2e -δτ -1)β(0) ≤ δ. ( 18 
)
Then all solutions (S(t), N (t)) of system ( 3)-( 4) converge to the trivial solution (0, 0). Hence E 0 is globally asymptotically stable and the cell populations dye out.

Proof. Let (S(t), N (t)) be a solution of ( 3)-( 4). We define, for t ≥ 0,

Y (t) = N (t) + 2e -δτ t t-τ β(S(θ))N (θ)dθ.
Using (4), we can check that

Y ′ (t) = N (t) (2e -δτ -1)β(S(t)) -δ . ( 19 
)
From condition [START_REF] Hale | Introduction to functional differential equations[END_REF] and the fact that β is decreasing, it follows that

Y ′ (t) ≤ 0 for t > 0.
Thus, Y is decreasing. Since Y is a nonnegative function, we deduce that there exists y ≥ 0 such that lim t→+∞

Y (t) = y.
In particularly, Y is bounded, and consequently N is also bounded.

We then deduce, with (4), that N ′ is bounded and, using a similar technic than the one used in the proof of Lemma 4.1, that S is bounded. Consequently, with (3), we obtain that S ′ is bounded.

From [START_REF] Haurie | Cyclical neutropenia and other hematological disorders: A review of mechanisms and mathematical models[END_REF] 

N (t) = 0 or lim t→+∞ (2e -δτ -1)β(S(t)) = δ.
First, assume that (16) holds true, that is (2e -δτ -1)β(0) < δ.

If 2e -δτ -1 > 0, then, since β is a decreasing function satisfying [START_REF] Fortin | Periodic chronic myelogenous leukemia: Spectral analysis of blood cell counts and etiological implications[END_REF], we deduce that (2e

-δτ -1)β(S(t)) ≤ (2e -δτ -1)β(0) < δ. If 2e -δτ -1 ≤ 0, then (2e -δτ -1)β(S(t)) ≤ 0 < δ.
Consequently, if it exists, lim t→+∞ (2e -δτ -1)β(S(t)) cannot be equal to δ and it follows that lim t→+∞ N (t) = 0.

From Lemma 4.1, we deduce that lim t→+∞ S(t) = 0, and the conclusion follows.

Second, assume that (2e -δτ -1)β(0) = δ.

Then, lim t→+∞ (2e -δτ -1)β(S(t)) = δ is equivalent to lim t→+∞ β(S(t)) = β(0). Since β is positive and decreasing, this is equivalent to lim t→+∞ S(t) = 0. It follows that either

lim t→+∞ N (t) = 0 or lim t→+∞ S(t) = 0.
If lim t→+∞ N (t) = 0, we conclude similarly to the previous case with Lemma 4.1. So we assume that lim t→+∞ S(t) = 0. From (3), we deduce that

lim t→+∞ β(S(t -τ ))N (t -τ ) = 0.
Consequently, either

lim t→+∞ β(S(t -τ )) = 0 or lim t→+∞ N (t -τ ) = 0.
Since lim t→+∞ S(t) = 0, then lim t→+∞ β(S(t-τ )) = β(0) > 0. Hence, lim t→+∞ N (t-τ ) = 0, and it follows that lim t→+∞ N (t) = 0. This concludes the proof.

Remark 3. Let C denote the set of continuous functions mapping [-τ, 0] into R + . One can check that the function V , defined for (ϕ, ψ) ∈ C 2 by

V (ϕ, ψ) = ψ(0) + 2e -δτ 0 -τ β(ϕ(θ))ψ(θ)dθ, satisfies V (ϕ, ψ) = ψ(0) (2e -δτ -1)β(ϕ(0)) -δ .
Hence, V is a Lyapunov functional (see Hale and Verduyn Lunel [START_REF] Hale | Introduction to functional differential equations[END_REF]) on the set

G = (ϕ, ψ) ∈ C 2 ; ψ(0) (2e -δτ -1)β(ϕ(0)) -δ ≤ 0 .
With assumption [START_REF] Hale | Introduction to functional differential equations[END_REF], G = C 2 . In the proof of Proposition 4.2, we did not directly use the properties of Lyapunov functionals, but the function Y is defined by

Y (t) = V (S t , N t ), for t ≥ 0,
where S t (respectively, N t ) is defined by S t (θ) = S(t + θ) (respectively,

N t (θ) = N (t + θ)), θ ∈ [-τ, 0].
Through Propositions 4.1 and 4.2, we obtained necessary and sufficient conditions for the global asymptotic stability of E 0 . Therefore, in the next section, we concentrate on the behavior of E * , the unique positive steady state of (3)-(4).

Local Asymptotic Stability of the Positive Steady State

We now turn our considerations on the stability of the unique nontrivial steady state of system (3)-( 4), namely E * = (S * , N * ), where, from Proposition 2.1, S * is the unique solution of (7), and N * = (2e -δτ -1)e δτ S * .

In order to ensure the existence of this steady state, we assume that condition (8), or equivalently condition (9), holds true. That is

δ < β(0) and 0 ≤ τ < τ := 1 δ ln 2β(0) δ + β(0) .
In particularly, 2e -δτ -1 > 0. In this case, Proposition 4.1 indicates that the unique other steady state E 0 is unstable.

From their definitions in Proposition 2.1, the steady states S * and N * depend on the time delay τ . In fact,

S * = S * (τ ) = β -1 δ 2e -δτ -1 and N * = N * (τ ) = 2e -δτ -1 e -δτ S * (τ ),
where β -1 : (0, β(0)] → [0, +∞) is a decreasing function.

Using these expressions, we can stress that S * and N * are positive decreasing continuous functions of τ ∈ [0, τ ), continuously differentiable, such that S * (0) = N * (0) = β -1 (δ), and lim τ →τ (S * (τ ), N * (τ )) = (0, 0) = E 0 .

The characteristic equation ( 14), with S = S * and N = N * , is then given by

λ + A(τ ) -B(τ )e -λτ = 0, (20) 
with

A(τ ) := δ + β(S * (τ )) and B(τ ) := [2β(S * (τ )) + N * (τ )β ′ (S * (τ ))]e -δτ .
Notice that A(τ ) > 0 for all τ ∈ [0, τ ). Moreover, from [START_REF] Adimy | Asymptotic behaviour of a singular transport equation modelling cell division[END_REF], we obtain

B(τ ) = A(τ ) + (2e -δτ -1)S * (τ )β ′ (S * (τ )), for τ ∈ [0, τ ). (21) 
In particular, B(τ

) < A(τ ) for τ ∈ [0, τ ).
Taking τ = 0 in [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF], we obtain

λ + A(0) -B(0) = 0, that is λ = β -1 (δ)β ′ (β -1 (δ)).
Since β is decreasing, we deduce that the only eigenvalue of ( 20) is then negative. The following lemma follows.

Lemma 5.1. When δ < β(0) and τ = 0, the nontrivial steady-state E * of system ( 3)-( 4) is locally asymptotically stable, and the system (3)-( 4) undergoes a transcritical bifurcation.

When τ increases and remains in the interval [0, τ ), the stability of the steady state can only be lost if purely imaginary roots appear. Therefore, we investigate the existence of purely imaginary roots of [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF].

Let λ = iω, ω ∈ R, be a pure imaginary eigenvalue of [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF]. Separating real and imaginary parts, we obtain

A(τ ) -B(τ ) cos(ωτ ) = 0, ( 22 
) ω + B(τ ) sin(ωτ ) = 0. ( 23 
)
One can notice, firstly, that if ω is a solution of ( 22)-( 23) then -ω also satisfies this system. Secondly, ω = 0 is not a solution of ( 22)- [START_REF] Mackey | Multistability and boundary layer development in a transport equation with retarded arguments[END_REF]. Otherwise, we would obtain A(τ ) = B(τ ) for some τ ∈ [0, τ ), which contradicts B(τ ) < A(τ ) for τ ∈ [0, τ ). Therefore ω = 0 cannot be a solution of ( 22)- [START_REF] Mackey | Multistability and boundary layer development in a transport equation with retarded arguments[END_REF]. Thus, in the following, we will only look for positive solutions ω of ( 22)- [START_REF] Mackey | Multistability and boundary layer development in a transport equation with retarded arguments[END_REF].

From [START_REF] Mackey | Dynamic hematological disorders of stem cell origin[END_REF], a necessary condition for equation [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF] to have purely imaginary roots is that

A(τ ) < |B(τ )|.
Since B(τ ) < A(τ ), this implies in particularly that B(τ ) must be negative. Moreover, from [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF], the above condition is equivalent to 2A(τ ) + (2e -δτ -1)S * (τ )β ′ (S * (τ )) < 0.

Using the definitions of A(τ ), N * (τ ), S * (τ ) and equality [START_REF] Adimy | A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia[END_REF], this inequality becomes the following condition on τ ,

4δe -δτ 2e -δτ -1 + (2e -δτ -1)β -1 δ 2e -δτ -1 β ′ β -1 δ 2e -δτ -1 < 0. ( 24 
)
Lemma 5.2. Let χ : [0, +∞) → (-∞, 0] be defined, for y ≥ 0, by

χ(y) = yβ ′ (y).
Assume that (H 1 ) χ is decreasing on the interval 0, β -1 (δ) .

(H 2 ) χ β -1 (δ) < -4δ.
Then there exists a unique τ * ∈ (0, τ ) such that condition ( 24) is satisfied if and only if τ ∈ [0, τ * ).

Proof. Consider the negative functions f 1 (τ ) and f 2 (τ ), defined for τ ∈ [0, τ ] by

f 1 (τ ) = χ β -1 δ 2e -δτ -1 and f 2 (τ ) = - 4δe -δτ (2e -δτ -1) 2 .

Then

{τ ∈ [0, τ ) ; condition [START_REF] Mackey | Propagation of population pulses and fronts in a cell replication problem: non-locality and dependence on the initial function[END_REF] 

is satisfied} = {τ ∈ [0, τ ) ; f 1 (τ ) < f 2 (τ )} .
The function f 2 satisfies

f 2 (0) = -4δ and f 2 (τ ) = -2 δ + β(0) δ β(0),
and, for τ ∈ [0, τ ],

f ′ 2 (τ ) = - 4δ 2 e -δτ (2e -δτ + 1) (2e -δτ -1) 3 < 0. Hence f 2 is decreasing from -4δ to -2(δ + β(0))β(0)/δ. For τ ∈ [0, τ ), δ ≤ δ 2e -δτ -1 < β(0).
Since β -1 is decreasing on (0, β(0)] and, from (H 1 ), χ is decreasing on [0, β -1 (δ)], we deduce that f 1 is increasing. Moreover,

f 1 (0) = χ β -1 (δ) and f 1 (τ ) = 0. From (H 2 ), f 1 (0) < f 2 (0).
Since f 1 (τ ) > f 2 (τ ), there exists τ * ∈ (0, τ ), which is unique since f 1 is increasing and

f 2 decreasing, such that {τ ∈ [0, τ ) ; f 1 (τ ) < f 2 (τ )} = [0, τ * ).
This concludes the proof.

F. Crauste Stability of a blood cell production model

Proof. Notice first that τ k (0) > 0 and, secondly, that lim τ →τ * arccos

A(τ ) B(τ ) = π and lim τ →τ * B 2 (τ ) -A 2 (τ ) = 0, so lim τ →τ * τ k (τ ) = +∞.
Then the first statement holds.

To prove the second statement, one can notice that τ k+1 (τ ) > τ k (τ ), for τ ∈ [0, τ * ) and k ∈ N 0 , so

Z k+1 (τ ) < Z k (τ ), τ ∈ [0, τ * ), k ∈ N 0 .
Using the fact that Z k (0) < 0, we conclude. This ends the proof.

Remark 5. The second statement in Lemma 5.3 implies, in particularly, that, if Z 0 has no positive root, then [START_REF] Mackey | Transitions and kinematics of reaction-convection fronts in a cell population model[END_REF] has no positive solution, and equation [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF] does not have pure imaginary roots.

In the following proposition we establish some properties of pure imaginary roots of equation ( 20), using a method described in [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF].

Proposition 5.1. Let ±iω(τ c ), with ω(τ c ) > 0, be a pair of pure imaginary roots of equation ( 20) when τ = τ c . Then ±iω(τ c ) are simple roots of ( 20) such that sign dRe(λ) dτ

τ =τc = sign -B 3 -B 2 B ′ τ c + B(A 2 + A ′ + AA ′ τ c ) -B ′ A , (29) 
where

A = A(τ c ), B = B(τ c ), A ′ = A ′ (τ c ) and B ′ = B ′ (τ c ).
Proof. We set ∆(λ, τ ) = λ + A(τ ) -B(τ )e -λτ .

Let λ(τ ) be a family of roots of [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF], so ∆(λ(τ ), τ ) = 0, such that λ(τ c ) is a pure imaginary root of [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF], given by λ(τ c ) = iω(τ c ). Then,

dλ dτ (τ )∆ λ (λ, τ ) + ∆ τ (λ, τ ) = 0, ( 30 
)
where

∆ λ (λ, τ ) := d∆ dλ (λ, τ ) = 1 + B(τ )τ e -λτ , and ∆ τ (λ, τ ) := d∆ dτ (λ, τ ) = A ′ (τ ) + [B(τ )λ -B ′ (τ )]e -λτ .
Assume, by contradiction, that λ(τ c ) = iω(τ c ) is not a simple root of [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF]. Then, from [START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF]

, ∆ τ (iω(τ c ), τ c ) = A ′ (τ c ) + [iB(τ c )ω(τ c ) -B ′ (τ c
)]e -iω(τc)τc = 0. Separating real and imaginary parts in this equality we deduce

B ′ (τ c ) cos(ω(τ c )τ c ) -B(τ c )ω(τ c ) sin(ω(τ c )τ c ) = A ′ (τ c ), B(τ c )ω(τ c ) cos(ω(τ c )τ c ) + B ′ (τ c ) sin(ω(τ c )τ c ) = 0.
We recall that B(τ c ) is necessarily strictly negative. Using (25), the above system is equivalent to

ω(τ c ) 2 = A(τ c )B ′ (τ c ) -B(τ c )A ′ (τ c ) B(τ c ) , ω(τ c ) A(τ c ) + B ′ (τ c ) B(τ c ) = 0.
Since ω(τ c ) > 0 and satisfies, from [START_REF] Mackey | Global stability in a delayed partial differential equation describing cellular replication[END_REF],

ω(τ c ) 2 = B(τ c ) 2 -A(τ c ) 2 , we obtain B(τ c ) 2 -A(τ c ) 2 = A(τ c )B ′ (τ c ) -B(τ c )A ′ (τ c ) B(τ c ) , A(τ c )B(τ c ) = -B ′ (τ c ).
Substituting the second equation in the first one, this yields

B(τ c ) 2 -A(τ c ) 2 = -A ′ (τ c ) - A(τ c ) 2 , so B(τ c ) 2 = -A ′ (τ c ).
Since B(τ c ) 2 > 0 and A ′ (τ c ) > 0, we obtain a contradiction. Hence λ(τ c ) = iω(τ c ) is a simple root of [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF].

In the following, we do not mention the dependence of the coefficients A and B (and their derivatives) with respect to τ . Now, from [START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF], we obtain dλ dτ

-1 = e λτ + Bτ B ′ -Bλ -A ′ e λτ .
Since ∆(λ, τ ) = 0, we deduce

e λτ = B λ + A .
Therefore, dλ dτ

-1 = B + Bτ (λ + A) (B ′ -Bλ)(λ + A) -A ′ B .
For τ = τ c , we obtain dλ dτ

-1 τ =τc = B + Bτ c (iω(τ c ) + A) (B ′ -iBω(τ c ))(iω(τ c ) + A) -A ′ B , = B(1 + Aτ c ) + iBω(τ c )τ c B ′ A -AB ′ + Bω 2 (τ c ) + i(B ′ -AB)ω(τ c ) .
Then, Re dλ dτ

-1 τ =τc = [B 2 (1 + Aτ c ) + Bτ c (B ′ -AB)]ω(τ c ) 2 + B(1 + Aτ c )(B ′ A -A ′ B) [B ′ A -A ′ B + Bω(τ c ) 2 ] + [B ′ -AB] 2 ω(τ c ) 2 .
Noticing that

sign dRe(λ) dτ = sign Re dλ dτ -1 , we get, sign dRe(λ) dτ τ =τc = sign [B 2 (1 + Aτ c ) + Bτ c (B ′ -AB)]ω(τ c ) 2 +B(1 + Aτ c )(B ′ A -A ′ B) . (31) 
Since iω(τ c ) is a purely imaginary root of (20), then, from [START_REF] Mackey | Global stability in a delayed partial differential equation describing cellular replication[END_REF],

ω(τ c ) 2 = B 2 -A 2 .
Substituting this expression in [START_REF] Shampine | Solving DDEs in Matlab[END_REF], we obtain, after simplifications sign dRe(λ) dτ

τ =τc = sign B B 3 + B 2 B ′ τ c -B(A 2 + A ′ + AA ′ τ c ) + B ′ A .
As we already noticed, if equation ( 20) has pure imaginary roots then necessarily B < 0. We then deduce (29) and the proof is complete.

Using this last proposition and the previous results about the existence of purely imaginary roots of (13), we can state and prove the following theorem, dealing with the asymptotic stability of E * . Theorem 5.1. Assume that ( 9) holds true and (H 1 ) and (H 2 ) are fulfilled.

(i) If Z 0 (defined in [START_REF] Mahaffy | Hematopoietic model with moving boundary condition and state dependent delay[END_REF]) has no root on the interval [0, τ * ), τ * defined in Lemma 5.2, then the positive steady state E * = (S * , N * ) of ( 3)-( 4) is locally asymptotically stable for τ ∈ [0, τ ).

(ii) If Z 0 has at least one positive root τ c ∈ (0, τ * ) then E * is locally asymptotically stable for τ ∈ [0, τ c ) and a Hopf bifurcation occurs at

E * for τ = τ c if B(A 2 + A ′ + AA ′ τ c ) -B 3 -B 2 B ′ τ c -B ′ A = 0, (32) 
where

A = A(τ c ), B = B(τ c ), A ′ = A ′ (τ c ) and B ′ = B ′ (τ c ).
Proof. First, from Lemma 5.1, we know that E * is locally asymptotically stable when τ = 0.

If Z 0 has no positive root on the interval (0, τ * ), then the characteristic equation ( 13) has no pure imaginary root (see Remark 5 and Lemma 5.3). Consequently, the stability of E * cannot be lost when τ increases. We obtain the statement in (i).

Now, if Z 0 has at least one positive root, say τ c ∈ (0, τ * ), then equation ( 13) has a pair of simple conjugate pure imaginary roots ±iω(τ c ) for τ = τ c . From (32) together with Proposition 5.1, we have either dRe(λ) dτ

τ =τc > 0 or dRe(λ) dτ τ =τc < 0.
By contradiction, we assume that there exists a branch of characteristic roots λ(τ ) such that λ(τ c ) = iω c and dRe(λ(τ )) dτ < 0 for τ < τ c , τ close to τ c . Then there exists a characteristic root λ(τ ) such that Re(λ(τ )) > 0 and τ < τ c . Since E * is locally asymptotically stable when τ = 0, applying Rouché's Theorem [START_REF] Dieudonné | Foundations of Modern Analysis[END_REF], we obtain that all characteristic roots of ( 13) have negative real parts when τ ∈ [0, τ c ), and we obtain a contradiction. Thus,

dRe(λ) dτ τ =τc > 0.
In this case, a Hopf bifurcation occurs at E * when τ = τ c .

The result stated in (ii) leads, through the Hopf bifurcation, to the existence of periodic solutions for system (3)-(4).

In the next section, we apply the above-mentioned results of stability to a particular introduction rate β and we present some numerical illustrations.

Example and Numerical Simulations

We develop, in this section, numerical illustrations of the above mentioned results (mainly the ones stated in Theorem 5.1).

Let define (see [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF][START_REF] Mackey | Dynamic hematological disorders of stem cell origin[END_REF][START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF]) the introduction rate β by

β(S) = β 0 θ n θ n + S n , β 0 , θ ≥ 0, n > 1.
The parameter β 0 represents the maximal rate of introduction in the proliferating phase, θ is the value for which β attains half of its maximum value, and n is the sensitivity of the rate of reintroduction. The coefficient n describes the reaction of β due to external stimuli, the action of a growth factor for example (some growth factors are known to trigger the introduction of nonproliferating cells in the proliferating phase [START_REF] Bélair | Age-structured and two-delay models for erythropoiesis[END_REF][START_REF] Mahaffy | Hematopoietic model with moving boundary condition and state dependent delay[END_REF]). Then, from ( 9), the unique positive steady state of ( 3)-( 4) exists if and only if

δ < β 0 and 0 ≤ τ < τ = 1 δ ln 2β 0 δ + β 0 .
From ( 5)-( 6), it is defined by

S * = θ (2e -δτ -1)β 0 δ -1 1/n and N * = θ 2e -δτ -1 e -δτ (2e -δτ -1)β 0 δ -1 1/n
Note that the function β -1 is defined by β -1 (x) = θ(β 0 /x -1) 1/n for x ∈ (0, β 0 ]. After computations, we can state that condition ( 24) is equivalent to

τ < τ * := 1 δ ln 2β 0 (n -2) n(β 0 + δ) , provided that n > 4β 0 β 0 -δ . ( 33 
)
Noticing that the function χ, defined in Lemma 5.2, is given by

χ(y) = -nβ 0 θ n y n (θ n + y n ) 2 ,
one can check that (33) is equivalent to (H 2 ).

However, the function χ does not necessarily satisfy (H 1 ), which is too strong (as mentioned in Remark 4). For y ≥ 0,

χ ′ (y) = β 0 n 2 θ n y n-1 (θ n + y n ) 3 (y n -θ n ).
Consequently, χ is decreasing for y ≤ θ and increasing for y > θ. Taking y = β -1 (δ), we find that χ is decreasing on [0, β -1 (δ)] if and only if β 0 < 2δ. In this case (H 1 ) is fulfilled. If β 0 > 2δ, then χ is decreasing on the interval [0, θ] and increasing on [θ, β -1 (δ)], yet τ * is uniquely defined. Note that with

A(τ ) = 2δe -δτ 2e -δτ
A ′ (τ ) =
2δ 2 e -δτ (2e -δτ -1) 2 and B ′ (τ ) = 2δ 2 e -δτ (β 0 + nδ) (2e -δτ -1) 2 β 0 .

Then, assuming that (33) holds true, we define the Z k functions, as in [START_REF] Mahaffy | Hematopoietic model with moving boundary condition and state dependent delay[END_REF], for τ ∈ [0, τ * ) by

Z k (τ ) = τ - arccos A(τ ) B(τ ) + 2kπ B 2 (τ ) -A 2 (τ ) , k ∈ N 0 , τ ∈ [0, τ * ).
We choose the parameters according to [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF][START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF]:

δ = 0.05 days -1 , β 0 = 1.77 days -1 , θ = 1. ( 34 
)
Notice that the value of θ is in fact normalized and does not influence the stability of system (3)-( 4) since all coefficients actually do not depend on θ. The value of θ only influences the shape of the oscillations and the values of the steady states. Using Maple to determine the roots of Z n , we first check that Z 0 (and consequently all Z k functions) is strictly negative on [0, τ * ) for n ≤ 10. Hence, from Theorem 5.1, the positive steady state E * = (S * , N * ) of ( 3)-( 4) is locally asymptotically stable for τ ∈ [0, τ ).

For n ≥ 10, Pujo-Menjouet et al. [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF] noticed, for the model ( 1)-( 2) with the introduction rate β depending only upon the nonproliferating phase population N (t), that oscillations may be observed.

We choose n = 12, in keeping with values in [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF]. Then, we find that τ ≃ 13.3 days and τ * ≃ 9.66 days.

One can see on Figure 1 that Z 0 has two positive roots in this case, τ 1 ≃ 4.52 days and τ 2 ≃ 8.36 days, and that Z 1 is strictly negative, so all Z k functions, with k ≥ 1 have no roots. Consequently, there exist two critical values, τ 1 and τ 2 , for which a stability switch can occur at E * . For τ < τ 1 , one can check that the populations are asymptotically stable on Figure 2. In this case τ = 3.5 days and the solutions of (3)-(4) oscillate transiently to the steady state. Numerical simulations of the solutions of (3)-( 4) are carried out with dde23 [START_REF] Shampine | Solving DDEs in Matlab[END_REF], a Matlab solver for delay differential equations. 

B(A 2 + A ′ + AA ′ τ c ) -B 3 -B 2 B ′ τ c -B ′ A ≃ 0.053,
so condition (32) holds, and a Hopf bifurcation occurs at (S * , N * ), from Theorem 5.1. This is illustrated on Figure 3. Periodic solutions with periods about 15 days are observed at the bifurcation, and the steady state E * becomes unstable.

When τ increases after the bifurcation, one can observe oscillating solutions with longer periods (in the order of 20 to 30 days), as it can be seen in Figure 4. This phenomenon has already been observed by Pujo-Menjouet et al. [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF]. It can be related to diseases affecting blood cells, the so-called periodic hematological diseases [START_REF] Haurie | Cyclical neutropenia and other hematological disorders: A review of mechanisms and mathematical models[END_REF], which are characterized by oscillations of circulating blood cell counts with long periods compared to the cell cycle duration. Among the wide variety of periodic hematological diseases, we can cite chronic myelogenous leukemia [START_REF] Adimy | Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics[END_REF][START_REF] Fortin | Periodic chronic myelogenous leukemia: Spectral analysis of blood cell counts and etiological implications[END_REF][START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF], a cancer of white blood cells with periods usually falling in the range of 70 to 80 days, and cyclical neutropenia [START_REF] Bernard | Oscillations in cyclical neutropenia: New evidence based on mathematical modeling[END_REF][START_REF] Haurie | Cyclical neutropenia and other hematological disorders: A review of mechanisms and mathematical models[END_REF] which is known to exhibit oscillations around 3 weeks of circulating neutrophils (white cells), as observed on Figure 4. Eventually, one can note that when τ passes through the second critical value τ 2 , stability switches and the steady state (S * , N * ) becomes stable again (see Figure 5).

Discussion

We considered a nonlinear model of blood cell dynamics in which the nonlinearity depends upon the entire hematopoietic stem cell population, contrary to the common assumption used in previous works [START_REF] Adimy | A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia[END_REF][START_REF] Adimy | Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics[END_REF][START_REF] Bernard | Oscillations in cyclical neutropenia: New evidence based on mathematical modeling[END_REF][START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF][START_REF] Mackey | Dynamic hematological disorders of stem cell origin[END_REF][START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF] dealing with blood cell production models. Then we were lead to the study of a new nonlinear system of two differential equations with delay (describing the cell cycle duration) modelling the hematopoietic stem cells dynamics.

We obtained the existence of two steady states for this model: a trivial one and a positive delay-dependent steady state. Through sections 4 and 5, we performed the stability analysis of our model. We determined necessary and sufficient conditions for the global asymptotic stability of the trivial steady state of system (3)-( 4), which describes the population's dying out. Using an approach proposed by Beretta and Kuang [START_REF] Beretta | Geometric stability switch criteria in delay differential systems with delay dependent parameters[END_REF], we analyzed a first degree exponential polynomial characteristic equation with delay-dependent coefficients in order to obtain the existence of a Hopf bifurcation for the positive steady state (see Theorem 5.1), leading to the existence of periodic solutions.

On the example presented in the previous section, we obtained long periods oscillations, which can be related to some periodic hematological diseases (in particularly, to cyclical neutropenia [START_REF] Bernard | Oscillations in cyclical neutropenia: New evidence based on mathematical modeling[END_REF]). This result is in keeping with previous analysis of blood cell dynamics models (as it can be found in [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF][START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF]). Periodic hematological diseases are particular diseases mostly originated from the hematopoietic stem cell compartment. The appearance of periodic solutions in our model with periods that can be related to the ones observed in some periodic hematological diseases stresses the interesting properties displayed by our model. Periods of oscillating solutions can for example be used to determine the length of cell cycles in hematopoietic stem cell populations that cannot be directly determined experimentally. Moreover, stability switches have been observed, due to the structure of the equations (nonlinear equations with delay-dependent coefficients). Such a behavior had been noted in previous works dealing with blood cell production models (see [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF]), but it had never been mathematically explained.

We can note that our assumption that proliferating and nonproliferating cells die with the same rate may be too limitative, since Pujo-Menjouet et al. [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Pujo-Menjouet | Contribution to the study of periodic chronic myelogenous leukemia[END_REF] already noticed that the apoptotic rate (the proliferating phase mortality rate γ) plays an important role in the appearance of oscillating solutions. However, by assuming that the two populations die with different rates, we are lead to a second order exponential polynomial characteristic equation, and the calculations are more difficult than the ones carried out in the present work. We let it for further analysis.
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Figure 1 :

 1 Figure 1: The functions Z 0 (left) and Z 1 (right) are drawn on the interval [0, τ * ) for parameters given by (34) and n = 12. One can see that Z 0 has exactly two roots, τ 1 ≃ 4.52 and τ 2 ≃ 8.36, and Z 1 has no root.

Figure 2 :

 2 Figure2: For τ = 3.5 days, and the other parameters given by (34) with n = 12, the solutions S(t) (dashed line) and N (t) (solid line) oscillate transiently to the steady state, which is asymptotically stable. Damped oscillations are observed.

Figure 3 :

 3 Figure 3: For τ = 4.52 days, and the other parameters given by (34) with n = 12, a Hopf bifurcation occurs and the steady state (S * , N * ) of (3)-(4) is unstable. The periodic solutions S(t) (dashed line) and N (t) (solid line) are represented in (a), and we can observe the solutions in the (S, N )-plane in (b). Periods of the oscillations are about 15 days.

Figure 4 :

 4 Figure 4: For τ = 7 days, and the other parameters given by (34) with n = 12, long periods oscillations are observed, with periods about 20-25 days. The steady state E * is unstable.

Figure 5 :

 5 Figure 5: For τ = 9 days, and the other parameters given by (34) with n = 12, damped oscillations are observed and the steady state is stable.

Remark 4. Assumption (H 1 ) is not necessary for the existence of τ * , it just implies the uniqueness. This latter can be achieved with weaker conditions, as we will check on an example in section 6.

We assume, in the following, that (H 1 ) and (H 2 ) are fulfilled and τ ∈ [0, τ * ). System ( 22)-( 23) is equivalent to

Note that for τ ∈ [0, τ * ), B(τ ) < 0. Therefore, adding the squares of both sides of (25), purely imaginary eigenvalues iω of (20), with ω > 0, must satisfy

So, in the following, we will think of ω as ω(τ ). Substituting this expression for ω in [START_REF] Mackey | Transitions and kinematics of reaction-convection fronts in a cell population model[END_REF], we obtain

From the above reasoning, values of τ ∈ [0, τ * ) solutions of system ( 27) generate positive ω(τ ), given by ( 26), and hence yield imaginary eigenvalues of [START_REF] Kuang | Delay differential equations with applications in population dynamics[END_REF]. Consequently, we look for positive solutions τ of ( 27) in the interval (0, τ * ).

Positive solutions τ ∈ (0, τ * ) of ( 27) satisfy

where N 0 denotes the set of all nonnegative integers. We set

Values of τ for which ω(τ ) = B 2 (τ ) -A 2 (τ ) is a solution of ( 25) are roots of the functions

The roots of Z k can be found using popular software like Maple, but are hard to determine with analytical tools [START_REF] Beretta | Geometric stability switch criteria in delay differential systems with delay dependent parameters[END_REF]. The following lemma states some properties of the Z k functions.

Therefore, provided that no root of Z k is a local extremum, the number of positive roots of Z k , k ∈ N 0 , on the interval [0, τ * ) is even. Moreover, if Z k has no root on the interval [0, τ * ), then Z j , with j > k, does not have positive roots.