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Stability of periodic stationary solutions of scalar

conservation laws with space-periodic flux

Anne-Laure Dalibard∗

April 16, 2009

Abstract

This article investigates the long-time behaviour of parabolic scalar conservation laws of
the type ∂tu + divyA(y, u) − ∆yu = 0, where y ∈ R

N and the flux A is periodic in y. More
specifically, we consider the case when the initial data is an L1 disturbance of a stationary
periodic solution. We show, under polynomial growth assumptions on the flux, that the
difference between u and the stationary solution vanishes for large times in L1 norm. The
proof uses a self-similar change of variables which is well-suited for the analysis of the long
time behaviour of parabolic equations. Then, convergence in self-similar variables follows from
arguments from dynamical systems theory. One crucial point is to obtain compactness in L1

on the family of rescaled solutions; this is achieved by deriving uniform bounds in weighted
L2 spaces.

Keywords. Long time asymptotics; parabolic scalar conservation law; asymptotic expansion;
moment estimates; homogenization.

AMS subject classifications. 35B35, 35B40, 35B27

1 Introduction

The goal of this article is to study the long time limit of solutions of the equation

∂tu+ divyA(y, u) − ∆yu = 0, t > 0, y ∈ R
N , (1)

where the flux A : R
N × R → R

N is assumed to be T
N -periodic with respect to its first variable.

Here and in the rest of the article, T
N denotes the N -dimensional torus, i.e. T

N = (R/Z)N .
Classical results on scalar conservation laws (see for instance [19, 15]) ensure that the semi-

group associated with equation (1) is well-defined in L1(RN )+L∞(RN ). The case when the initial
data belongs to U(y)+L1(R) (when N = 1), where U is a viscous shock profile of equation (1) has
already been dealt with in a previous article, see [7]. In the present paper, we restrict our study
to the case when the inital data belongs to v(y) + L1(RN ), where v is a given periodic stationary
solution of (1).

When the flux A is linear, say
A(y, u) = α(y)u,

this study coincides (at least for some particular functions α) with the one led by Adrien Blanchet,
Jean Dolbeault and Michal Kowalczyk in [4] on the large time behaviour of Brownian ratchets, as
we will explain in Remark 2. It is proved in [4] that if the flux A is linear and if

lim sup
t→∞

1

(1 + 2t)2

∫

RN

|u(t, y) − v(y)| (y − ct)4 dy <∞ (2)
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for some velocity c ∈ R
N which will be defined later on (see (7)), then there exists a constant C

and a number κ ∈ (0, 1/2) such that

∫

RN

∣

∣

∣

∣

u(t, y) − v(y) − Mf0(y)

(1 + 2t)N/2
F

(

y − ct√
1 + 2t

)
∣

∣

∣

∣

dy ≤ Ct−κ, (3)

where f0 is the solution of an elliptic equation in T
N (see (6)), F is a Gaussian profile, and M is

the mass of the initial disturbance, i.e.

M =

∫

RN

(u|t=0 − v).

Unfortunately, as we explained in [7], the above result does not imply that the same convergence
holds in the nonlinear case. Moreover, the proof of [4], which is based on entropy dissipation
methods together with Log-Sobolev Poincaré inequalities, can hardly be transposed as such to a
nonlinear setting, although attempts in this direction have been made, see for instance [10]. Hence
we have chosen here a slightly different approach, which enables us to extend some of the results
of [4] to a nonlinear context. Additionally, we recover a weaker version of the convergence (3), but
without the need for assumption (2). In fact, we prove that (2) holds for a large class of initial
data in v + L1(RN ).

The present work is also embedded in the broader study of the long time behaviour of conser-
vation laws. We refer the interested reader to the review paper by D. Serre [20] (and the references
therein) for a thorough description of the homogeneous case, in which the author investigates
the stability of stationary solutions of scalar conservation laws in various models (parabolic and
hyperbolic settings, relaxation models...)

Before stating the main results of this paper, let us now recall a few properties of equation (1).
First, according to a result of [8], periodic stationary solutions of (1) exist, provided the flux A
satisfies some growth assumptions. In fact, several different growth regimes were studied in [8]; we
only recall one of them here, which is the most relevant with regards to our purposes. In the rest
of the article, we assume that A belongs to W 1,∞

loc (TN × R)N , and that

∃p0 ∈ R, ∀y ∈ T
N , divyA(y, p0) = 0. (4)

We also assume that there exists n ∈ (0, (N + 2)/N) such that

∀P > 0, ∃CP > 0, ∀(p, q) ∈ R
2, |p| ≤ P,

{

|∂pA(y, p+ q) − ∂pA(y, p)| ≤ CP (|q| + |q|n),
|divyA(y, p+ q) − divyA(y, p)| ≤ CP (|q| + |q|n). (5)

These assumptions were introduced in [7, 8]. They ensure that for any q ∈ R, there exists a unique
periodic stationary solution of (1) with mean value q; we refer to [8] for a discussion of the optimality
of conditions (4), (5). Moreover, if u is a solution of (1) with initial data u|t=0 ∈ v+L1∩L∞(RN ),
where v ∈ W 1,∞(RN ) is any stationary solution of (1), then u ∈ L∞([0,∞) × R

N ). This result
will be used several times in the article, and its proof is recalled in Appendix A.

We now introduce the profiles which characterize the asymptotic behaviour of the function u;
first, the function f0 occurring in (3) is the unique solution in H1(TN ) of the equation

− ∆yf0 + divy(α1f0) = 0, 〈f0〉 = 1, (6)

where α1(y) := (∂pA)(y, v(y)) ∈ L∞(TN )N . Above and in the rest of the article, the notation 〈·〉
stands for the average on the torus T

N , that is

〈f〉 :=

∫

TN

f.
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The drift velocity c is then defined by

c = N 〈α1f0〉 . (7)

The last function which will appear in the asymptotic profile of u is the equivalent, in the non-linear
case, of the Gaussian profile F occurring in (3); it is the unique solution, in a suitable functional
space, of an elliptic equation of the form

−
∑

1≤i,j≤N

ηi,j∂i∂jFM − divx(xFM ) + a · ∇xF
2
M = 0 in R

N , with

∫

RN

FM = M ∈ R,

where the coefficients ηi,j and a are constant, and the matrix (ηi,j)1≤i,j≤N is coercive. Unfortu-
nately, giving the precise definition of ηi,j and a would take us too far at this stage. We merely
recall that thanks to a result of J. Aguirre, M. Escobedo, and E. Zuazua (see [1]), the above
equation has a unique solution for all M ∈ R, and we refer to the next section for more details.

The main result of this paper is the following:

Theorem 1. Let A ∈ W 5,∞
loc

(TN × R)N , and assume that A satisfies (4), (5).
Let v be a periodic stationary solution of (1), and let uini ∈ v + L1(RN ). Let u be the unique

solution of (1) with initial condition u|t=0 = uini. Set

M :=

∫

R

(uini − v) dy.

Then as t→ ∞,
∫

RN

∣

∣

∣

∣

u(t, y) − v(y) − 1

(1 + 2t)N/2
f0(y)FM

(

y − ct√
1 + 2t

)
∣

∣

∣

∣

dy → 0.

Remark 1. In fact, the regularity assumptions on the flux A are not as stringent as stated in
the Theorem above. In particular, the conditions on the derivatives with respect to the space
variable y can be considerably reduced. When looking closely at the proof, the correct regularity
assumptions on A are

∂kpA ∈ L∞
loc(T

N × R)N ∀k ∈ {0, 1, · · · , 4},
divyA, divy∂

4
pA ∈ L∞

loc(T
N × R).

Remark 2. Let us now make precise the link between brownian ratchets and equation (1) in the
linear case. In [4], A. Blanchet, J. Dolbeault and M. Kowalczyk study the long time behaviour of
the solution f = f(t, y) of the equation

∂tf = ∆yf + divy(∇ψ(y − ωt)f), t > 0, y ∈ R
N , (8)

with ψ ∈ C2(TN ), ω ∈ R
N . Setting

u(t, y) = f(t, y + ωt) ∀t > 0, ∀y ∈ R
N ,

we see that u satisfies
∂tu+ divy(α(y)u) − ∆yu = 0,

where the drift coefficient α is given by

α(y) = −ω −∇yψ(y). (9)

Hence the study of (8) and that of (1) in the linear case are closely related; they are strictly
equivalent in dimension one, since any function α ∈ C1(T) can be decomposed as

α =

∫

T

α+

(

α−
∫

T

α

)

=

∫

T

α+ ∂yφ, for some φ ∈ C2(T).
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The equivalence does not hold when N ≥ 2, but in fact, all the results of [4] remain true for an
arbitrary drift α ∈ C1(TN ) (using exactly the same techniques as the ones developed in [4]). This
will be a consequence of the analysis we will perform in the next sections. The choice for a function
α with the structure (9) stems from physical considerations (see [5]): equation (8) describes the
evolution of the density of particles in a traveling potential, moving with constant speed ω.

In the course of the proof of Theorem 1, we will also prove that condition (2) holds for a large
class of initial data. The precise result is the following:

Proposition 1.1. Assume that the flux A is linear, and that uini ∈ v + L1(RN ) is such that

∃m > N + 8,

∫

RN

|uini(y) − v(y)|2(1 + |y|2)m/2 dy <∞.

Let u be the unique solution of (1) with initial data uini. Then (2) is satisfied. As a consequence
(see [4]), (3) holds.

Hence for linear fluxes and for a large range of initial data, a rate of convergence can be
given. The derivation of convergence rates in the non-linear case goes beyond the scope of this
article; in fact, the standard methods to derive convergence rates rely on the use of entropy-entropy
dissipation inequalities (see [10] in the case of the Burgers equation), which we have chosen not to
use here.

Another consequence of Theorem 1 is the stability of stationary shock profiles of equation (1)
(see [7]) in dimension one: a stationary shock profile is a stationary solution of (1) with N = 1,
which is asymptotic as y → ±∞ to periodic stationary solutions of (1). It was proved in [7] that
the stability of shock profiles is a consequence of the stability of periodic stationary solutions. Thus
we have the following

Corollary 1.1. Assume that N = 1, and that the hypotheses of Theorem 1 are satisfied. Let
U ∈ L∞(R) be a stationary shock profile of (1). Let uini ∈ U + L1(R) such that

∫

R

(uini − U) = 0,

and let u be the unique solution of (1) with initial data uini. Then

lim
t→∞

‖u(t) − U‖L1(R) = 0.

The strategy of proof of Theorem 1 is close to the one developed in [12], in which M. Escobedo
and E. Zuazua study the long time behaviour of a homogeneous version of (1); we also refer the
interested reader to [11], in which M. Escobedo, J.L. Vazquez and E. Zuazua extend the analysis
performed in [12] to the case when the flux has sub-critical growth. The first step of the analysis
consists in a self-similar change of variables, which helps us to focus on the appropriate length
scales; this will be done in the next section, in which we also derive the equations on the limit
profiles f0 and FM . Then, in section 3, we obtain some compactness on the rescaled sequence
by deriving some uniform L2 bounds in weighted spaces. Eventually, we conclude the proof in
Section 4 by using semi-group arguments inherited from dynamical systems theory.

Throughout the article, we will use the following notation: if ψ ∈ L∞
loc(R

N ), we set, for all
p ∈ [1,∞),

Lp(ψ) :=

{

u ∈ Lploc(R
N ),

∫

RN

|u|pψ < +∞
}

,

and ‖u‖Lp(ψ) =

(
∫

RN

|u|pψ
)1/p

,

H1(ψ) :=
{

u ∈ L2(ψ), ∇u ∈ L2(ψ)
}

,

and ‖u‖2
H1(ψ) = ‖u‖2

L2(ψ) + ‖∇u‖2
L2(ψ).
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Sobolev spaces of the type W s,p(ψ), Hs(ψ), with s ∈ N arbitrary and p ∈ [1,∞), are defined in a
similar fashion. When we write ‖u‖p, or ‖u‖Lp, without specifying a weight function, we always
refer to the usual Lp norm in R

N , with respect to the Lebesgue measure (i.e. ψ ≡ 1).

2 The homogenized system

The goal of this section is to analyze the expected asymptotic behaviour of the solution u(t) of
equation (1); to that end, we change the space and time variables and introduce a parabolic scaling,
which is appropriate for the study of the long time behaviour of diffusion equations. Then, using
a two-scale Ansatz in space and time which was introduced in [4], we construct an approximate
solution of the rescaled system. Eventually, we recall and derive several properties of the limit
system.

2.1 Parabolic scaling

Consider the solution u ∈ L∞
loc([0,∞) × R

N ) of (1), with u|t=0 = uini ∈ v + L1 ∩ L∞(RN ). It is a
classical feature of scalar conservation laws that the semi-group associated with (1) is contractant
in L1(RN ). Hence, for all t ≥ 0, u(t) ∈ v + L1(RN ), and

‖u(t) − v‖1 ≤ ‖uini − v‖1.

Thus it is natural to compute the equation satisfied by f(t) = u(t) − v ∈ L1(RN ): since v is a
stationary solution of (1), there holds

∂tf + divyB(y, f) − ∆yf = 0, t > 0, y ∈ R
N ,

where the flux B is defined by

B(y, f) = A(y, v(y) + f) −A(y, v(y)), ∀(y, f) ∈ T
N × R.

The flux B(y, f) vanishes at f = 0, for all f . Moreover, if the flux A satisfies the assumptions of
Theorem 1, there exists α1 ∈ C1(TN ) and B̃1 ∈ C(TN × R) such that

B(y, f) = α1(y)f + B̃1(y, f),

and the flux B̃1 is such that

∀X > 0, ∃CX > 0, ∀f ∈ [−X,X ], ∀y ∈ T
N ,
∣

∣

∣
B̃1(y, f)

∣

∣

∣
≤ CX |f |2.

At some point in the proof, we will need a more refined approximation of B in a neighbourhood
of f = 0; we thus also introduce α2, α3 ∈ L∞(TN ), B̃3 ∈ L∞(TN × R) such that

B(y, f) = α1(y)f + α2(y)f
2 + α3(y)f

3 + B̃3(y, f),

and the flux B̃3 is such that for all X > 0, there exists a constant CX > 0, such that for all
f ∈ [−X,X ], for all y ∈ T

N ,
∣

∣

∣
B̃3(y, f)

∣

∣

∣
≤ CX |f |4,

∣

∣

∣
divyB̃3(y, f)

∣

∣

∣
≤ CX |f |4,

∣

∣

∣
∂f B̃3(y, f)

∣

∣

∣
≤ CX |f |3.

The existence of αi (i = 1, 2, 3) and the bounds on B̃1, B̃3 are ensured by the assumption that
A ∈W 5,∞(TN × R). Notice in particular that

α1(y) = ∂fB(y, f)|f=0 = (∂pA)(y, v(y)), ∀y ∈ T
N .
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As explained in [4], the interplay between the diffusion and the drift α1 induces a displacement
of the center of mass. In the linear case, that is, when B̃1 = 0, the evolution of the center of mass
can be computed as follows: since the function f satisfies

∂tf + divy(α1f) − ∆yf = 0,

there holds
d

dt

∫

RN

yf(t, y) dy = N

∫

RN

α1(y)f(t, y) dy.

Now, for t ≥ 0, y ∈ T
N , set

f̃(t, y) =
∑

k∈ZN

f(t, y + k).

Since the function α1 is periodic, f̃ satisfies

∂tf̃ + divy(α1f̃) − ∆y f̃ = 0, t > 0, y ∈ T
N ,

and we have, for all t ≥ 0,
∫

RN

α1f(t) =

∫

TN

α1f̃(t).

Using Lemma 1.1 of [17] together with a Poincaré inequality on the torus T
N , it can be easily

proved that as t→ ∞, f̃(t) converges with exponential speed in L1(TN ) towards
〈

f̃
〉

f0, where f0

is the unique solution of (6). Additionally, notice that

〈

f̃
〉

=
∑

k∈ZN

〈f(· + k)〉 =

∫

RN

f = M.

Consequently, setting
c := N 〈α1f0〉

we infer that in the linear case,

d

dt

∫

R

(y − ct)f → 0 exponentially fast.

In fact, it turns out that the nonlinearity has no effect on this displacement, although this is
not quite clear if we try to include the quadratic term B̃1 in the above calculation. We will justify
this result by formal calculations in the next paragraph. Nonetheless, it can be proved in the case
N = 1 (see for instance [7]) that when ‖f0‖1 is not too large,

‖f(t)‖L2(R) ≤ C
‖f0‖1

t1/4
∀t > 0,

and more generally, the Lp norm of f(t) vanishes for all p ∈ (1,∞]. This somehow explains
why the quadratic term does not modify the motion of the center of mass for large times: the
term B̃1(·, f(t, ·)) vanishes in L1(R) as t → ∞. Hence, hereinafter, we choose to make in the
general case the same change of variables as the one dictated by the linear case. Precisely, let
U ∈ L∞

loc([0,∞) × R
N ) such that

f(t, y) =
1

(1 + 2t)N/2
U

(

log
√

1 + 2t,
y − ct√
1 + 2t

)

, t ≥ 0, y ∈ R
N . (10)

This change of variables is classical in the study of long-time parabolic dynamics, see for instance
[12]. In the present case, our change of variables is exactly the same as in [4]; straightforward
calculations lead to

∂τU − divx(xU) +Rdivx((α1(z) − c)U) − ∆xU = −RN+1divxB̃1

(

z,
U

RN

)

, (11)
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with τ > 0, x ∈ R
N , and where

R = eτ and z = Rx+ c
R2 − 1

2
.

Studying the long time behaviour of f amounts to studying the long time behaviour of U . Now,
as τ → ∞, the quantity R becomes very large, and thus the variable z is highly oscillating.
Hence, as emphasized in [4], the asymptotic study of equation (11) somehow falls into the scope
of homogenization theory; the small parameter measuring the period of the oscillations is then
ε = R−1 = e−τ . However, one substantial difference with classical homogenization problems is that
the small parameter depends on time, which sometimes makes the proofs much more technical.
We refer to [4] for more details.

Let us also mention that the homogenization of equation (11) with a “fixed” small parameter,
and when the quadratic flux B̃1 vanishes, has been performed by Thierry Goudon and Frédéric
Poupaud in [14]. As a consequence, the formal asymptotic expansions which will be performed in
the next section are in fact very close to the ones of [14].

2.2 Formal derivation of the limit system

As usual in homogenization problems (see [3] for instance), the idea is now to assume that the
solution U of (11) admits an asymptotic development in powers of the small parameter measuring
the period of the oscillations; in the present case, the small parameter is e−τ , so that we expect
the approximation to be valid for large times only. Hence, assume that when τ ≫ 1,

U(τ, x) ≈ U0 (τ, x, z) + e−τU1 (τ, x, z) + e−2τU2 (τ, x, z) + · · · (12)

where z = eτx + c(e2τ − 1)/2 stands for the fast variable and where for all (τ, x) ∈ R+ × R
N , the

function
z 7→ Ui(τ, x, z)

is T
N -periodic. Plugging the Ansatz (12) into equation (11) and identifying the powers of R = eτ

leads to a cascade of equations on the terms U0, U1, etc. Notice that according to Lemma A.1 in
the Appendix, f ∈ L∞([0,∞) × R

N ), and thus U/RN is bounded in L∞.

• Terms of order R2: Identifying the highest order terms in equation (11) when U is given by
(12) leads to

c · ∇zU0 + divz((α1 − c)U0) − ∆zU0 = −∆zU0 + div(α1U0) = 0, z ∈ T
N .

We recall the following result, which is a straightforward consequence of the Krein-Rutman Theo-
rem (see [9]):

Lemma 2.1. Let α ∈ L∞(TN ). Consider the vector space

E[α] :=
{

w ∈ H1(TN ), −∆zw + divz(αw) = 0
}

.

Then dimE[α] = 1, and there exists a unique function m ∈ E[α] such that 〈m〉 = 1.
Moreover, m ∈W 1,p(TN ) for all p <∞, and

inf
z∈TN

m > 0.

In the present case, E[α1] = Rf0, where f0 is defined by (6). Hence there exists a function
F = F (τ, x) such that

U0(τ, x, z) = f0(z)F (τ, x) ∀(τ, x, z) ∈ [0,∞) × R
N × T

N . (13)
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• Terms of order R1: Concerning the terms of order R1 = eτ , the case when the space dimension
is equal to one has to be treated separately. Indeed,

RN+1divxB̃1

(

z,
U

RN

)

= R1−Ndivx(α2U
2) +R1−2Ndivx(α3U

3)

+RN+1divxB̃3

(

z,
U

RN

)

,

and using the bounds on B̃3,

RN+1divxB̃3

(

z,
U

RN

)

= RN(divzB̃3)

(

z,
U

RN

)

+R∇xU · (∂U B̃3)

(

z,
U

RN

)

= O(R−3N ) + O(R−3N+2) = O(R−1).

We infer that if U is given by (12),

RN+1divxB̃1

(

z,
U

RN

)

= R2−Ndivz(α2U
2
0 ) (14)

+ R1−N
[

divx(α2U
2
0 ) + 2divz(α2U0U1)

]

(15)

+ R2−2Ndivz(α3U
3
0 )

+ O(R−1).

Consequently, we obtain that when N ≥ 2, the term U1 solves the equation

− ∆zU1 + divz(α1U1) = −divx((α1 − c)U0) + 2

N
∑

i=1

∂2U0

∂xi∂zi
. (16)

Since U0(t, x, z) = f0(z)F (t, x), we have

〈(α1 − c)U0(t, x, ·)〉 = F (t, x) (〈α1f0〉 − c) = 0

by definition of c. Hence the right-hand side of (16) has zero mean value, and the compatibility
condition is satisfied. Thus for all (t, x) ∈ [0,∞) × R

N , (16) has a unique solution in H1(TN ).
Moreover, using the linearity of (16) together with the expression (13), we infer that U1 can be
written as

U1(t, x, z) = f1(z) · ∇xF (t, x), (17)

where f1 ∈ H1(TN )N satisfies

− ∆zf1,i + divz(α1f1,i) = −f0(α1,i − ci) + 2∂zi
f0, ∀i ∈ {1, · · · , N}. (18)

Notice that according to the regularity assumptions on the flux A, the function α1 belongs to
W 1,∞(TN ); thus f0 ∈ W 2,p(TN ) for all p < ∞, and therefore f1 ∈ W 2,p(TN ) for all p < ∞. In
particular, f1, f0 ∈W 1,∞(TN ).

If N = 1, on the other hand, the corrector U1 solves the equation

− ∂zzU1 + ∂z(α1U1) = −∂x((α1 − c)U0) + 2
∂2U0

∂x∂z
− ∂z(α2U

2
0 ). (19)

Notice that the compatibility condition is satisfied, for the same reason as before. Hence in this
case,

U1(t, x, z) = f1(z)∂xF (t, x) + g1(z)F (t, x)2, (20)

where g1 ∈ H1(T) solves
−∆zg1 + ∂z(α1g1) = −∂z(α2(f0)

2).

8



The fact that the compatibility condition is satisfied in all cases justifies the use of the change
of variables (10) in the nonlinear case. This means that, at least on a formal level, the displacement
of the center of mass of the function f is unaffected by the presence of the quadratic term B̃1.

• Terms of order R0: As we identify the terms of order one in equation (11), we obtain

−∆zU2 + div(α1U2) (21)

= −∂τU0 + divx(xU0) + ∆xU0 − divx((α1 − c)U1) + 2

N
∑

i=1

∂2U1

∂xi∂zi
+ ANL,

where the term ANL stems from the expansion of the nonlinear term B̃1. According to (14), we
have

ANL = ∂x(α2U
2
0 ) + 2∂z(α2U0U1) + ∂z(α3U

3
0 ) if N = 1,

ANL = divz(α2U
2
0 ) if N = 2,

ANL = 0 if N ≥ 3.

The evolution equation for the function F follows from the compatibility condition; precisely, we
obtain

∂τF − divx(xF ) − ∆xF + divx 〈(α1 − c)U1〉 − 〈ANL〉 = 0.

We now distinguish between the cases N ≥ 2 and N = 1.
⊲ If N ≥ 2, 〈ANL〉 = 0; using (17), we infer that F satisfies

∂τF − divx(xF ) −
∑

1≤i,j≤N

ηi,j
∂2F

∂xi∂xj
= 0, τ > 0, x ∈ R

N with N ≥ 2, (22)

where the coefficients (ηi,j)1≤i,j≤N are given by

ηi,j = δi,j − 〈(α1,i − ci)f1,j〉 .

The following Lemma entails that equation (22) is well-posed (see also Lemma 2.1):

Lemma 2.2. The matrix η := (ηi,j)1≤i,j≤N is coercive.

Lemma 2.2 is proved in [14] in dimension N , and its proof is recalled in [4] when N = 1. For the
reader’s convenience, we sketch the main steps of the proof here, and we refer to [14], Proposition
4.6 for details.

Proof. Let L be the differential operator

Lφ = −∆zφ+ divz(α1φ).

The idea is to introduce, for all j ∈ {1, · · · , N}, the function χj which solves the adjoint problem

L∗χj = −∆zχj − α1 · ∇zχj = α1,j − cj , 〈χj〉 = 0.

Since the right-hand side satisfies 〈(α1,j − cj)ψ〉 = 0 for all ψ ∈ kerL = Rf0, the function χj is
well-defined. For all ξ ∈ R

N , we have

∑

i,j

〈(α1,i − ci)f1,j〉 ξiξj = 〈L∗(χ · ξ)f1 · ξ〉

= 〈χ · ξ (−f0(α1 − c) · ξ + 2∇zf0 · ξ)〉
= −〈f0χ · ξL∗(χ · ξ)〉 + 〈2χ · ξ∇zf0 · ξ〉
= −〈L(f0χ · ξ)χ · ξ〉 − 2 〈f0ξ · ∇z(χ · ξ)〉 .
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Expanding L(f0χ · ξ) and using the identity Lf0 = 0 leads to

〈L(f0χ · ξ)χ · ξ〉 =
〈

f0 |∇z(χ · ξ)|2
〉

.

Hence
∑

1≤i,j≤N

ηi,jξiξj = |ξ|2 +
〈

f0 |∇z(χ · ξ)|2
〉

+ 2 〈f0ξ · ∇z(χ · ξ)〉

=
〈

f0 |ξ + ∇z(χ · ξ)|2
〉

.

We deduce that
∑

1≤i,j≤N

ηi,jξiξj ≥ 0 ∀ξ ∈ R
N .

Now, let ξ ∈ R
N such that

∑

ηi,jξiξj = 0. Since f0(z) > 0 for all z, we infer that

ξ + ∇z(χ · ξ) = 0 ∀z ∈ T
N .

Taking the average of the above inequality on T
N leads to ξ = 0. Hence the matrix (ηi,j) is

coercive.

⊲ If N = 1, we have
〈ANL〉 = ∂x

〈

α2U
2
0

〉

=
〈

α2f
2
0

〉

∂xF
2.

Moreover, in this case U1 is given by (20); hence

〈divx((α1 − c)U1)〉 = 〈(α1 − c)f1〉 ∂xxF + 〈(α1 − c)g1〉 ∂xF 2.

Consequently, the compatibility condition reads

∂τF − ∂x(xF ) + a∂xF
2 − η∂xxF = 0, τ > 0, x ∈ R, (23)

where the coefficients a, η are given by

a :=
〈

α2f
2
0

〉

+ 〈(α1 − c)g1〉 ,
η := 1 − 〈(α1 − c)f1〉 .

Lemma 2.2 states that the diffusion coefficient η is positive.

This completes the formal derivation of an approximate solution. In the following paragraphs,
we recall or prove several results concerning the well-posedness and the long time behaviour of
equations (22) and (23). We will often refer to the equation on F as the “homogenized equation”;
this term denotes equation (22) when N ≥ 2, and (23) when N = 1.

2.3 Existence and uniqueness of stationary solutions

This paragraph is concerned with the existence and uniqueness (in suitable functional spaces) of
stationary solutions of the homogenized equations (22) and (23). In the case when N = 1, or when
(ηi,j)1≤i,j≤N = λI for some λ > 0, such results are stated in [1]. In the general case, we merely use
a linear change of variables, and the problem is then reduced to the case of an isotropic diffusion.

Lemma 2.3. Assume that N ≥ 2. For γ > 0, set ψγ : x ∈ R
N 7→ exp(γ|x|2). Then there exists

γ > 0 such that for all M ∈ R, there exists a unique function FM ∈ H1(ψγ) satisfying

−
∑

1≤i,j≤N

ηi,j∂i∂jFM − divx(xFM ) = 0,

∫

RN

FM = M. (24)

Furthermore, the following properties hold:

10



(i) For all M ∈ R, FM = Mh1;

(ii) h1 ∈ W 2,p ∩ C∞(RN ) for all p ∈ [1,∞), and h1 ∈ H2(ψγ);

(iii) h1(x) > 0 for all x ∈ R
N .

Proof. The idea is to perform an affine change of variables in order to transform the diffusion term
into a laplacian. Precisely, set

si,j =
ηi,j + ηj,i

2
, 1 ≤ i, j ≤ N.

Then the matrix S = (si,j) is symmetric and positive definite (see Lemma 2.2); hence there exists
an orthogonal matrix O ∈ Mn(R) and positive numbers λj such that

S = OTDiag(λ1, · · · , λN )O.

Let us change the variables by setting

x = Py, with P := OTDiag(λ
1/2
1 , · · · , λ1/2

N ), (25)

and for any function F ∈ L1(RN ), define

F̃ (y) = F (Py).

It can be readily checked that for all x ∈ R
N ,

∑

i,j

ηi,j
∂2F

∂xi∂xj
(x) =

∑

k,l

η̃k,l
∂2F̃

∂yk∂yl
(P−1x),

where the coefficients η̃k,l are given by

η̃k,l =
∑

i,j

(P−1)k,i(P
−1)l,jsi,j = (P−1S(P−1)T )k,l.

Using the definitions of the matrices P and S, we infer that

η̃ = P−1S(P−1)T = IN .

Thus the diffusion term is transformed into a laplacian with this change of variables.
Let us now compute the drift term. We have

xi = (Py)i,

and, denoting by (e1, · · · , eN ) the canonical basis of R
N ,

∂F (x)

∂xi
=

∂

∂xi
F̃ (P−1x)

= (P−1ei) · ∇yF̃ (P−1x).

Thus, always setting x = Py,

x · ∇xF (x) =

N
∑

i=1

(Py)i(P
−1ei) · ∇yF̃ (y)

=

[

P−1

(

N
∑

i=1

(Py)iei

)]

· ∇yF̃ (y)

= (P−1Py) · ∇yF̃ (y) = y · ∇yF̃ (y).
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Notice that this property is in fact independent of the definition of the matrix P . Consequently,
FM is a solution of (24) if and only if F̃M satisfies

−∆yF̃M − divy(yF̃M ) = 0,

∫

RN

F̃M = (detS)−1/2M.

The only solutions of the above equation in H1(RN ) are Gaussian functions. Hence there exists a
unique solution of (24) in H1(RN ) for all M , and this solution is given by

FM (x) = CM exp

(

1

2
|P−1x|2

)

,

where the positive constant C is a normalization factor. Moreover,

|P−1x|2 =
∣

∣

∣
Diag

(

λ
−1/2
1 , · · · , λ−1/2

N

)

Ox
∣

∣

∣

2

,

and thus, since |Ox|2 = |x|2,
(

max
1≤i≤N

λi

)−1/2

|x|2 ≤ |P−1x|2 ≤
(

min
1≤i≤N

λi

)−1/2

|x|2.

All the properties of the lemma follow, with

γ < 2

(

max
1≤i≤N

λi

)−1/2

.

In the case when N = 1, the existence of a stationary solution is treated in [1]. Hence we merely
recall the main results of [1] in that regard.

Lemma 2.4 (Aguirre, Escobedo, Zuazua). Let M ∈ R be arbitrary, and let a ∈ R, η > 0. Let
γ := (2η)−1.

Then there exists a unique function FM ∈ H1(ψγ) which satisfies

−η∂xxFM − ∂x(xFM ) + a∂xF
2
M = 0,

∫

R

FM = M.

Moreover, FM enjoys the following properties:

(i) FM ∈ W 2,p ∩ C∞(R) for all p ∈ [1,∞), and FM ∈ H2(ψγ);

(ii) If M > 0, then FM (x) > 0 for all x ∈ R
N .

We deduce from the above Lemma that if γ′ < γ, then there exists a constant Cγ′ such that

|FM (x)| , |∂xFM (x)| ≤ Cγ′ exp(−γ′x2) ∀x ∈ R.

Indeed, since FM ∈ H2(ψγ), it can be easily proved that FMψγ′ ∈ H2(R) for all γ′ < γ. Sobolev
embeddings then imply that FMψγ′ ∈ W 1,∞(R).

The existence of stationary solutions of (22) and (23) is now ensured. We now tackle the study
of the properties of equations (22) and (23), focusing in particular on the long-time behaviour and
on regularity issues.

We begin with a definition of the weight function K ∈ C∞(RN ), which plays a central role in
the theory of existence. We use the change of variables (25), which was introduced in the proof
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of Lemma 2.3. This allows us to transform the matrix (ηi,j) into the identity matrix. For t > 0,

y ∈ R
N , set F̃ (t, y) = F (t, Py). If F is a solution of (22), then F̃ solves

∂tF̃ − divy(yF̃ ) − ∆yF̃ = 0.

Consequently, the results of [12] can be directly applied to F̃ , for which existence is proved in the
functional space L2(K0), where K0(y) = exp(y2/2). Performing the inverse change of variables, it
is clear that the relevant weight function is given by

K(x) := K0(P
−1x) = exp

( |P−1x|2
2

)

.

Notice that by definition of the matrix P , there exist positive constants γ, γ′ such that

exp(γ′x2) ≤ K(x) ≤ exp(γx2) ∀x ∈ R
N .

When N = 1, the weight function K is given by

K(x) := exp

( |x|2
2η

)

.

We immediately deduce from [12] the following Proposition:

Proposition 2.1. Let Fini ∈ L∞(RN ) ∩ L2(K). Then the homogenized problem has a unique
solution

F ∈ C([0,∞), L2(K)) ∩ C((0,∞), H2(K)) ∩ C1((0,∞), L2(K))

such that F|t=0 = Fini.
Moreover,

lim
t→∞

‖F (t) − FM‖L1(RN ) = 0,

where FM is the unique stationary solution of the homogenized problem with mass M =
∫

RN Fini.

Consequently, the homogenized equations (23) and (22) are well posed. We conclude this section
by stating a result on the construction of an approximate solution:

Definition 2.1. Let F ∈ C([0,∞, L2(K))∩C((0,∞), H2(K)). We define the approximate solution
of (11) associated with F by

Uapp[F ](τ, x;R) = U0 (τ, x, z) +R−1U1 (τ, x, z) +R−2U2 (τ, x, z) ,

with τ ≥ 0, x ∈ R
N , R > 0 and z := Rx+ cR

2−1
2 , and where

• U0 is defined by (13);

• U1 is defined by (17) if N ≥ 2 and by (20) if N = 1;

• U2 is defined by

−∆zU2 + div(α1U2) = (f0(z) − 1) [−∂τF + divx(xF ) + ∆xF ]

+ 〈divx((α1 − c)U1)〉 − divx((α1 − c)U1)

+2

N
∑

i=1

∂2U1

∂xi∂zi
+ ANL − 〈ANL〉 .
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Notice that we do not require, in the above definition, that F is a solution of (22) or (23); hence
the right-hand side in the equation on U2 is slightly modified, so that the compatibility condition
is satisfied and U2 is well-defined. Of course, if F is a solution of (23) or (22), the equation on U2

becomes (21).
We then have the following result:

Lemma 2.5. 1. Let M ∈ R be arbitrary. Define the function U ∈ L∞([0,∞) ∩ R
N )) by

U(τ, x) := Uapp[FM ] (τ, x; eτ ) .

Then U is a solution of

∂τU − divx(xU) − ∆xU +Rdivx((α1(z) − c)U) =

= −RN+1divxB̃1

(

z,
U

RN

)

+ U rem,

where the remainder term U rem is such that there exist C > 0, γ > 0 such that

‖U rem(τ)‖L1(eγ|x|2 ) + ‖U rem(τ)‖L∞(RN ) ≤ Ce−τ ∀τ ≥ 0.

2. Let Fini ∈ L∞(RN ) ∩ L2(K), and let F ∈ C([0,∞), L2(K)) be the unique solution of the
homogenized equation such that F|t=0 = Fini. Let ρ ∈ C∞

0 (RN ) be a mollifying kernel (ρ ≥ 0,
∫

ρ = 1), and let Fδ := F ∗x ρδ, where ρδ = δ−Nρ(·/δ), for δ > 0.

Let (τn)n≥0 be a sequence of positive numbers such that lim
n→∞

τn = +∞. For n ∈ N, δ > 0,

define the function uδn by

uδn(τ, x) = Uapp[Fδ]
(

τ, x; eτn+τ
)

, x ∈ R
N , τ ≥ 0.

Then uδn satisfies, with Rn = eτn+τ and zn = Rnx+ c
R2

n−1
2 ,

∂τu
δ
n − divx(xu

δ
n) +Rndivx((α1(zn) − c)uδn) − ∆xu

δ
n =

= −RN+1
n divxB̃1

(

z,
uδn
RNn

)

+ rδn,

where the remainder term rδn satisfies, for all T > 0,

‖rδn‖L∞([0,T ],L1(RN )) ≤ ωT (δ) + Cδ,T e
−τn ,

where ωT : R+ → R+ is a function depending only on T such that lim0+ ωT = 0.

The proof of the above Lemma follows the calculations of the first paragraph; the proof is
lengthy but straightforward, and is therefore left to the reader. The fact that U rem has exponential
decay is a consequence of Lemmas 2.3, 2.4.

3 Weighted L
2 bounds for the rescaled equation

As explained in the previous section, we choose to work with the rescaled equation (11) rather
than with the original one (1). In fact, it can be easily checked that Theorem 1 is equivalent to
the following Proposition:
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Proposition 3.1. Let Uini ∈ L1(RN ), and let M :=
∫

RN Uini.
Let U ∈ C([0,∞), L1(RN )) be the unique solution of (11) with initial data U|τ=0 = Uini. Then

lim
τ→∞

∫

RN

∣

∣

∣

∣

U(τ, x) − f0

(

eτx+ c
e2τ − 1

2

)

FM (x)

∣

∣

∣

∣

dx = 0,

where the speed c is defined by (7), and FM ∈ L1(RN ) is the unique stationary solution of the
homogenized equation (22), (23) with total mass M .

In turn, since the function f0 ∈ L∞(TN ) is such that infTN f0 > 0, the above statement is
equivalent to

lim
τ→∞

‖V (τ) − FM‖L1(RN ) = 0,

where the function V = V (τ, x) is defined by

V (τ, x) :=
U(τ, x)

f0
(

eτx+ c e
2τ−1
2

) , τ ≥ 0, x ∈ R
N . (26)

The proof of Proposition 3.1 consists of essentially two steps: first, we prove compactness
properties in L1(RN ) for the family (V (τ))τ≥0. To that end, we derive uniform bounds with
respect to τ in weighted L2 spaces; this step will be achieved in the current section. Then, we
prove in the next section, using techniques inherited from dynamical systems theory, that the limit
of any converging sequence V (τn) is equal to FM . As emphasized in the introduction, the proof of
convergence relies on rather abstract arguments, and thus does not yield any rate of convergence
in general. However, when the flux A is linear, the weighted L2 bounds allow us to prove that the
family U(τ) has uniformly bounded moments of order four, and thus (2) holds. As proved in [4],
the convergence stated in Theorem 1 then takes place with algebraic rate.

The main result of this section is the following:

Proposition 3.2. Let Uini ∈ L1 ∩L∞(RN ), and let U ∈ C([0,∞), L1(RN )) be the unique solution
of (11) with initial data U|τ=0 = Uini. Let m > 2(N + 1) be arbitrary, and assume that

∫

RN

|Uini(x)|2(1 + |x|2)m/2 dx < +∞.

Then there exists a constant Cm > 0 (depending only on m,N, and on the flux A) such that if
‖Uini‖L1 ≤ Cm, then

sup
τ≥0

∫

RN

|V (τ, x)|2(1 + |x|2)m/2 dx < +∞,

sup
τ≥0

∫ τ+1

τ

∫

RN

|∇xV (s, x)|2 dx ds < +∞.

(27)

As a consequence, there exists a sequence (τn) of positive numbers such that τn ∈ [n, n+ 1] for all
n, and such that the sequence (V (τn, x))n≥0 is compact in L1(RN ).

Moreover, if the flux A is linear, then Cm = +∞ for all m > 2(N + 1).

Before proving the bounds (27), we explain how they entail the existence of a converging
sequence. Thus we admit that (27) holds for the time being. First, for any X ≥ 1, τ ≥ 0, we have

∫

|x|≥X

|V (τ, x)| dx

≤
(

∫

|x|≥X

|V (τ, x)|2(1 + |x|2)m/2 dx
)1/2(

∫

|x|≥X

(1 + |x|2)−m/2 dx
)1/2

≤ CX(N−m)/2

(

sup
τ≥0

∫

RN

|V (τ, x)|2(1 + |x|2)m/2 dx
)1/2

.
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Since m > N , we infer that the family {V (τ, x)}τ≥0 is equi-integrable.
Moreover, let K ⊂ R

N be an arbitrary compact set, and let h ∈ R
N be arbitrary, with |h| ≤ 1.

Let
K̃ := {x ∈ R

N , d(x,K) ≤ 1}.
The set K̃ is clearly compact. Then

∫

K

|V (τ, x+ h) − V (τ, x)| dx

≤ |h|
∫

K

∫ 1

0

|∇V |(τ, x+ λh) dλ dx

≤ |h|
∫

K̃

|∇V (τ, z)| dz ≤ |h||K̃|1/2
(
∫

RN

|∇xV (τ, x)|2 dx
)1/2

.

Now, for all n ∈ N, there exists τn ∈ [n, n+ 1] such that

∫

RN

|∇xV (τn, x)|2 dx ≤
∫ n+1

n

∫

RN

|∇xV (s, x)|2 dx ds.

Consequently, there exists a constant C, depending only on K and on the bounds on V in
L2

loc([0,∞), H1), such that

∀n ∈ N,

∫

K

|V (τn, x+ h) − V (τn, x)| dx ≤ C|h|.

Hence the sequence {V (τn, x)}n≥0 is equi-continuous in L1(RN ).
Notice also that

sup
n≥0

‖V (τn)‖L1 ≤ 1

infTN f0
sup
n≥0

‖U(τn)‖L1 ≤ ‖Uini‖1

infTN f0
.

Thus the sequence {V (τn, x)}n≥0 is bounded in L1(RN ).
According to classical results of functional analysis (see for instance [6]), we infer that the

sequence (V (τn))n≥0 is compact in L1.

The rest of the section is devoted to the proof of the bounds (27). We first prove that
V ∈ L∞

loc([0,∞), L2((1 + |x|2)m/2)). Then, using the construction of approximate solutions of (11)
performed in the previous section, we derive an energy inequality on the function V . Carefully
controlling the non-linear terms appearing in this energy inequality, we are led to (27).

Before addressing the proof, we recall a result which will play a key role in several arguments:
since Uini ∈ L∞ ∩ L1(RN ), there exists a positive constant C, depending only on the flux A and
on ‖Uini‖1, ‖Uini‖∞, such that

‖U(τ)‖L∞(RN ) ≤ CeNτ . (28)

Indeed, performing backwards the parabolic scaling (10), it turns out that this inequality is equiv-
alent to the boundedness of u in L∞([0,∞)× R

N), where u is the solution of (1) with initial data
v + Uini. And the L∞ bound on u follows from Lemma A.1 in the Appendix.

First step: the family V (τ) is locally bounded in L2((1 + |x|2)m/2).
This amounts in fact to proving that U ∈ L∞

loc([0,∞), L2((1 + |x|2)m/2)). Hence, multiply (11)
by U(τ, x)(1 + |x|2)m/2 and integrate with respect to the variable x. Always with the notation
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R = eτ , z = Rx+ cR
2−1
2 , this leads to

1

2

d

dτ

∫

RN

|U(τ, x)|2(1 + |x|2)m/2dx (29)

= −
∫

RN

|∇xU |2(1 + |x|2)m/2 dx−m

∫

RN

(x · ∇xU)U(1 + |x|2)−1+m/2 dx

−1

2

∫

RN

(x · ∇x|U |2)(1 + |x|2)m/2 dx−m

∫

RN

|U |2|x|2(1 + |x|2)−1+m/2 dx

−RN+1

∫

RN

[

B

(

z,
U(τ, x)

RN

)

− c
U(τ, x)

RN

]

· ∇xU(1 + |x|2)m/2dy

−mRN+1

∫

RN

[

B

(

z,
U(τ, x)

RN

)

− c
U(τ, x)

RN

]

· x U(1 + |x|2)−1+m/2 dx.

Since U(τ)/RN is bounded (see (28)), there exists a constant C such that

∣

∣

∣

∣

B

(

Rx+ c
R2 − 1

2
,
U(τ, x)

RN

)

− c
U(τ, x)

RN

∣

∣

∣

∣

≤ C
|U(τ, x)|
RN

.

Moreover,
∣

∣

∣
x(1 + |x|2)−1+m/2

∣

∣

∣
,
∣

∣

∣
|x|2(1 + |x|2)−1+m/2

∣

∣

∣
≤ (1 + |x|2)m/2 ∀x ∈ R

N .

Hence, using the Cauchy-Schwarz inequality, we infer that the last two terms in (29) are bounded
by

1

4

∫

RN

|∇xU |2(1 + |x|2)m/2 dx+ CR2

∫

RN

|U |2(1 + |x|2)m/2 dx.

On the other hand,
∣

∣

∣

∣

∫

RN

(

x · ∇x|U |2
)

(1 + |x|2)m/2 dx
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

RN

|U |2
(

N(1 + |x|2)m/2 +mx2(1 + |x|2)−1+m/2
)

dx

∣

∣

∣

∣

≤ C

∫

RN

|U |2(1 + |x|2)m/2 dx.

Gathering all the terms, we obtain

d

dτ

∫

RN

|U(τ, x)|2(1 + |x|2)m/2dx

≤ −
∫

RN

|∇xU(τ, x)|2(1 + |x|2)m/2 dx+ Ce2τ
∫

RN

|U(τ, x)|2(1 + |x|2)m/2dx.

Using Gronwall’s Lemma, we deduce that

U ∈ L∞
loc([0,∞), L2((1 + |x|2)m/2), ∇xU ∈ L2

loc([0,∞), L2((1 + |x|2)m/2)).

Second step: The energy inequality.

The idea here is the following: assume momentarily that the flux B is linear, that is, B̃1 = 0.
Let ψ ∈ L∞([0,∞) × R

N ) be a solution of (11) such that ψ(τ, x) > 0 for all τ, x. Then, according
to [17], for any convex function H ∈ C2(R), we have

d

dt

∫

RN

ψ(τ, x)H

(

U(τ, x)

ψ(τ, x)

)

dx = −
∫

RN

H ′′

(

U(τ, x)

ψ(τ, x)

) ∣

∣

∣

∣

∇x
U(τ, x)

ψ(τ, x)

∣

∣

∣

∣

2

dx.

17



Taking H : x ∈ R 7→ x2, we infer that

sup
τ≥0

∫

RN

|U(τ, x)|2 dx

ψ(x)
< +∞.

Hence, if ψ(x) behaves like (1 + |x|2)−m/2 for |x| large, the L2 bound in (27) is proved.
Thus, the goal of this step is to build a positive function Ũ , which behaves like (1 + |x|2)−m/2

for |x| large, and which is an approximate solution of the linear part of (11), with remainder terms
of order one. Using calculations similar to the ones led in [17], we then derive an inequality on the
energy

∫

RN

∣

∣

∣

∣

U(τ, x)

Ũ(τ, x)

∣

∣

∣

∣

2

Ũ(τ, x).

From now on, we no longer assume that B̃1 = 0.
The definition of Ũ is inspired from the construction of an approximate solution in the previous

paragraph. Precisely, we set

Ũ(τ, x) = f0(z)hm(x) + e−τf1(z) · ∇xhm(x), τ ≥ 0, x ∈ R
N , z = eτx+ c

e2τ − 1

2
,

where the function f1 ∈W 1,∞(TN )N is defined by (18), and where

hm(x) := (1 + |x|2)−m/2.
Remember that infTN f0 > 0; since

∇xhm(x) = −m x

1 + |x|2 hm, y ∈ R
N ,

we deduce that there exists τ0 > 0 (depending on m), such that

0 <
1

2
f0(z)hm(x) ≤ Ũ(τ, x) ≤ 2f0(z)hm(x) ∀y ∈ R

N , τ ≥ τ0. (30)

We now compute, for τ ≥ τ0, the rate of growth (or decay) of the energy
∫

|U |2Ũ−1. Using equation
(11) and performing several integrations by parts, we obtain

d

dτ

∫

RN

∣

∣

∣

∣

U(τ, x)

Ũ(τ, x)

∣

∣

∣

∣

2

Ũ(τ, x) dx

= −2

∫

RN

∣

∣

∣

∣

∇x
U(τ, x)

Ũ(τ, x)

∣

∣

∣

∣

2

Ũ(τ, x) dx

+

∫

RN

∣

∣

∣

∣

U(τ, x)

Ũ(τ, x)

∣

∣

∣

∣

2
[

−∂τ Ũ + ∆xŨ + divx(xŨ) − eτdivx

(

(α1(z) − c)Ũ
)]

dx

+2e(N+1)τ

∫

RN

B̃1

(

z,
U(τ, x)

eNτ

)

· ∇x
U(τ, x)

Ũ(τ, x)
dx.

By definition of Ũ , we have

−∂τ Ũ + ∆xŨ + divx(xŨ ) − eτdivx

(

(α1(z) − c)Ũ
)

= divx(xhm)f0(z) + f0(z)∆xhm(x) + 2
∑

1≤i,j≤N

∂f1,i
∂zj

(z)
∂2hm(x)

∂xi∂xj

−
∑

1≤i,j≤N

[(α1,i − ci)f1,j ] (z)
∂2hm(x)

∂xi∂xj

+e−τ
∑

1≤i,j≤N

f1,i(z)

[

∂

∂xj
(xj∂xi

hm(x)) +
∂3hm(x)

∂xi∂x2
j

]

,

18



where

z = eτx+ c
e2τ − 1

2
.

Notice that
divx(xhm(x)) = (N −m)hm(x) +

m

(1 + |x|2)1+ m
2
,

and there exists a constant C (depending on m and N) such that for all i, j ∈ {1, · · · , N},
∣

∣

∣

∣

∂2hm(x)

∂xi∂xj

∣

∣

∣

∣

≤ C
1

(1 + |x|2)1+ m
2
,

|∇xhm(x)| +
∣

∣

∣

∣

|x|∂
2hm(x)

∂xi∂xj

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∂3hm(x)

∂xi∂x2
j

∣

∣

∣

∣

∣

≤ Chm(x).

Hence we infer (remember that N −m < 0 and that inequality (30) holds)

−∂τ Ũ + ∆xŨ + divx(xŨ) − eτdivx

(

(α1(z) − c)Ũ
)

≤ (N −m)f0(z)hm(x) + Ce−τhm(x) + C
1

(1 + |x|2)1+ m
2

≤ N −m

4
Ũ(τ, x) + C

1

(1 + |x|2)1+ m
2

for all τ ≥ τ0, provided τ0 is chosen sufficiently large.
On the other hand, since the flux B̃1 is quadratic near the origin and U/eNτ is bounded, we

have
∣

∣

∣

∣

e(N+1)τ

∫

RN

B̃1

(

z,
U(τ, x)

eNτ

)

· ∇x
U(τ, x)

Ũ(τ, x)
dx

∣

∣

∣

∣

≤ Ce(1−N)τ

∫

RN

|U(τ, x)|2
∣

∣

∣

∣

∇x
U(τ, x)

Ũ(τ, x)

∣

∣

∣

∣

dx.

Gathering all the terms, we obtain

d

dτ

∫

RN

∣

∣

∣

∣

U

Ũ

∣

∣

∣

∣

2

Ũ +
m−N

4

∫

RN

∣

∣

∣

∣

U

Ũ

∣

∣

∣

∣

2

Ũ + 2

∫

RN

∣

∣

∣

∣

∇U

Ũ

∣

∣

∣

∣

2

Ũ (31)

≤ C

∫

RN

(

U(·, x)
Ũ(·, x)

)2
dx

(1 + |x|2)1+ m
2

(32)

+Ce(1−N)τ

∫

RN

|U(·, x)|2
∣

∣

∣

∣

∇x
U(·, x)
Ũ(·, x)

∣

∣

∣

∣

dx. (33)

Notice that when the flux A is linear, the term (33) is zero.

Third step: control of the term (32).

Set φ := U/Ũ ; then according to the first step, φ ∈ L∞
loc([τ0,∞), L2(hm))∩L2

loc([τ0,∞), H1(hm)).
Moreover,

∇(φ2hm) = 2φhm∇φ+ φ2∇hm;

since |∇hm| ≤ mhm, we deduce that φ2hm ∈ L1
loc([τ0,∞),W 1,1(RN )), and thus, using Sobolev

embeddings, φ2hm ∈ L1
loc([τ0,∞), Lp

∗

(RN )), where p∗ := N/(N − 1) if N ≥ 2, and p∗ = +∞ if
N = 1. Additionally, the following inequality holds: there exists a constant C, depending only on
N , such that for all τ ≥ τ0

‖φ2hm(τ)‖Lp∗ (RN ) ≤ C‖∇(φ2hm(τ))‖L1(RN )

≤ C‖φ(τ)‖L2(hm)‖∇φ(τ)‖L2(hm) + C‖φ(τ)‖2
L2(hm).
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We use the above inequality in order to control the term (32). First, let us write
∫

RN

|φ(τ, x)|2(1 + |x|2)−(1+ m
2 ) dx

=

∫

RN

(

φ2(τ)hm
)a

(|φ|(τ)hm)b ,

where the exponents a, b satisfy
{

2a+ b = 2

a
m

2
+ b

m

2
= 1 +

m

2
,

which leads to a = 1 − 2
m , b = 4

m . Notice that a, b ∈ (0, 1), provided m is large enough (m > 4,
which is always satisfied if m > 2(N + 1)).

Then, using Hölder’s inequality, we infer
∫

RN

|φ(τ, x)|2(1 + |x|2)−(1+ m
2 ) dx

≤
∥

∥φ2(τ)hm
∥

∥

a

Lp(RN )
‖φ(τ)hm‖bL1(RN ),

where the parameter p is given by

p = a (1 − b)
−1

=
1 − 2

m

1 − 4
m

.

Notice that p is always larger than one. In order to be able to interpolate Lp between L1 and Lp
∗

,
p must also be smaller than p∗; if N = 1, p∗ = ∞, and thus we always have p < p∗. If N ≥ 2,
this condition amounts to m > 2(N +1); we assume that m always satisfies this assumption in the
sequel.

Now, let θ ∈ (0, 1) such that
1

p
=
θ

1
+

1 − θ

p∗
;

using once again Hölder’s inequality, we obtain
∫

RN

|φ(·, x)|2(1 + |x|2)−(1+ m
2 ) dx

≤ ‖φ2hm‖aθL1‖φ2hm‖a(1−θ)
Lp∗ ‖φhm‖bL1(RN )

≤ C‖φ2hm‖aθ+a
1−θ
2

L1 ‖∇φ‖a(1−θ)L2(hm)‖φhm‖bL1(RN )

+C‖φ2hm‖aL1‖φhm‖bL1(RN ).

If N = 1, then θ = p−1, and straightforward computations lead to

aθ + a
1 − θ

2
= 1 − 3

m
, a(1 − θ) =

2

m
.

Hence, using Young’s inequality, we deduce that for all λ > 0, there exists a constant Cλ such that
∫

RN

|φ(τ, x)|2(1 + |x|2)−(1+ m
2 ) dx

≤ λ‖φ2(τ)hm‖L1 + λ‖∇φ(τ)‖2
L2(hm) + Cλ‖φ(τ)hm‖2

L1(R). (34)

If N ≥ 2, the calculations are similar and lead to

aθ + a
1 − θ

2
= 1 − N + 2

m
, a(1 − θ) =

2N

m
.
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Hence (34) is also valid in this case.
Using inequality (30) and choosing the parameter λ small enough leads eventually to

(32) ≤ m−N

16

∫

RN

∣

∣

∣

∣

U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ) +
1

2

∫

RN

∣

∣

∣

∣

∇U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ) (35)

+C

(
∫

RN

|U(τ, x)| dx
)2

for all τ ≥ τ0.

Fourth step: control of the term (33).

Remark 3. We recall that (33)=0 if the flux A is linear. Hence this step is required only in the
nonlinear case.

Using inequality (28), we infer that there exists a constant C such that

(33) ≤ C

∫

RN

|U(τ, x)|1+ 1
N

∣

∣

∣

∣

∇x
U(τ, x)

Ũ(τ, x)

∣

∣

∣

∣

dx.

From now on, we treat the cases N = 1, N = 2, and N ≥ 3 separately, and we set φ = U/Ũ.

• If N = 1, we have, for all τ ≥ τ0,

∫

RN

|U(τ, x)|1+ 1
N

∣

∣

∣

∣

∇x
U(τ, x)

Ũ(τ, x)

∣

∣

∣

∣

dx

≤ C

∫

R

(

∂xφ(τ)h1/2
m

)

(φ(τ)hm)
1/2
(

φ3/2(τ)hm

)

≤ C‖∂xφ(τ)‖L2(hm)‖U(τ)‖1/2
L1(R)

∥

∥

∥
φ3/2(τ)hm

∥

∥

∥

L∞(R)

≤ C‖∂xφ(τ)‖L2(hm)‖U(τ)‖1/2
L1(R)

∥

∥

∥
∂x

(

φ3/2(τ)hm

)∥

∥

∥

L1(R)
.

Moreover,

∂x

(

φ3/2hm

)

=
3

2
φ1/2hm∂xφ− φ3/2∂xhm,

and thus
∥

∥

∥
∂x

(

φ3/2hm

)∥

∥

∥

L1(R)
≤ C‖φhm‖1/2

L1

(

‖∂xφ‖L2(hm) + ‖φ‖L2(hm)

)

.

Eventually, we obtain, using once again (30),

(33) ≤ C‖U(τ)‖L1(R)

[

∫

R

∣

∣

∣

∣

∇U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ) +

∫

R

∣

∣

∣

∣

U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ)

]

.

Since
‖U(τ)‖L1 ≤ ‖Uini‖L1 ∀τ ≥ 0,

we infer that if ‖Uini‖1 is sufficiently small, then

(33) ≤ m−N

16

∫

RN

∣

∣

∣

∣

U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ) +
1

2

∫

RN

∣

∣

∣

∣

∇U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ). (36)
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• If N = 2, using the Sobolev embedding W 1,1(R2) ⊂ L2(R2), we obtain, for τ ≥ τ0,
∫

RN

|U(·, x)|1+ 1
N

∣

∣

∣

∣

∇x
U(·, x)
Ũ(·, x)

∣

∣

∣

∣

dx ≤ C

∫

R2

(

|φ|3/2hm
)(

|∇xφ|h1/2
m

)

≤ C
∥

∥

∥
|φ|3/2hm

∥

∥

∥

L2(R2)
‖∇xφ‖L2(hm)

≤ C
∥

∥

∥
∇
(

|φ|3/2hm
)
∥

∥

∥

L1
‖∇xφ‖L2(hm).

As is the case N = 1, we have
∥

∥

∥
∇
(

|φ|3/2hm
)
∥

∥

∥

L1(R2)
≤ C‖φhm‖1/2

L1

(

‖∂xφ‖L2(hm) + ‖φ‖L2(hm)

)

.

Hence we are led to

(33) ≤ C‖U(τ)‖1/2
L1(R2)

[

∫

R2

∣

∣

∣

∣

∇U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ) +

∫

R2

∣

∣

∣

∣

U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ)

]

.

Following exactly the same argument as in the case N = 1, we deduce that if ‖Uini‖1 is
sufficiently small, then (36) holds.

• If N ≥ 3, we have, for τ ≥ τ0,
∫

RN

|U(·, x)|1+ 1
N

∣

∣

∣

∣

∇x
U(·, x)
Ũ(·, x)

∣

∣

∣

∣

dx

≤ C

∫

RN

|φ|1+ 1
N |∇xφ|h1+ 1

N
m

≤ C

∫

RN

(|φ|hm)1/N
(

|∇xφ|h1/2
m

)(

|φ|h1/2
m

)

≤ C‖φhm‖1/N
L1(RN )‖∇xφ‖L2(hm)

∥

∥

∥
|φ|h1/2

m

∥

∥

∥

Lp(RN )
,

where the parameter p is such that

1

N
+

1

2
+

1

p
= 1,

i.e. p = (2N)/(N − 2). Using the Sobolev embedding H1(RN ) ⊂ Lp(RN ), we have
∥

∥

∥
|φ|h1/2

m

∥

∥

∥

Lp(RN )
≤ C

∥

∥

∥
∇x

(

|φ|h1/2
m

)∥

∥

∥

L2(RN )

≤ C
(

‖∇φ‖L2(hm) + ‖φ‖L2(hm)

)

.

Thus, once again, we obtain

(33) ≤ C‖U(τ)‖1/N

L1(RN )

[

∫

RN

∣

∣

∣

∣

∇U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ) +

∫

R2

∣

∣

∣

∣

U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ)

]

,

and thus (36) holds as long as ‖Uini‖L1 is not too large.

Gathering inequalities (31), (35) and (36), we infer that if ‖Uini‖1 is sufficiently small, then for
all τ ≥ τ0,

d

dτ

∫

RN

∣

∣

∣

∣

U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ) +
m−N

8

∫

RN

∣

∣

∣

∣

U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ) +

∫

RN

∣

∣

∣

∣

∇U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ) ≤

≤ C

(
∫

RN

|U(τ, x)| dx
)2

≤ C‖Uini‖2
L1 . (37)
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Fifth step: Conclusion.

Let C1 := (m − N)/4, C2 := C‖Uini‖2
1. Using a Gronwall type argument, we deduce that for

all τ ≥ τ0, we have

∫

RN

∣

∣

∣

∣

U(τ)

Ũ(τ)

∣

∣

∣

∣

2

Ũ(τ) +

∫ τ

τ0

e−C1(τ−s)

(

∫

RN

∣

∣

∣

∣

∇U(s)

Ũ(s)

∣

∣

∣

∣

2

Ũ(s)

)

ds

≤ e−C1(τ−τ0)

∫

RN

∣

∣

∣

∣

U(τ0)

Ũ(τ0)

∣

∣

∣

∣

2

Ũ(τ0) +
C2

C1

≤ C

∫

RN

|U(τ0, x)|2(1 + |x|2)m/2 +
C2

C1
.

Using (30), we infer

sup
τ≥τ0

∫

RN

|U(τ, x)|2(1 + |x|2)m/2 ≤ C

∫

RN

|U(τ0, x)|2(1 + |x|2)m/2 + C
C2

C1
,

sup
τ≥τ0

∫ τ+1

τ

∫

RN

∣

∣

∣

∣

∇U(s)

Ũ(s)

∣

∣

∣

∣

2

hm ds ≤ C

∫

RN

|U(τ0, x)|2(1 + |x|2)m/2 + C
C2

C1
.

Hence U ∈ L∞([0,∞), L2((1 + |x|2)m/2)). Since f0 is bounded away from zero, the L2 bound on V
follows.

Concerning the bound on ∇xV , notice that

V (τ, x) =
U(τ, x)

Ũ(τ, x)

(

hm(x) + e−t
f1(z)

f0(z)
· ∇xhm(x)

)

,

and thus

|∇xV (τ, x)| ≤ Chm(x)

(∣

∣

∣

∣

∇x
U(τ, x)

Ũ(τ, x)

∣

∣

∣

∣

+

∣

∣

∣

∣

U(τ, x)

Ũ(τ, x)

∣

∣

∣

∣

)

.

Consequently, for all τ ≥ 0

∫

RN

|∇xV (τ, x)|2(1 + |x|2)m/2 dx ≤ C

∥

∥

∥

∥

U(τ)

Ũ(τ)

∥

∥

∥

∥

2

H1(hm)

,

which leads to the bound on ∇xV . (Notice that we even retrieve that ∇xV ∈ L2
loc([0,∞), L2((1 +

|x|2)m/2))).
Hence Proposition 3.2 is proved.

Let us now conclude this section by explaining how the bound (2) on the moments of order four
follows from (27). Let Uini ∈ L2(h−1

m ), with m > 2(N + 2) sufficiently large. Then we have proved
that U ∈ L∞([0,∞), L2(h−1

m )). Now, for all τ ≥ 0, using a simple Hölder inequality, we infer that

∫

RN

|U(τ, x)||x|4 dx ≤ ‖U(τ)‖L2(h−1
m )

(
∫

RN

|x|8(1 + |x|2)−m/2 dx
)1/2

.

Hence, if m > N+8, we deduce that U ∈ L∞([0,∞), L1(|x|4)); going back to the original variables,
this entails that (2) is satisfied. Thus the convergence result (3) holds if the flux A is linear, and
Proposition 1.1 is proved.

4 Long-time behaviour

This section is devoted to the rest of the proof of Theorem 1. The idea is to use the L1 compactness
proved in the previous section (see Proposition 3.2) together with techniques from dynamical
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systems theory. This type of proof was initiated by S. Osher and J. Ralston in [18], in which
the authors proved the L1 stability of travelling waves for a quasilinear parabolic equation. Their
arguments were then adapted successfully to various kinds of problems in the context of scalar
conservation laws (see for instance the review in [20]).

In the present study, our scheme of proof is in fact closely related to the one of M. Escobedo and
E. Zuazua in [12]; indeed, the idea is to apply the dynamical systems tools to the rescaled parabolic
system (11) rather than the original conservation law (1). The main difference with [12] lies in the
presence of highly oscillating coefficients in (11); thus it is necessary to work simultaneously with
the homogenized equation (22)-(23) and with the oscillating one.

Let us now introduce some notation and definitions. First, we denote by Sτ (τ ≥ 0) the semi-
group associated with the homogenized equation, that is equation (23) if N = 1, and equation (22)
if N ≥ 2. According to Proposition 2.1, the semi-group Sτ is well-defined in L∞(RN ) ∩ L2(K);
additionally, the L1 contraction property holds, namely

‖SτF1 − SτF2‖L1(RN ) ≤ ‖F1 − F2‖L1(RN ) ∀τ ≥ 0, ∀F1, F2 ∈ L∞(RN ) ∩ L2(K).

Hence Sτ can be extended on L1(RN ).
We also define the ω-limit set associated with a given function Uini ∈ L1(RN ): recalling the

definition of the function V (see (26)), we set

Ω[Uini] :=
{

V̄ ∈ L1(RN ), ∃τn → ∞, V (τn) → V̄ in L1(RN )
}

,

where the function U in (26) is the unique solution of (11) with initial data Uini. When there is
no ambiguity, we will simply write Ω instead of Ω[Uini].

Notice that V (τn) converges towards V̄ in L1 if and only if

lim
n→∞

∫

RN

∣

∣

∣

∣

U(τn, x) − f0

(

eτnx+ c
e2τn − 1

2

)

V̄ (x)

∣

∣

∣

∣

dx = 0.

This equivalence will be used repeatedly throughout the section.
The organisation of this section is the following: we first introduce a “quasi-Lyapunov function”

for the semi-group associated with equation (11). We then prove that Proposition 3.1 holds when
the initial data Uini has a sufficiently small L1 norm. Eventually, we prove Proposition 3.1 in the
general case.

4.1 A quasi-Lyapunov function

Let us introduce the notion of quasi-Lyapunov function:

Definition 4.1. Let X be a Banach space, and let H : [0,∞) × X → R. Let {u(t)}t≥0 be a
trajectory in X . We say that H is a quasi-Lyapunov function for the trajectory u if the following
properties hold:

(i) The family H(t, u(t)) (t ≥ 0) is bounded in R;

(ii) There exists a function ψ : [0,∞) → [0,∞) such that limt→∞ ψ(t) = 0 and

∀t ≥ 0, sup
s≥t

(H(s, u(s)) −H(t, u(t))) ≤ ψ(t).

We then have the following result:

Lemma 4.1. Let X be a Banach space, and let {u(t)}t≥0 be a trajectory in X . Let H : [0,∞)×X →
R be a quasi-Lyapunov function for the trajectory u. Then H(t, u(t)) has a finite limit as t→ ∞.
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Proof. First, since H(t, u(t)) is bounded for t ∈ [0,∞), the quantities

H := lim inf
t→∞

H(t, u(t)), H := lim sup
t→∞

H(t, u(t))

are well-defined and belong to R, with H ≤ H .
Let ε > 0 arbitrary. There exists tε > 0 such that

ψ(t) ≤ ε ∀t ≥ tε.

By definition of H, there exists sε ≥ tε such that

|H(sε, u(sε)) −H | ≤ ε.

Since H is a quasi-Lyapunov function, for all s ≥ sε, we have

H(s, u(s)) ≤ H(sε, u(sε)) + ψ(sε)

≤ H + 2ε.

Hence
H ≤ H + 2ε ∀ε > 0,

and H = H. Thus the quantity H(t, u(t)) has a finite limit as t→ ∞.

We now apply this notion to the present context:

Lemma 4.2. Let M ∈ R be arbitrary, and let Uini ∈ L1(RN ). For τ ≥ 0 and u ∈ L1(RN ), define
the function H by

H(τ, u) :=

∫

RN

|u(x) − Uapp[FM ](τ, x; eτ )| dx,

where the function Uapp was introduced in Definition 2.1.
Let U ∈ C(|0,∞), L1(RN )) be the solution of (11) with initial data Uτ=0 = Uini.
Then H is a quasi-Lyapunov function for the trajectory {U(τ))}τ≥0 in L1(RN ). As a conse-

quence, the function

τ ∈ [0,∞) 7→
∫

RN

|U(τ, x) − f0(z)FM (x)| dx, with z = eτx+ c
e2τ − 1

2
,

converges as τ → ∞.

Proof. This property is an easy consequence of the first point in Lemma 2.5; indeed, according to
Lemma 2.5, there exists a constant C, depending only on N and M , such that

d

dτ
H(τ, U(τ)) =

d

dτ
‖U(τ) − Uapp[FM ](τ)‖L1(RN ) ≤ Ce−τ .

Consequently, for all τ ′ ≥ τ ≥ 0, we have

H(τ ′, U(τ ′)) −H(τ, U(τ)) ≤ C(e−τ − e−τ
′

) ≤ Ce−τ .

Thus property (ii) of Definition 4.1 is satisfied. Additionally, notice that

0 ≤ H(τ, U(τ)) ≤ ‖U(τ)‖L1(RN ) + ‖f0‖L∞(TN )‖FM‖L1(RN )

+ Ce−τ
(

‖∇FM‖L1(RN ) + ‖FM‖2
L2(RN )

)

+ Ce−2τ
(

‖FM‖W 2,1(RN ) + ‖FM‖3
L3(RN ) + ‖∇FM‖2

L2(RN )

)

≤ ‖Uini‖L1(RN ) + C.
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Whence H(τ, U(τ)) is bounded for τ ∈ [0,∞). Consequently H is a quasi-Lyapunov function
for the trajectory U(τ). According to Lemma 4.1, H(τ, U(τ)) admits a finite limit as τ → ∞.
Furthermore, we have

‖U(τ) − f0(z)FM‖L1 =
∥

∥U(τ) − Uapp[FM ](τ) + e−τU1 + e−2τU2

∥

∥

L1 ,

where U1 and U2 are defined by (17)-(20) and (21) respectively. Hence for all τ ≥ 0, there holds

H(τ, U(τ)) − Ce−τ ≤ ‖U(τ) − f0(z)FM‖L1 ≤ H(τ, U(τ)) + Ce−τ ,

where the constant C depends only on W s,p bounds on FM . Thus the function

τ 7→ ‖U(τ) − f0(z)FM‖L1(RN )

converges as τ → ∞, and

lim
τ→∞

‖U(τ) − f0(z)FM‖L1 = lim
τ→∞

H(τ, U(τ)).

Definition 4.2. Let Uini ∈ L1(RN ) be arbitrary, and let M :=
∫

RN Uini. Let U be the solution of
(11) with initial data U|t=0 = Uini.

We define the number ℓ(Uini) by

ℓ(Uini) := lim
τ→∞

∫

RN

|U(τ, x) − f0(z)FM (x)| dx, with z = eτx+ c
e2τ − 1

2
.

Notice that Proposition 3.1 is equivalent to

ℓ(Uini) = 0 ∀Uini ∈ L1(RN ).

Classically, we now derive a continuity property for the function ℓ:

Lemma 4.3. The function
U ∈ L1(RN ) 7→ ℓ(U) ∈ R

is Lipschitz continuous.

Proof. Let U
(1)
ini , U

(2)
ini ∈ L1(RN ), and let M (i) =

∫

RN U
(i)
ini for i = 1, 2. We denote by U (i) ∈

C([0,∞), L1(RN )) the solution of (11) with initial data U
(i)
ini. Then for all τ ≥ 0, the L1 contraction

principle ensures that

∥

∥

∥
U (1)(τ) − U (2)(τ)

∥

∥

∥

L1(RN )
≤
∥

∥

∥
U

(1)
ini − U

(2)
ini

∥

∥

∥

L1(RN )
.

Hence, for all τ ≥ 0, we have

∣

∣

∣

∣

∫

RN

∣

∣

∣
U (1)(τ, x) − f0(z)FM(1)(x)

∣

∣

∣
dx−

∫

RN

∣

∣

∣
U (2)(τ, x) − f0(z)FM(2) (x)

∣

∣

∣
dx

∣

∣

∣

∣

≤
∥

∥

∥
U (1)(τ) − U (2)(τ)

∥

∥

∥

L1(RN )
+ ‖f0‖L∞(TN ) ‖FM(1) − FM(2)‖L1(RN ) .

According to Lemma A.2 in the Appendix,

‖FM(1) − FM(2)‖L1(RN ) =
∣

∣

∣
M (1) −M (2)

∣

∣

∣
≤
∥

∥

∥
U

(1)
ini − U

(2)
ini

∥

∥

∥

L1(RN )
.
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Eventually, we obtain, for all τ ≥ 0,

∣

∣

∣

∣

∫

RN

∣

∣

∣
U (1)(τ, x) − f0(z)FM(1)(x)

∣

∣

∣
dx−

∫

RN

∣

∣

∣
U (2)(τ, x) − f0(z)FM(2)(x)

∣

∣

∣
dx

∣

∣

∣

∣

≤

≤
(

1 + ‖f0‖L∞(TN )

) ∥

∥

∥
U

(1)
ini − U

(2)
ini

∥

∥

∥

L1(RN )
,

and thus, passing to the limit,

∣

∣

∣
ℓ
(

U
(1)
ini

)

− ℓ
(

U
(2)
ini

)∣

∣

∣
≤
(

1 + ‖f0‖L∞(TN )

)∥

∥

∥
U

(1)
ini − U

(2)
ini

∥

∥

∥

L1(RN )
.

Hence ℓ is a Lipschitz continuous function.

4.2 Analysis of the ω-limit set

Proposition 4.1. Let Uini ∈ L1(RN ), and set

M :=

∫

RN

Uini.

Assume that the ω-limit set Ω associated with Uini is non-empty. Then the following properties
hold:

(i) For all V̄ ∈ Ω,
∫

RN

V̄ = M ;

(ii) SτΩ ⊂ Ω for all τ ≥ 0;

(iii) For all V̄ ∈ Ω, we have
∥

∥V̄ − FM
∥

∥

L1(RN )
= ℓ(Uini).

Proof. Throughout the proof, we denote by U the unique solution of equation (11) with initial
data Uini.

Property (i) is quite straightforward: indeed, conservation of mass for the equation (11) implies
that

∫

RN

U(τ) = M ∀τ ≥ 0.

If V̄ ∈ Ω, then there exists a sequence (τn)n≥0 such that

lim
n→∞

τn = ∞ and lim
n→∞

∫

RN

∣

∣U(τn, x) − f0 (zn) V̄ (x)
∣

∣ dx = 0,

where zn = eτnx+ c e
2τn−1

2 . According to a result of G. Allaire (see [2]),

lim
n→∞

∫

RN

f0 (zn) V̄ (x) dx = 〈f0〉
∫

RN

V̄ =

∫

RN

V̄ ;

gathering the three equalities, we obtain property (i).

We now address the proof of property (ii), which relies on the second point in Lemma 2.5; let
V̄ ∈ Ω be arbitrary, and for all ε > 0, let V̄ε ∈ L2(K) ∩ L∞(RN ) such that

‖V̄ε − V̄ ‖L1(RN ) ≤ ε.
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Let (τn)n≥0 be a sequence of positive numbers such that τn → ∞ and
∫

RN

∣

∣U(τn, x) − f0(zn)V̄ (x)
∣

∣ dx→ 0,

where zn = eτnx+ c e
2τn−1

2 .
Let ρ ∈ C∞

0 (RN ) be a mollyfing kernel; for δ > 0, set ρδ := δ−Nρ(·/δ), and define the function
U δ,εn by

U δ,εn (τ, x) := Uapp
[

(Sτ V̄ε) ∗x ρδ
]

(τn + τ, x; eτn+τ ).

Then Lemma 2.5 ensures that U δ,εn satisfies equation (11) with an error term, the latter being
bounded for all T > 0 in L∞([0, T ], L1(RN )) by

ωT,ε(δ) + CT,ε,δe
−τn

where ωT,ε : [0,∞) → [0,∞) is such that lim0+ ωT,ε = 0, and where the constant CT,ε,δ depends
only on ε, δ,N and T .

Using the L1 contraction principle for scalar conservation laws, we infer that for all T > 0, and
for all τ ∈ [0, T ],

∫

RN

∣

∣U(τn + τ, x) − U δ,εn (τ, x)
∣

∣ dx

≤ ωT,ε(δ) + CT,ε,δe
−τn +

∫

RN

∣

∣

∣
U(τn, x) − U δ,εn|τ=0(x)

∣

∣

∣
dx

≤ ωT,ε(δ) + CT,ε,δe
−τn +

∫

RN

∣

∣U(τn, x) − f0(zn)V̄ (x)
∣

∣ dx

+

∫

RN

∣

∣

∣
U δ,εn|τ=0(x) − f0(zn)V̄ (x)

∣

∣

∣
dx.

Now, according to Definition 2.1,

U δ,εn (τ, x) = (Sτ V̄ε) ∗x ρδ(x)f0
(

eτn+τx+ c
e2(τn+τ) − 1

2

)

+ e−(τn+τ)U1

(

τ, x, eτn+τx+ c
e2(τn+τ) − 1

2

)

+ e−2(τn+τ)U2

(

τ, x, eτn+τx+ c
e2(τn+τ) − 1

2

)

.

Hence for all τ ∈ [0, T ], we have
∫

RN

∣

∣

∣

∣

U δ,εn (τ, x) − Sτ V̄ f0

(

eτn+τx+ c
e2(τn+τ) − 1

2

)∣

∣

∣

∣

dx

≤ ‖f0‖∞ sup
τ∈[0,T ]

‖Sτ V̄ − (Sτ V̄ε) ∗x ρδ‖L1(RN )

+e−τn
(

‖U1‖L∞([0,T ]×TN
z ,L

1(RN
x )) + ‖U2‖L∞([0,T ]×TN

z ,L
1(RN

x ))

)

≤ ‖f0‖∞

[

‖V̄ − V̄ε‖L1 + sup
τ∈[0,T ]

‖Sτ V̄ε − (Sτ V̄ε) ∗x ρδ‖L1(RN )

]

+e−τn
(

‖U1‖L∞([0,T ]×TN
z ,L

1(RN
x )) + ‖U2‖L∞([0,T ]×TN

z ,L
1(RN

x ))

)

≤ Cε+ ωT,ε(δ) + CT,ε,δe
−τn .

Gathering the two inequalities, we deduce that for all τ ∈ [0, T ], for all n, δ, ε,
∫

RN

∣

∣

∣

∣

U(τn + τ, x) − Sτ V̄ (x)f0

(

eτn+τx+ c
e2(τn+τ) − 1

2

)
∣

∣

∣

∣

dx

≤ ωT,ε(δ) + CT,ε,δe
−τn +

∫

RN

∣

∣U(τn, x) − f0(zn)V̄ (x)
∣

∣ dx+ Cε.

28



In the right-hand side of the above inequality, we first choose ε sufficiently small, then δ so that
ωT,ε(δ) is sufficiently small, and eventually n large enough so that the two remaining terms are
small as well; hence

lim
n→∞

inf
ε>0,δ>0

(

ωT,ε(δ) + CT,ε,δe
−τn +

∫

RN

∣

∣U(τn, x) − f0(zn)V̄ (x)
∣

∣ dx+ Cε

)

= 0.

Thus we have proved that for all T > 0,

lim
n→∞

sup
τ∈[0,T ]

∫

RN

∣

∣

∣

∣

U(τn + τ, x) − (Sτ V̄ )f0

(

eτn+τx+ c
e2(τn+τ) − 1

2

)∣

∣

∣

∣

dx = 0.

The above convergence entails immediately that Sτ V̄ ∈ Ω for all τ ∈ [0, T ]. Since T > 0 was
arbitrary, property (ii) is proved.

There remains to prove property (iii), which is a variant of the LaSalle invariance principle; let
V̄ ∈ Ω be arbitrary, and let τn be a sequence of positive numbers such that limn→∞ τn = +∞ and

lim
n→∞

∫

RN

∣

∣U(τn, x) − f0(zn)V̄ (x)
∣

∣ dx = 0,

where zn = eτnx + c e
2τn−1

2 . According to a result of G. Allaire (see [2]), we have, since 〈f0〉 = 1
and f0 ∈ C(TN ),

∥

∥V̄ − FM
∥

∥

L1(RN )
= lim

n→∞

∫

RN

f0(zn)|V̄ (x) − FM (x)| dx

= lim
n→∞

∫

RN

f0(zn)

∣

∣

∣

∣

V̄ (x) − U(τn, x)

f0(zn)
+
U(τn, x)

f0(zn)
− FM (x)

∣

∣

∣

∣

dx

= lim
n→∞

∫

RN

f0(zn)

∣

∣

∣

∣

U(τn, x)

f0(zn)
− FM (x)

∣

∣

∣

∣

dx

= ℓ(Uini).

Consequently,
‖V̄ − FM‖L1(RN = ℓ(Uini) ∀V̄ ∈ Ω.

Corollary 4.1. Let Uini ∈ L1(RN ), and set

M :=

∫

RN

Uini.

Assume that the ω-limit set Ω[Uini] is non-empty. Then ℓ(Uini) = 0, and thus the result of
Proposition 3.1 holds.

Proof. Let V̄ ∈ Ω be arbitrary. Then

lim
τ→∞

‖Sτ V̄ − FM‖L1(RN ) = 0;

this property is stated in Proposition 2.1 in the case when V̄ ∈ L∞(RN ) ∩ L2(K), but can be in
fact easily generalized to an arbitrary function V̄ ∈ L1 by using the contractivity of the semi-group
Sτ : indeed, let ε > 0, and let V̄ε ∈ L∞(RN ) ∩ L2(K) such that

∫

V̄ε =
∫

V̄ = M , and

‖V̄ε − V̄ ‖L1(RN ) ≤ ε.

Then for all τ ≥ 0,

‖Sτ V̄ − FM‖1 ≤ ‖Sτ V̄ − Sτ V̄ε‖1 + ‖Sτ V̄ε − FM‖1 ≤ ‖V̄ − V̄ε‖1 + ‖Sτ V̄ε − FM‖1.
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Hence, using Proposition 2.1, we infer that

lim sup
τ→∞

‖Sτ V̄ − FM‖1 ≤ ε ∀ε > 0,

and thus ‖Sτ V̄ − FM‖1 vanishes as τ → ∞.
On the other hand, property (ii) in Proposition 4.1 ensures that Sτ V̄ ∈ Ω for all τ ≥ 0, and

thus, using (iii),
‖Sτ V̄ − FM‖1 = ℓ(Uini) ∀τ ≥ 0.

Consequently, ℓ(Uini) = 0. Going back to the definition of ℓ(Uini), we deduce that

lim
τ→∞

∫

RN

∣

∣

∣

∣

U(τ, x) − f0

(

eτx+ c
e2τ − 1

2

)

FM (x)

∣

∣

∣

∣

dx = 0.

Thus the proof of Proposition 3.1 is complete provided we are able to show that the set Ω[Uini]
is non-empty for a sufficiently large class of functions Uini ∈ L1(RN ). In the case when ‖Uini‖1 is
small, this result follows from Proposition 3.2 and from a contraction principle. The proof in the
general case is more involved, and in fact, an analysis similar to the one performed in Section 3
has to be conducted once more.

4.3 Proof of Proposition 3.1 when ‖Uini‖1 is small

We now complete the proof of Theorem 1 when ‖Uini‖1 is small. Let Uini ∈ L1(RN ). Assume that
Uini satisfies the following assumptions

∃m > 2(N + 1), ‖Uini‖L1(RN ) ≤ Cm, (38)

and Uini ∈ L2((1 + |x|2)m/2) ∩ L∞(RN ), (39)

where the constant Cm was introduced in Proposition 3.2. Then according to Proposition 3.2, the
ω-limit set Ω[Uini] is non-empty, and consequently Proposition 3.1 is true (see Corollary 4.1).

Let us now prove that Proposition 3.1 holds when Uini merely satisfies (38): this fact is a direct
consequence of the density of L2((1+ |x|2)m/2)∩L∞(RN ) in L1(RN ), together with the continuity
of ℓ. Indeed, for all ε > 0, let Uεini ∈ L2((1 + |x|2)m/2) ∩ L∞(RN ) such that

‖Uini − Uεini‖L1(RN ) ≤ ε, ‖Uεini‖L1(RN ) ≤ Cm.

Then ℓ(Uεini) = 0. Since ℓ is Lipschitz continuous (see Lemma 4.3), there exists a constant C such
that

ℓ(Uini) = |ℓ(Uini) − ℓ(Uεini)| ≤ C‖Uini − Uεini‖L1(RN ) ≤ Cε.

Since the above inequality holds for all ε > 0, we deduce that ℓ(Uini) = 0. Recalling the definition
of ℓ, we infer that Proposition 3.1 holds for all initial data Uini ∈ L1(RN ) satisfying (38).

4.4 Proof of Proposition 3.1 in the general case

The case when ‖Uini‖1 is large follows from the following Lemma:

Lemma 4.4. There exists a constant C0, depending only on N and on the flux A, such that for
all Uini ∈ L1(RN ),

ℓ(Uini) ≤ C0 ⇒ ℓ(Uini) = 0.
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Before proving the above Lemma, let us explain why the result of Proposition 3.1 follows. If
ℓ(Uini) ≤ C0 for all Uini ∈ L1(RN ), then the above Lemma states that ℓ is identically zero on
L1(RN ), and thus Proposition 3.1 is true. Thus we assume by contradiction that there exists
Uini ∈ L1(RN ) such that ℓ(Uini) > C0. Consider the function

φ : t ∈ [0, 1] 7→ ℓ(tUini).

We have proved in the previous paragraph that φ vanishes in a neighbourhood of zero. Moreover,
φ is a continuous function according to Lemma 4.3. Now, it is obvious that φ(0) = 0, and φ(1) =
ℓ(Uini) > C0. Hence there exists t0 ∈ (0, 1) such that

φ(t0) =
C0

2

But according to Lemma 4.4, φ(t0) = ℓ(t0Uini) = 0, which is impossible. Thus ℓ(Uini) = 0 for all
Uini ∈ L1(RN ).

There remains to prove Lemma 4.4. According to Corollary 4.1 and using by now standard
arguments, we only have to prove that there exists a set A ⊂ L1(RN ), which is dense in L1(RN ),
and such that

∃C > 0, ∀Uini ∈ L1(RN ) ∩ A, ℓ(Uini) ≤ C ⇒ Ω[Uini] 6= ∅. (40)

In the following, we will take A = L2((1 + |x|2)m/2), for some m > 0 sufficiently large.
The scheme of proof of the implication (40) is very similar to the one of Proposition 3.2; indeed,

we have to prove that if ℓ(Uini) is small enough, then there exists a sequence (τn) of positive
numbers, with limn→∞ τn = +∞, such that (V (τn, ·))n→∞ is a compact sequence in L1(RN ).
Notice that this is obviously equivalent to the compactness of the sequence V (τn, ·) − FM , whose
L1 norm is of the order of ℓ(Uini) as n → ∞. Thus our strategy is the following: rather than
using directly the equation on U , we consider the equation on the function U − Uapp[FM ]. We
prove that for an appropriate function Ũ , an inequality of the type (31) holds, with U replaced by
U−Uapp[FM ]. Then, all the occurrences of ‖U(τ)‖1 in the proof of Proposition 3.2 are replaced by
‖(U−Uapp[FM ])(τ)‖1, which converges towards ℓ(Uini) as τ → ∞. Thus the same arguments which
led us to compactness in the case when ‖Uini‖1 is small show that compactness holds, provided
ℓ(Uini) is small enough.

Let us now retrace the main lines of the proof: first, consider a function Uini ∈ L1(RN ) such
that Uini ∈ L2((1 + |x|2)m/2) for some sufficiently large m (to be chosen later). Set M =

∫

RN Uini
and

W (τ, x) = U(τ, x) − Uapp[FM ](τ, x; eτ ).

In the rest of the proof, for the sake of brevity, we will write Uapp(τ, x) as a short-hand for
Uapp[FM ](τ, x; eτ ). Then the following properties hold

W ∈ L∞
loc([0,∞), L2((1 + |x|2)m/2)) ∩ L2

loc([0,∞), H1((1 + |x|2)m/2)),
∃C > 0, ∀τ ≥ 0, ‖W (τ, ·)‖L∞(RN ) ≤ CeNτ ,

lim
τ→∞

‖W (τ)‖L1(RN ) = ℓ(Uini).

Moreover, using Lemma 2.5, we deduce that W satisfies

∂τW = divx(xW ) + ∆xw −Rdivx ((α1(z) − c)W )

−RN+1divx

[

B̃1

(

z,
U

RN

)

− B̃1

(

z,
Uapp

RN

)]

+U rem,

with R = eτ , z = Rx+ cR
2−1
2 , and we recall that the remainder U rem satisfies

‖U rem(τ)‖L∞(RN ) + ‖U rem(τ)‖L2(eγ|x|2 ) ≤ Ce−τ (41)
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for some γ > 0.
Then, using the bounds on U,Uapp together with the regularity assumptions on B̃, it can be

easily proved that

B̃1

(

z,
U(τ, x)

RN

)

− B̃1

(

z,
Uapp(τ, x)

RN

)

= 2α2(z)f0(z)
FM (x)W (τ, x)

R2N
+ b(τ, x),

and the function b is such that there exists C > 0 such that

∀(τ, x) ∈ R+ × R
N , |b(τ, x)| ≤ C

(

∣

∣

∣

∣

W (τ, x)

RN

∣

∣

∣

∣

2

+R−2N−1|W (τ, x)|
)

.

We define a function W̃ by

W̃ (τ, x) = W0(x, z) + e−τW1(x, z),

with W0(x, z) = f0(z)hm(x) and

−∆zW1 + divz(α1W1) = 2∆yzW0 − divx((α1 − c)W0) − 1N=12divz(α2f0FMW0).

Notice that by definition of f0 and c, the compatibility condition is always satisfied, and

W1(x, z) = f1(z) · ∇yhm(x) + 1N=1w1(z)FM (x)hm(x),

with
−∆zw1 + divz(α1w1) = −2divz(α2f

2
0 ).

Let τ0 > 0 such that

W̃ (τ, x) ≥ 1

2
f0(z)hm(x) ∀τ ≥ τ0, ∀y ∈ R

N .

For further purposes, we also choose τ0 such that

‖W (τ, ·)‖1 ≤ 2ℓ(Uini) ∀τ ≥ τ0.

(Notice that if ℓ(Uini) = 0 there is nothing to prove).
Using calculations similar to the ones performed in the proof of Proposition 3.2, we infer that

for τ ≥ τ0,

d

dτ

∫

RN

∣

∣

∣

∣

W

W̃

∣

∣

∣

∣

2

W̃ (τ) +
m−N

4

∫

RN

∣

∣

∣

∣

W

W̃

∣

∣

∣

∣

2

W̃ (τ) + 2

∫

RN

∣

∣

∣

∣

∇W

W̃

∣

∣

∣

∣

2

W̃ (τ)

≤ C

∫

RN

(

W (τ, x)

W̃ (τ, x)

)2
dx

(1 + |x|2)1+ m
2

+Ce(1−N)τ

∫

RN

|W (τ, x)|2
∣

∣

∣

∣

∇y
W (τ, x)

W̃ (τ, x)

∣

∣

∣

∣

dx

+

∫

RN

∣

∣

∣

∣

W (τ, x)

W̃ (τ, x)

∣

∣

∣

∣

|U rem(τ, x)| dx.

Using the same arguments as in the third step of the proof of Proposition 3.2, we deduce that if
m > 2(N + 1),

∫

RN

(

W (τ, x)

W̃ (τ, x)

)2
dx

(1 + |x|2)1+ m
2

≤ m−N

16

∫

RN

∣

∣

∣

∣

W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ)

+
1

2

∫

RN

∣

∣

∣

∣

∇W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ)

+Cℓ(Uini)
2.
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Similarly, the calculations of the fourth step in the proof of Proposition 3.2 yield

e(1−N)τ

∫

RN

|W (τ, x)|2
∣

∣

∣

∣

∇x
W (τ, x)

W̃ (τ, x)

∣

∣

∣

∣

dx

≤ C‖W (τ)‖1/N

L1(RN )

[

∫

RN

∣

∣

∣

∣

W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ) +

∫

RN

∣

∣

∣

∣

∇W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ)

]

≤ Cℓ(Uini)
1/N

[

∫

RN

∣

∣

∣

∣

W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ) +

∫

RN

∣

∣

∣

∣

∇W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ)

]

.

Eventually, using the Cauchy-Schwarz inequality together with the bound (41), we infer that

∫

RN

∣

∣

∣

∣

W (τ, x)

W̃ (τ, x)

∣

∣

∣

∣

|U rem(τ, x)| dx

≤ ‖U rem(τ)‖L2(W̃ (τ)−1)

(

∫

RN

∣

∣

∣

∣

W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ)

)1/2

≤ C‖U rem(τ)‖L2(eγ|x|2 )

(

∫

RN

∣

∣

∣

∣

W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ)

)1/2

≤ Ce−τ

(

∫

RN

∣

∣

∣

∣

W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ)

)1/2

≤ C +
m−N

16

∫

RN

∣

∣

∣

∣

W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ).

Gathering all the terms, we deduce that there exists a constant Cm, depending only on N and
m, such that if ℓ(Uini) ≤ Cm, then for all τ ≥ τ0,

d

dτ

∫

RN

∣

∣

∣

∣

W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ) +
m−N

16

∫

RN

∣

∣

∣

∣

W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ) +

∫

RN

∣

∣

∣

∣

∇W (τ)

W̃ (τ)

∣

∣

∣

∣

2

W̃ (τ) ≤ C.

Compactness of a subsequence W (τn) follows. Hence the ω-limit set is non-empty, and thus
ℓ(Uini) = 0.

Appendix A

Lemma A.1. Assume that the flux A satisfies (4), (5). Let v ∈W 1,∞(TN ) be a periodic stationary
solution of (1), and let u ∈ L∞

loc([0,∞), L∞(RN )) ∩ C([0,∞), L1
loc(R

N )) be the unique solution of
(1) with initial data uini ∈ v(y) + L1 ∩ L∞(RN ). Then u ∈ L∞([0,∞) × R

N ).

Proof. This result was proved in [7] in the case N = 1. When N ≥ 2, the proof goes along the
same lines; the only difference lies in the use of the Sobolev embeddings, which depend on the
dimension. Hence we merely recall here the main steps of the proof, with an emphasis on the case
N ≥ 2.

In the rest of the proof, we set f(t, y) = u(t, y) − v(y). Then f solves the equation

∂tf + divyB(y, f) − ∆yf = 0, (42)

and according to (5) the flux B is such that for all f ∈ R,

|divyB(y, f)| ≤ C(|f | + |f |n),
|∂fB(y, f)| ≤ C(|f | + |f |n),
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where the exponent n is such that n < (N + 2)/N . Moreover,

‖f(t)‖L1(RN ) ≤ ‖uini − v‖L1(RN ) ∀t ≥ 0.

For q ≥ 1 arbitrary, multiply (42) by |f |q, and integrate over R
N . Using a few integrations by parts

(see [7]), we are led to

d

dt

∫

RN

|f |q+1 + cq

∫

RN

∣

∣

∣
∇y|f |

q+1
2

∣

∣

∣

2

≤ Cq

(
∫

RN

|f |q+1 +

∫

RN

|f |q+n
)

(43)

We then use Sobolev embeddings in order to control the Lq+1 and Lq+n norms in the right-hand
side. We distinguish between the casesN = 2 andN ≥ 3, since the spaceH1 is critical in dimension
two.

• If N = 2, then H1(R2) ⊂ Lp(R2) for all p ∈ [2,∞). Interpolating Lq+n between L1 and Lp

for some p sufficiently large, we have

‖f‖Lq+n(R2) ≤ ‖f‖θ1‖f‖1−θ
p with

1

q + n
=
θ

1
+

1 − θ

p

≤ ‖f‖θ1
∥

∥

∥
|f | q+1

2

∥

∥

∥

2(1−θ)
q+1

2p
q+1

≤ Cp‖f‖θ1
∥

∥

∥
∇|f | q+1

2

∥

∥

∥

2(1−θ)
q+1

2
.

Notice that
q + n

q + 1
(1 − θ) =

q + n− 1

(q + 1)
(

1 − 1
p

) ,

and
q + n− 1

q + 1
< 1 ∀q ≥ 1

since n < (N + 2)/N . Thus, we choose p > 1 such that

q + n− 1

(q + 1)
(

1 − 1
p

) < 1.

Young’s inequality then implies that for all λ > 0, there exists a constant Cλ,q and an exponent q1
such that

∫

RN

|f |q+n ≤ λ
∥

∥

∥
∇|f | q+1

2

∥

∥

∥

2

2
+ Cλ,q‖f‖q11 . (44)

The other term in the right-hand side of (43) can be bounded in a similar fashion: we have, for all
λ > 0,

∫

RN

|f |q+1 ≤ λ
∥

∥

∥
∇|f | q+1

2

∥

∥

∥

2

2
+ Cλ,q‖f‖q21 , (45)

for some exponent q2 which can be explicitely computed. Choosing an appropriate parameter λ,
we infer that there exist q1, q2 > 0 such that

d

dt

∫

RN

|f |q+1 + cq

∫

RN

∣

∣

∣
∇y|f |

q+1
2

∣

∣

∣

2

≤ Cq(‖f‖q11 + ‖f‖q21 ).

Using (45) one more time leads to

d

dt

∫

RN

|f |q+1 + cq

∫

RN

|f |q+1 ≤ Cq(‖f‖q11 + ‖f‖q21 ) ≤ C.
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Using a Gronwall-type argument, we infer that f ∈ L∞([0,∞), L
q+1
2 (RN )) for all q ≥ 1.

• When N ≥ 3, we use the Sobolev embedding H1(RN ) ⊂ Lp
∗

(RN ), where

p∗ =
2N

N − 2
.

Interpolating Lq+n between L1 and L
p∗(q+1)

2 , we obtain

‖f‖q+n ≤ ‖f‖θp∗(q+1)
2

‖f‖1−θ
1 ≤

∥

∥

∥
|f | q+1

2

∥

∥

∥

2θ
q+1

p∗
‖f‖1−θ

1

≤ C
∥

∥

∥
∇|f | q+1

2

∥

∥

∥

2θ
q+1

2
‖f‖1−θ

1 ,

where the parameter θ ∈ (0, 1) is given by

1

q + n
=

2θ

p∗(q + 1)
+

1 − θ

1
.

It can be checked that

n <
N + 2

N
⇒ θ(q + n)

q + 1
< 1.

Hence (44) holds when N ≥ 3. Inequality (45) is proved with similar arguments. As in the two-
dimensional case, we deduce that f ∈ L∞([0,∞), Lq(RN )) for all q. Using Theorem 8.1 in Chapter
III of [16] (see [7] for details), we infer eventually that f ∈ L∞([0,∞) × R

N ).

Appendix B

Lemma A.2.Let M > M ′ be arbitrary. Then

FM (y) > FM ′ (y) ∀y ∈ R
N .

As a consequence,
‖FM − FM ′‖1 = M −M ′.

Proof. The arguments are exactly the ones which lead to the uniqueness of stationary solutions of
(22), (23), and they can be found in [1]. We recall the main steps below for the reader’s convenience.

Let F := FM − FM ′ . Then F ∈ L1 ∩ C2(RN ), and
∫

RN F > 0. Hence the set

Θ := {x ∈ R
N , F (x) > 0}

is non-empty. The idea is to prove that F+ = F1Θ satisfies a linear elliptic equation; since F+ ≥ 0,
F+ cannot vanish anywhere, and thus F+(x) > 0 for all x ∈ R

N .
Let us now derive an equation on F+. Substracting the equations on FM and FM ′ , we have

−
∑

1≤i,j≤N

ηi,j
∂2F

∂xi∂xj
+ divx(bF ) = 0,

where
b(x) = a(FM (x) + FM ′(x)) − x, x ∈ R

N ;

notice that a = 0 if N ≥ 2. Since F ∈ H2(RN ), we have

divx(bF )1Θ = divx(bF+)

35



almost everywhere. Thus, we obtain

−
∑

1≤i,j≤N

ηi,j1Θ
∂2F

∂xi∂xj
+ divx(bF+) = 0.

Integrating the above equation on R
N leads to

∫

Θ

∑

1≤i,j≤N

ηi,j
∂2F

∂xi∂xj
= 0.

Let us now perform the change of variables (25), which changes the matrix η into identity: setting
F̃ (y) = F (Py), and Θ̃ := {F̃ > 0}, we infer

∫

Θ̃

∆yF̃ = C

∫

Θ

∑

1≤i,j≤N

ηi,j
∂2F

∂xi∂xj
= 0.

Moreover, F̃ ∈ H2 ∩W 2,1(RN ), and thus Lemma 7 in [1] applies. We deduce that

∆y(F̃1Θ̃) = 1Θ̃∆yF̃ ,

and thus
∑

1≤i,j≤N

ηi,j1Θ
∂2F

∂xi∂xj
=

∑

1≤i,j≤N

ηi,j
∂2F+

∂xi∂xj
.

Eventually, F+ solves the elliptic equation

−
∑

1≤i,j≤N

ηi,j
∂2F+

∂xi∂xj
+ divx(bF+) = 0,

with b ∈ L∞
loc(R

N ). Using either a unique continuation principle or Harnack’s inequality (see [13],
Theorem 8.20), we infer that if F+ vanishes at some point x in R

N , then F+ is identically zero on
R
N , which is absurd. Hence F+(x) > 0 for all x ∈ R

N , and thus R
N \ Θ = ∅, which means that

F (x) > 0 for all x ∈ R
N .
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[2] Grégoire Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992),
no. 6, 1482–1518.

[3] Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for
periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Pub-
lishing Co., Amsterdam, 1978.

36



[4] Adrien Blanchet, Jean Dolbeault, and Michal Kowalczyk, Stochastic stokes’ drift, homogenized
functional inequalities, and large time behaviour of brownian ratchets, SIAM J. Math. Anal.
(2008), accepted.

[5] , Travelling fronts in stochastic Stokes’ drifts, Physica A: Statistical Mechanics and its
Applications 387 (2008), no. 23, 5741–5751.
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