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This paper is devoted to the study of the stability of limit cycles of a nonlinear delay differential equation with a distributed delay. The equation arises from a model of population dynamics describing the evolution of a pluripotent stem cells population. We study the local asymptotic stability of the unique nontrivial equilibrium of the delay equation and we show that its stability can be lost through a Hopf bifurcation. We then investigate the stability of the limit cycles yielded by the bifurcation using the normal form theory and the center manifold theorem. We illustrate our results with some numerics.

Introduction

This paper is devoted to the analysis of the nonlinear delay differential equation

x ′ (t) = -δ + β(x(t)) x(t) + 2 τ τ 0 β(x(t -s))x(t -s)ds. (1) 
This equation arises from a model of pluripotent hematopoietic stem cells dynamics, that is stem cells at the root of the blood production process [START_REF] Adimy | Stability and Hopf Bifurcation in a Mathematical Model of Pluripotent Stem Cell Dynamics[END_REF][START_REF] Adimy | A Mathematical Study of the Hematopoiesis Process with Applications to Chronic Myelogenous Leukemia[END_REF]. It describes the fact that the cell density evolves according to mortality and cell division. One may stress that the cell density considered in equation ( 1) is in fact the density of resting cells, in opposition to the density of proliferating cells. The distinction between these two stages of the cell cycle is now widely accepted. We can cite, for example, the works of Burns and Tannock [START_REF] Burns | On the existence of a G 0 phase in the cell cycle[END_REF] on the existence of a resting phase -also called G 0 -phase -in the cell cycle. This phase is a quiescent stage in the cell development, contrary to the proliferating phase which represents the active part of the cell cycle: it is composed of the main stages of the cell development (e.g. DNA synthesis) and ends at mitosis with the cell division. Thus, proliferating pluripotent hematopoietic stem cells are committed to divide and give birth to two daughter cells which immediately enter the resting phase and complete the cycle.

Mathematical models describing the dynamics of hematopoietic stem cells population have been studied since the end of the seventies and the works of Mackey [START_REF] Mackey | A unified hypothesis on the origin of aplastic anaemia and periodic hematopoiesis[END_REF][START_REF] Mackey | Biophysical and Biochemical Information Transfer in Recognition[END_REF]. For the reader interested in this topic, we mention the review articles by Haurie et al. [START_REF] Haurie | Cyclical neutropenia and other periodic hematological diseases: A review of mechanisms and mathematical models[END_REF] and Mackey et al. [START_REF] Mackey | Cell replication and control, in Nonlinear Dynamics in Physiology and Medicine[END_REF], and the references therein. Recently, Pujo-Menjouet et al. [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Mackey | Contribution to the study of periodic chronic myelogenous leukemia[END_REF] proved the existence of a Hopf bifurcation for the hematopoiesis model proposed in [START_REF] Mackey | A unified hypothesis on the origin of aplastic anaemia and periodic hematopoiesis[END_REF], described by a nonlinear differential equation with discrete delay. However, their results cannot be directly applied to [START_REF] Adimy | Stability and Hopf Bifurcation in a Mathematical Model of Pluripotent Stem Cell Dynamics[END_REF] because of the nature of the delay.

Delay differential equations with distributed delay have been studied by many authors. We can cite, for example, the works in [START_REF] Anderson | Geometric and probabilistic stability criteria for delay systems[END_REF][START_REF] Anderson | Intrinsic parameters and stability of differential-delay equations[END_REF][START_REF] Bernard | Sufficient conditions for stability of linear differential equations with distributed delay[END_REF][START_REF] Boese | The stability chart for the linearized Cushing equation with a discrete delay and Gamma-distributed delays[END_REF][START_REF] Kuang | Nonoccurrence of stability switching in systems of differential equations with distributed delays[END_REF]. However, these studies mainly focused on stability conditions. In 2003, Liao et al. [START_REF] Liao | Stability of bifurcating periodic solutions for van der Pol equation with continuous distributed delay[END_REF] showed the existence of a Hopf bifurcation for a Van der Pol equation with distributed delay and studied the stability of limit cycles, applying the normal form theory and the center manifold theorem. The characteristic equation in [START_REF] Liao | Stability of bifurcating periodic solutions for van der Pol equation with continuous distributed delay[END_REF] is an exponential polynomial, similar to the one obtained in [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF][START_REF] Mackey | Contribution to the study of periodic chronic myelogenous leukemia[END_REF] except that the degree is higher, which makes the study easier than with equation [START_REF] Adimy | Stability and Hopf Bifurcation in a Mathematical Model of Pluripotent Stem Cell Dynamics[END_REF]. In [START_REF] Adimy | A Mathematical Study of the Hematopoiesis Process with Applications to Chronic Myelogenous Leukemia[END_REF], Adimy et al. obtained the existence of a Hopf bifurcation for a nonlinear differential equation with a delay distributed according to a density, generalizing equation [START_REF] Adimy | Stability and Hopf Bifurcation in a Mathematical Model of Pluripotent Stem Cell Dynamics[END_REF]. However, these authors did not study the limit cycles of their model.

We consider a pluripotent hematopoietic stem cells population density x(t), satisfying the nonlinear delay differential equation [START_REF] Adimy | Stability and Hopf Bifurcation in a Mathematical Model of Pluripotent Stem Cell Dynamics[END_REF]. The constant δ accounts for natural mortality and cellular differentiation. The nonlinear term β(x(t)) represents a rate of introduction in the proliferating phase. The last term appears to describe the amount of cells due to cell division: cells are assumed to divide uniformly on an interval (0, τ ), with τ > 0, and dividing cells are in fact cells introduced in the proliferating phase one generation earlier.

The assumption on the cell division comes from the fact that, even though only a little is known about phenomena involved in hematopoiesis, there are strong evidences (see Bradford et al. [START_REF] Bradford | Quiescence, cycling, and turnover in the primitive haematopoietic stem cell compartment[END_REF]) indicating that cells do not divide at the same age. The factor 2 describes the division of each mother cell in two daughter cells.

The rate of reintroduction in the proliferating compartment β is taken to be a monotone and decreasing Hill function, given by

β(x) = β 0 θ n θ n + x n for x ≥ 0. ( 2 
)
The coefficient β 0 > 0 is the maximum rate of reintroduction, θ ≥ 0 is the resting phase population density for which the rate of re-entry β attains its maximum rate of change with respect to the resting phase population, and n ≥ 0 describes the sensitivity of β with changes in the population. This function was firstly used in hematopoiesis models by Mackey [4] in 1978.

In [START_REF] Mackey | A unified hypothesis on the origin of aplastic anaemia and periodic hematopoiesis[END_REF][START_REF] Mackey | Biophysical and Biochemical Information Transfer in Recognition[END_REF] Mackey gave values of the above parameters for a normal human body production. These values are δ = 0.05 d -1 and β 0 = 1.77 d -1 .

(

Usually, n is close to 1, but Mackey [START_REF] Mackey | A unified hypothesis on the origin of aplastic anaemia and periodic hematopoiesis[END_REF][START_REF] Mackey | Biophysical and Biochemical Information Transfer in Recognition[END_REF] reports values of n around 3 in abnormal situations. The value of θ is usually θ = 1.62 × 10 8 cells/kg. However, since we shall study the qualitative behavior of the pluripotent stem cells population, the value of θ is not really important and setting the scale change

x(t) → x(t) θ
in [START_REF] Adimy | Stability and Hopf Bifurcation in a Mathematical Model of Pluripotent Stem Cell Dynamics[END_REF], with the function β given by ( 2), we obtain

dx dt (t) = -δx(t) -β 0 f (x(t)) + 2β 0 τ 0 -τ f (x(t + s)) ds (4) with f (x) = x 1 + x n , x ≥ 0. (5) 
However, we mention that this special form of f will not be used in the following, except in computations in Section 4. We only assume that f is differentiable with f (0) = 0 and, for x > 0, f (x)/x is decreasing and satisfies

lim x→+∞ f (x) x = 0.
An illustration of such a function is presented in Fig. 1.

Notice that equation (4) has at most two equilibria: the trivial equilibrium x ≡ 0 and a nontrivial positive equilibrium x ≡ x * . The trivial equilibrium always exists and corresponds to the extinction of the population.

The nontrivial equilibrium exists if and only if

0 < δ < β 0 f ′ (0) (6) 
and is then uniquely defined by

δx * = β 0 f (x * ). ( 7 
)
This can be easily shown by using the fact that the function f (x)/x is decreasing on [0, +∞). Our aim in this work is to show that the unique nontrivial equilibrium of equation ( 1) undergoes, in a particular case, a unique Hopf bifurcation and to show the stability of the limit cycles following the approach in [START_REF] Hassard | Theory and Applications of Hopf Bifurcation[END_REF][START_REF] Stepan | Retarded dynamical systems: stability and characteristic functions[END_REF].

The paper is organized as follows. In Section 2, we establish some local stability results for the unique nontrivial equilibrium of (1) and prove that it undergoes a Hopf bifurcation. We study the stability of the limit cycles obtained at the bifurcation in Section 3. Our results are illustrated numerically in Section 4. We conclude with a discussion in Section 5. 

Local Stability and Hopf Bifurcation Analysis

Part of the study presented in this section has been previously performed by Adimy et al. in [START_REF] Adimy | Stability and Hopf Bifurcation in a Mathematical Model of Pluripotent Stem Cell Dynamics[END_REF]. However, for the reader convenience and to preserve the coherence of the present work, we detail the asymptotic behavior study of the nontrivial equilibrium x ≡ x * of equation (4), defined by [START_REF] Mackey | Cell replication and control, in Nonlinear Dynamics in Physiology and Medicine[END_REF]. We first concentrate on the local asymptotic stability of this equilibrium. Then, we will show that it undergoes a Hopf bifurcation for some critical value of the time delay.

We assume that (6) holds in order to ensure the existence of x * , that is

0 < δ < β 0 f ′ (0).
The linearization of equation ( 4) around x * leads to the characteristic equation

∆(λ, τ ) := λ + δ + β 0 β 1 - 2β 0 β 1 τ 0 -τ e λs ds = 0, (8) 
where we have set

β 1 := f ′ (x * ).
We recall that the nontrivial equilibrium x * is locally asymptotically stable if and only if all eigenvalues of (8) have negative real parts. The function f in (4) is not necessarily monotone so β 1 may be either positive or negative. We first study the case β 1 ≥ 0.

Consider ∆(λ, τ ) as a function of real λ. Then ∆ is differentiable with respect to λ and

∆ λ (λ, τ ) := ∂∆ ∂λ (λ, τ ) = 1 - 2β 0 β 1 τ 0 -τ se λs ds. (9) 
Since 0 -τ se λs ds < 0, we deduce that ∆ λ (λ, τ ) > 0. Moreover, one can easily check that lim

λ→-∞ ∆(λ, τ ) = -∞ and lim λ→+∞ ∆(λ, τ ) = +∞.
Consequently, ∆(λ, τ ) has a unique real eigenvalue, namely λ 0 . From (8), we obtain

∆(0, τ ) = δ -β 0 β 1 .
Writing

β 1 = x * f (x) x ′ x=x * + f (x * ) x * = x * f (x) x ′ x=x * + δ β 0 , we deduce ∆(0, τ ) = -β 0 x * f (x) x ′ x=x * > 0.
Hence, λ 0 is strictly negative. Let λ = ν + iω be an eigenvalue of [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF] and assume that ν > λ 0 . Considering the real part of (8), we obtain

ν + δ + β 0 β 1 - 2β 0 β 1 τ 0 -τ
e νs cos(ωs)ds = 0.

Therefore,

ν -λ 0 = 2β 0 β 1 τ 0 -τ
e νs cos(ωs)e λ0s ds < 0, which gives a contradiction. We deduce that every eigenvalue of (8) has negative real part. It follows that the nontrivial positive equilibrium x * is locally asymptotically stable. This result is summed up in the following proposition.

Proposition 2.1. Assume that β 1 ≥ 0. Then the nontrivial equilibrium x ≡ x * of ( 4) is locally asymptotically stable for all τ ≥ 0.

If the function f is given by ( 5) then ( 6) is equivalent to 0 < δ < β 0 and x * = (β 0 /δ-1) 1/n . The condition β 1 ≥ 0 reduces to

n β 0 -δ β 0 ≤ 1.
We assume now that β 1 < 0. We are going to show that the equilibrium x * undergoes a Hopf bifurcation. To that aim, we look for the existence of purely imaginary roots of [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF].

We first check that x * is locally asymptotically stable when τ = 0. In this case, the characteristic equation ( 8) reduces to

λ + δ -β 0 β 1 = 0, so λ = -δ + β 0 β 1 < 0.
We have the following lemma.

Lemma 2.1. Assume that β 1 < 0. Then the nontrivial equilibrium x ≡ x * of ( 4) is locally asymptotically stable when τ = 0.

Let λ = iω, ω ∈ R, be a purely imaginary eigenvalue of [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF]. One can check that ∆(-iω, τ ) = 0, so we only look for positive ω. Moreover, ω = 0 since

∆(0, τ ) = δ -β 0 β 1 > 0.
Thus, let us assume that ω > 0 and τ > 0 satisfy ∆(iω, τ ) = 0. Separating real and imaginary parts of ∆(iω, τ ), we obtain

     δ + β 0 β 1 - 2β 0 β 1 ωτ sin(ωτ ) = 0, ω + 2β 0 β 1 ωτ (1 -cos(ωτ )) = 0. ( 10 
)
We set

h(x) = sin(x) x , x > 0.
Then system (10) can be written

       h(ωτ ) = δ + β 0 β 1 2β 0 β 1 , cos(ωτ ) -1 (ωτ ) 2 = 1 2β 0 β 1 τ . (11) 
Since

β 1 < 0 and δ > 0, then δ + β 0 β 1 2β 0 β 1 < 1 2 .

Let

x 0 = min {x > 0; x = tan(x) and h(x) > 0} ≃ 7.725, and assume that

h(x 0 ) < δ + β 0 β 1 2β 0 β 1 . (12) 
One can check that h(x 0 ) ≃ 0.1284. Then ( 12) is equivalent to

β 1 < - δ β 0 (1 -2h(x 0 ))
.

On the interval [0, π], the function h is strictly decreasing and nonnegative, with 0 ≤ h(x) ≤ 1. Moreover, for x ≥ π, h(x) ≤ h(x 0 ). Consequently, the equation

h(x) = δ + β 0 β 1 2β 0 β 1
has a unique solution, denoted x c , which belongs to the interval (0, π). We then set

τ c = x 2 c 2β 0 β 1 (cos(x c ) -1)
and

ω c = x c τ c .
Therefore, (ω c , τ c ) is the unique solution of ( 11) and ±iω c are purely imaginary eigenvalues of ( 8) for τ = τ c . In order to show that x * undergoes a Hopf bifurcation for τ = τ c , we have to prove that ±iω c are simple eigenvalues of ∆(•, τ c ) and satisfy the transversality condition dRe(λ) dτ

τ =τc > 0.
We first check that ±iω c are simple eigenvalues of [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF]. Using [START_REF] Mackey | Contribution to the study of periodic chronic myelogenous leukemia[END_REF], one can see that iω c is simple if

Re (∆ λ (iω c , τ c )) = 1 + 2β 0 β 1 τ c ω c τ c sin(ω c τ c ) + cos(ω c τ c ) -1 ω 2 c = 0 (13) 
or

Im (∆ λ (iω c , τ c )) = 2β 0 β 1 τ c ω c τ c cos(ω c τ c ) -sin(ω c τ c ) ω 2 c = 0. ( 14 
)
We are going to show that, in fact, these two conditions are satisfied.

Lemma 2.2. Assume that β 1 < 0 and ( 12) holds. Let (ω c , τ c ) be the unique solution of [START_REF] Anderson | Intrinsic parameters and stability of differential-delay equations[END_REF],

with ω c τ c ∈ (0, π). Then Re (∆ λ (iω c , τ c )) > 0 and Im (∆ λ (iω c , τ c )) > 0. ( 15 
)
In particularly, ±iω c are simple eigenvalues of ( 8) for τ = τ c .

Proof. First, one can check, using ( 11) and ( 13), that

Re (∆ λ (iω c , τ c )) = 2 + (δ + β 0 β 1 )τ c . Since cos(x) -1 x 2 = - h 2 (x) 1 + cos(x)
, for x > 0, then, from [START_REF] Anderson | Intrinsic parameters and stability of differential-delay equations[END_REF] it follows that

1 + cos(x) = -(δ + β 0 β 1 )τ c . Consequently, Re (∆ λ (iω c , τ c )) = 1 -cos(ω c τ c ) > 0.
Secondly, since x cos(x) < sin(x) for x ∈ (0, π) and

x c = ω c τ c ∈ (0, π), then from (14) we obtain Im (∆ λ (iω c , τ c )) > 0.
This concludes the proof.

Consider now a branch of eigenvalues λ(τ ) = ν(τ ) + iω(τ ) of ( 8) such that ν(τ c ) = 0 and ω(τ c ) = ω c . Separating real and imaginary parts in [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF] we obtain

         ν(τ ) + δ + β 0 β 1 - 2β 0 β 1 τ 0 -τ e ν(τ )s cos(ω(τ )s)ds = 0, ω(τ ) - 2β 0 β 1 τ 0 -τ e ν(τ )s sin(ω(τ )s)ds = 0.
Then, by differentiating each of the above equalities with respect to τ , we get, for τ = τ c ,

Re (∆ λ (iω c , τ c )) ν ′ (τ c ) = Im (∆ λ (iω c , τ c )) ω ′ (τ c ) + 2β 0 β 1 τ c cos(x c ) - sin(x c ) x c (16) 
and

Re (∆ λ (iω c , τ c )) ω ′ (τ c ) = -Im (∆ λ (iω c , τ c )) ν ′ (τ c ) + 2β 0 β 1 τ c 1 -cos(x c ) x c -sin(x c ) . (17) 
Using ( 15), ( 16) and ( 17), we can see that ν ′ (τ c ) satisfies

Im (∆ λ (iω c , τ c )) 2 + Re (∆ λ (iω c , τ c )) 2 ν ′ (τ c ) = 2β 0 β 1 τ c 1 -cos(x c ) x c -sin(x c ) Im (∆ λ (iω c , τ c )) + cos(x c ) - sin(x c ) x c Re (∆ λ (iω c , τ c )) .
Using the definitions in ( 13) and ( 14), simple computations give

1 -cos(x c ) x c -sin(x c ) Im (∆ λ (iω c , τ c )) + cos(x c ) - sin(x c ) x c Re (∆ λ (iω c , τ c )) = cos(x c ) - sin(x c ) x c .
Hence,

|∆ λ (iω c , τ c )| 2 ν ′ (τ c ) = 2β 0 β 1 τ c x c cos(x c ) -sin(x c ) x c > 0. It follows that ν ′ (τ c ) > 0. ( 18 
)
To conclude, when τ = τ c , the characteristic equation ∆(λ, τ ) has a unique pair of purely imaginary simple eigenvalues satisfying (dRe(λ)/dτ )(τ = τ c ) > 0. Consequently, a Hopf bifurcation occurs at x * when τ = τ c . Moreover, applying Rouché's Theorem with Lemma 2.1, we easily check that every eigenvalue of ∆(λ, τ ), with τ < τ c , has negative real part. It follows that x * is locally asymptotically stable for 0 ≤ τ < τ c . These results are summed up in the following theorem.

Theorem 2.1. Assume that β 1 < 0 and ( 12) holds. Then there exists a unique value τ c > 0 of the time delay such that the equilibrium x ≡ x * is locally asymptotically stable when τ ∈ [0, τ c ) and becomes unstable when τ = τ c throughout a Hopf bifurcation. In particularly, periodic solutions appear for equation ( 4) when τ = τ c .

As an example, one can check that when f is given by (5) the assumptions in Theorem 2.1 are equivalent to

n > 2(1 -h(x 0 )) 1 -2h(x 0 ) β 0 β 0 -δ ≃ 2.35 β 0 β 0 -δ .
In particularly, these conditions are satisfied when β 0 and δ are given by (3) and n ≥ 2.42. The existence of a Hopf bifurcation in Theorem 2.1 leads to the existence of a limit cycle when the bifurcation occurs. In the next section, we focus on the stability of this limit cycle.

Stability of Limit Cycles

We study now the stability of the limit cycle yielded by Theorem 2.1. We follow the approach used in [START_REF] Hassard | Theory and Applications of Hopf Bifurcation[END_REF][START_REF] Stepan | Retarded dynamical systems: stability and characteristic functions[END_REF]. This involves the description of a center manifold and subsequently the study of the normal form given by the restriction of the flow to this center manifold. The stability of the limit cycle will be decided by the sign of the first Lyapunov coefficient l 1 (0).

For general properties concerning delay equations and the theory of central manifolds for these equations, see [START_REF] Halanay | Differential Equations; Stability, Oscillations, Time Lags[END_REF]. For the existence and various properties of center manifolds we refer to [START_REF] Carr | Applications of Center Manifold Theory[END_REF][START_REF] Chafee | A bifurcation problem for a functional differential equation of finitely retarded type[END_REF][START_REF] Chow | Integral averaging and Hopf bifurcation[END_REF][START_REF] Faria | Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens singularity[END_REF][START_REF] Hale | Theory of Functional Differential Equations[END_REF][START_REF] Marsden | The Hopf Bifurcation and its Applications[END_REF]. Also, in [START_REF] Faria | Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens singularity[END_REF] and [START_REF] Namachchivaya | A centre-manifold analysis of variable speed machines[END_REF], a rigorous treatment of the operators involved in this approach is to be found. A similar problem is considered in [START_REF] Liao | Stability of bifurcating periodic solutions for van der Pol equation with continuous distributed delay[END_REF].

Define, for t ≥ 0,

y(t) = x(t) -x * , µ = τ -τ c
with x * the nontrivial equilibrium of (4) that bifurcates into a limit cycle for the critical value τ = τ c (see Theorem 2.1). The equilibrium x * is defined by ( 6) and [START_REF] Mackey | Cell replication and control, in Nonlinear Dynamics in Physiology and Medicine[END_REF]. Equation ( 4) turns into

y ′ (t) = -δ(y(t) + x * ) -β 0 f (y(t) + x * ) + 2β 0 µ + τ c 0 -µ-τc f (y(t + s) + x * ) ds. (19) 
Thanks to this formulation, we now concentrate on the trivial equilibrium y ≡ 0 of ( 19) which bifurcates when µ = 0. For an interval

I ⊂ R, denote C(I, K) = {f : I → K, f continuous } where K = R or C. When I = [-µ -τ c , 0], we set C µ := C([-µ -τ c , 0], K).
Considering, for t ≥ 0, the function y t : [-µτ c , 0] → K defined by y t (s) = y(t + s), we can reformulate equation [START_REF] Halanay | Differential Equations; Stability, Oscillations, Time Lags[END_REF] as the following abstract functionnal differential equation

d dt y(t) = G µ (y t ), t ≥ 0, (20) 
where, for ϕ ∈ C µ ,

G µ (ϕ) = -δ [ϕ(0) + x * ] -β 0 f (ϕ(0) + x * ) + 2β 0 µ + τ c 0 -µ-τc f (ϕ(s) + x * ) ds. Assume that f is C 4 on [0, +∞) (remark that G µ is then C 4 (C µ , R)).
Consider the linearized equation of [START_REF] Carr | Applications of Center Manifold Theory[END_REF], corresponding to the Fréchet derivative

D ϕ G µ (0) := L µ , given by d dt z(t) = L µ z t , t ≥ 0. ( 21 
)
In fact, L µ is given explicitly by

L µ ϕ = -c 1 ϕ(0) + c 2 (µ) 0 -µ-τc ϕ(θ)dθ, ϕ ∈ C µ , (22) 
where

c 1 := δ + β 0 β 1 , c 2 (µ) := 2β 0 β 1 τ c + µ , β 1 := f ′ (x * ). ( 23 
)
Setting

F µ := G µ -L µ , equation (20) becomes d dt y(t) = L µ y t + F µ (y t ), t ≥ 0, (24) 
with F µ (0) = 0 and D ϕ F µ (0) = 0.

In order to develop a normal form associated to equation ( 21), we write this latter as an abstract ordinary differential equation.

First, we know from [START_REF] Hale | Theory of Functional Differential Equations[END_REF] that the linear equation ( 21) gives a C 0 -semigroup (T (t)) t≥0 on C µ , with generator A µ defined by

D(A µ ) = ϕ ∈ C 1 ([-µ -τ c , 0], R); ϕ ′ (0) = L µ ϕ , A µ ϕ = ϕ ′ , ϕ ∈ D(A µ ).
To write equation ( 24) as an ODE we need to extend the problem [START_REF] Chafee | A bifurcation problem for a functional differential equation of finitely retarded type[END_REF] to the Banach space C µ := C µ ⊕ X 0 , where

X 0 = {X 0 c; c ∈ R and (X 0 c)(θ) = X 0 (θ)c}
and X 0 denotes the function defined on [-µτ c , 0] by

X 0 (θ) = 0, if -µ -τ c ≤ θ < 0, 1, if θ = 0.
Adimy proved in [START_REF] Adimy | Integrated semigroups and delay differential equations[END_REF] that this extension determines a Hille-Yosida operator. This result is recalled in the next lemma.

Lemma 3.1. The continuous extension A µ of the operator A µ defined on C µ by

D( A µ ) = C 1 ([-µ -τ c , 0], R), A µ ϕ = ϕ ′ + X 0 (L µ ϕ -ϕ ′ (0)) , ϕ ∈ D( A µ ), ( 25 
)
is a Hille-Yosida operator on C µ ; that is: there exists ω 0 ∈ R such that (ω 0 , +∞) ⊂ ρ( A µ ) and sup (λ

-ω 0 ) n (λI -A µ ) -n , n ∈ N, λ > ω 0 < ∞.
It follows that if y is a solution of ( 24) on [0, T ], T > 0, with an initial condition ϕ ∈ C µ on the interval [-µτ c , 0], then the function t

∈ [0, T ] → y t ∈ C µ satisfies    d dt y t = A µ y t + X 0 F µ (y t ), t ∈ [0, T ], y 0 = ϕ. (26) 
Conversely, if there exists a function t

∈ [0, T ] → u(t) ∈ C µ such that    du dt (t) = A µ u(t) + X 0 F µ (u(t)), t ∈ [0, T ], u(0) = ϕ, (27) 
then u(t) = y t , t ∈ [0, T ], where

y(t) = u(t)(0), if t ∈ [0, T ], ϕ(t), if t ∈ [-µ -τ c , 0],
and y is a solution of ( 24). This handles in particularly the problems arising from the fact that A µ does not preserve the space of C 1 -functions. Thanks to results by Arendt [START_REF] Arendt | Resolvent positive operators[END_REF] and Da Prato and Sinestrari [START_REF] Prato | Differential operators with non-dense domains[END_REF], the ODE ( 27) is well-posed for initial conditions in D( A µ ) = C µ . Now we can reformulate the problem (24) as the abstract ODE [START_REF] Namachchivaya | A centre-manifold analysis of variable speed machines[END_REF]. Another important step towards the description of a center manifold is the definition of a bilinear form related to the equation [START_REF] Chafee | A bifurcation problem for a functional differential equation of finitely retarded type[END_REF].

From now on, we set K = C. For ϕ ∈ C µ and ψ ∈ C * µ := C([0, µ + τ c ], C), define according to [START_REF] Faria | Normal Forms for Retarded Functional Differential Equations and Applications to Bogdanov-Takens singularity[END_REF] or [START_REF] Hale | Theory of Functional Differential Equations[END_REF],

ψ, ϕ = ψ(0)ϕ(0) - 0 -µ-τc s 0 ψ(ξ -s)ϕ(ξ)dξ dη(s) (28) 
where dη(s) = c 2 (µ)dsc 1 X 0 (s). Thus [START_REF] Arendt | Resolvent positive operators[END_REF] becomes

ψ, ϕ = ψ(0)ϕ(0) -c 2 (µ) 0 -µ-τc s 0 ψ(ξ -s)ϕ(ξ)dξ ds. (29) 
We build a natural extension of this bilinear form to the space C * µ × C µ where

C * µ = C * µ ⊕ X * 0 and X * 0 = {X * 0 c; c ∈ C and (X * 0 c)(θ) = X * 0 (θ)c} with X * 0 the function defined on [0, µ + τ c ] by X * 0 (θ) = 0, if 0 < θ ≤ µ + τ c , 1, if θ = 0.
We obtain, for ψ ∈ C * µ , ϕ ∈ C µ and a, c ∈ C, ψ + X * 0 a, ϕ + X 0 c = ψ, ϕ + ac. With respect to this bilinear form, we define the adjoint of the operator A µ , denoted A * µ , and its domain 25) and ( 29), we obtain

D( A * µ ). It satisfies, for ϕ ∈ D(A µ ) = C 1 ([-µ -τ c , 0], C) and ψ ∈ D( A * µ ), ψ, A µ ϕ = A * µ ψ, ϕ . From (
ψ, A µ ϕ = ψ(0)L µ ϕ -c 2 (µ) 0 -µ-τc s 0 ψ(ξ -s)ϕ ′ (ξ)dξ ds.
Using an integration by parts and ( 22), we deduce

ψ, A µ ϕ = ψ(0) -c 1 ϕ(0) + c 2 (µ) 0 -µ-τc ϕ(θ)dθ -c 2 (µ) 0 -µ-τc ψ(0)ϕ(s) -ψ(-s)ϕ(0) - s 0 ψ ′ (ξ -s)ϕ(ξ)dξ ds, = -c 1 ψ(0) + c 2 (µ) µ+τc 0 ψ(θ)dθ ϕ(0) +c 2 (µ) 0 -µ-τc s 0 ψ ′ (ξ -s)ϕ(ξ)dξ ds, = A * µ ψ, ϕ , where      D( A * µ ) = C 1 ([0, µ + τ c ], R), A * µ ψ = -ψ ′ + X * 0 c 2 (µ) µ+τc 0 ψ(s)ds -c 1 ψ(0) + ψ ′ (0) .
We consider now the purely imaginary eigenvalues of ( 8) denoted ±iω c , with ω c > 0, which exist when τ = τ c , that means when the bifurcation occurs (see Section 2 and, in particularly, Theorem 2.1). From the definition of the characteristic equation in [START_REF] Pujo-Menjouet | Long period oscillations in a G 0 model of hematopoietic stem cells[END_REF] and the notations introduced in ( 23), we have

∆(iω c , τ c ) = iω c + c 1 -c 2 (0) 0 -τc e iωcs ds = 0. It follows that c 2 (0) (e -iωcτc -1) ω c i -c 1 = iω c . ( 30 
)
Then, with definition (25), the function q(s) = e iωcs ∈ C 1 ([-τ c , 0], C) is an eigenvector of A 0 associated with iω c . Hence, q * (s) = de iωcs ∈ C 1 ([0, τ c ], C), d = 0, is an eigenvector for A * 0 associated with -iω c . Moreover, we can choose d ∈ C so that the norming condition q * , q = 1 is satisfied.

It follows that d = 1 + c 2 (0) τ c e -iτcωc ω c i - 1 -e -iτcωc ω 2 c -1 . One can check that in fact d = (∆ λ (iω c , τ c )) -1 . Since iω c is a simple root of ∆(•, τ c ), then d is well-defined.
From ( 29) and [START_REF] Shampine | Solving DDEs in Matlab[END_REF] we infer also that

q * , q = 0. ( 31 
)
We are interested in the center manifold corresponding to the eigenvalue λ = iω c of A 0 and to the system [START_REF] Namachchivaya | A centre-manifold analysis of variable speed machines[END_REF]. Such a center manifold exists (see [START_REF] Hassard | Theory and Applications of Hopf Bifurcation[END_REF][START_REF] Chafee | A bifurcation problem for a functional differential equation of finitely retarded type[END_REF]): it is a locally invariant, locally attracting manifold containing the origin and tangent at the origin to the subspace spanned by the eigenvectors corresponding to the eigenvalues ±iω c of A 0 . In fact, to reach our aim, we only need information on the section of the center manifold, denoted C 0 , corresponding to µ = 0 (see [START_REF] Hassard | Theory and Applications of Hopf Bifurcation[END_REF]).

Let y t be a solution of

dy t dt = A 0 y t + X 0 F 0 (y t ). ( 32 
)
We compute the coordinates of the section C 0 of the center manifold corresponding to µ = 0. Following the notations in [START_REF] Hassard | Theory and Applications of Hopf Bifurcation[END_REF], we define

z(t) = q * , y t , for t ≥ 0. ( 33 
)
We will use z and z as local coordinates of C 0 in the directions q * and q * respectively. We also define, for t ≥ 0 and s ∈ [-τ c , 0], w(t, s) = y t (s)z(t)q(s)z(t)q(s),

= y t (s) -2Re[z(t)q(s)].
We have

w(t, s) = W (z(t), z(t), s) , t ≥ 0, s ∈ [-τ c , 0], with W (z, z, s) = w 20 (s) z 2 2 + w 11 (s)zz + w 02 (s) z 2 2 + . . . (34) 
One can notice that, for real solution y, w is real so w 02 = w 20 . Moreover, ( 31) and (33) imply that q * , w = 0.

The section C 0 of the center manifold is locally invariant under equation (32): any solution that starts in it will stay in it for any time t in some nontrivial interval; therefore, if y t ∈ C 0 we have d dt z(t) = q * , A 0 y t + X 0 F 0 (y t ) so, from (33), it follows that

d dt z(t) = iω c z(t) + dF 0 (W (z(t), z(t), •) + 2Re[z(t)q]) , = iω c z(t) + g(z(t), z(t)), (35) 
with g(z, z) = dF 0 (W (z, z, •) + 2Re[zq]) .
We use the Taylor expansion of f around x * to rewrite F 0 as

F 0 (ϕ) = c 3 0 -τc β 2 2! ϕ(θ) 2 + β 3 3! ϕ(θ) 3 + O(ϕ(θ) 4 ) dθ -β 0 β 2 2! ϕ(0) 2 + β 3 3! ϕ(0) 3 + O(ϕ(0) 4 ) ,
where

c 3 := 2β 0 τ c , β 2 := f ′′ (x * ) and β 3 := f ′′′ (x * ). (36) 
If we denote, for convenience, w(s) = W (z, z, s), we then obtain

g(z, z) = dc 3 β 2 2 0 -τc [w(s) + ze iωcs + ze -iωcs ] 2 ds + β 3 6 0 -τc [w(s) + ze iωcs + ze -iωcs ] 3 ds + 0 -τc O([w(s) + ze iωcs + ze -iωcs ] 4 )ds -β 0 d β 2 2 [w(0) + z + z] 2 + β 3 6 [w(0) + z + z] 3 + O([w(0) + z + z] 4 ) . (37) 
Equation ( 35) is called the normal form obtained by the restriction of the flow to the center manifold. Our next goal is to compute some coefficients in the Taylor series of g and to use them to study stability of the limit cycle by computing also the Lyapunov coefficient. This latter is given by some coefficients in the Taylor expansion of g(z, z) given by (37). This means, in fact, that stability of the limit cycle is determined by the normal form obtained through the restriction of the flow to the center manifold.

Restricting the Taylor expansion in (37) to terms of order less or equal to three, we get

g(z, z) = 1 2 g 20 z 2 + g 11 zz + 1 2 g 02 z 2 + 1 2 g 21 z 2 z + . . . (38) 
with

g 20 = -dβ 2 β 0 + c 3 (1 -e -2iωcτc ) 2ω c i , g 11 = dβ 2 (c 3 τ c -β 0 ), g 02 = -dβ 2 β 0 - c 3 (1 -e 2iωcτc ) 2ω c i , g 21 = d c 3 β 2 0 -τc [w 20 (s)e -iωcs + 2w 11 (s)e iωcs ]ds -β 3 (1 -e -iωcτc ) ω c i -β 0 β 2 [w 20 (0) + 2w 11 (0)] -β 0 β 3 . (39) 
With the definition of c 3 given in (36), one can see that

g 11 = dβ 0 β 2 .
One can note that we do not need the coefficients g ij with i + j > 2 except g 21 (see [START_REF] Hassard | Theory and Applications of Hopf Bifurcation[END_REF]). At this point, we still need to compute w 20 (s) and w 11 (s) for s ∈ [-τ c , 0]. It follows directly from (32), ( 33) and ( 35), that

d dt w(t, •) = d dt y t - d dt [z(t)q -z(t)q] , = A 0 w(t, •) + X 0 F 0 (w(t, •) + 2Re(z(t)q)) -2Re (g(z(t), z(t))q) , = A 0 w(t, •) + H(z(t), z(t), •), (40) 
where, for s ∈ [-τ c , 0],

H(z, z, s) = -2Re (g(z, z)q(s)) + X 0 (s)F 0 (W (z, z, •) + 2Re(zq)) . (41) 
Let s ∈ [-τ c , 0) be fixed. From (41) with (38) we have

H(z, z, s) = -2Re (g(z, z)q(s)) , = -g(z, z)q(s) -ḡ(z, z)q(s), = -g 20 z 2 2 + g 11 zz + g 02 z 2 2 + . . . q(s) -g 20 z 2 2 + g 11 zz + g 02 z 2 2 + . . . q(s). (42) 
Considering the expansion

H(z, z, s) = H 20 (s) z 2 2 + H 11 (s)zz + H 02 (s) z 2 2 + . . .
and comparing the coefficients with those in (42) yields H 20 (s) = -g 20 q(s)g 02 q(s), H 11 (s) = -g 11 q(s)g 11 q(s), H 02 (s) = H 20 (s). (44)

Using ( 25) and ( 43), (44) becomes dw 20 ds (s) = 2iω c w 20 (s) + g 20 q(s) + g 02 q(s), dw 11 ds (s) = g 11 q(s) + g 11 q(s).

Solving the above system, we obtain:

w 20 (s) = - g 20 iω c e iωcs - g 02 3iω c e -iωcs + E 1 e 2iωcs , (45) 
w 11 (s) = g 11 iω c e iωcs - g 11 iω c e -iωcs + E 2 , (46) 
where E 1 and E 2 can be determined by setting s = 0 in (41). In fact, we have From ( 25) and (44), we have: 

H(z, z, 0) = -2Re (g(z, z)) + F 0 (W (z, z, •) + 2Re(zq)) ,
c 2 (0) 0 -τc w 20 (s)ds -(c 1 + 2iω c )w 20 (0) = -H 20 (0), (47) 
Substituting ( 45) in (47) and using [START_REF] Shampine | Solving DDEs in Matlab[END_REF] we eventually get

E 1 = - β 2 (c 3 (1 -e -2iωcτc ) -2iω c β 0 ) c 2 (0)(1 -e -2iωcτc ) -2c 1 iω c + 4ω 2 c . (49) 
Similarly, substituting (46) in (48) we get

E 2 = - β 2 (c 3 τ c -β 0 ) c 2 (0)τ c -c 1 . ( 50 
)
Using the definitions given in ( 23) and (36), we can write

E 2 = β 0 β 2 δ -β 0 β 1 .
We are now able to complete the calculation of g 21 in (39) using the above values of w 20 , w 11 , E 1 and E 2 . We set

K := 0 -τc
w 20 (s)e -iωcs + 2w 11 (s)e iωcs ds.

Then, from (45) and (46), we obtain

K = (g 02 + 6g 11 )(1 -e -2iωcτc ) 6ω 2 c + τ c (g 20 + 2g 11 ) -(E 1 + 2E 2 )(1 -e -iωcτc ) ω c i (51) 
where E 1 and E 2 are given respectively by ( 49) and (50). From (39), ( 45) and ( 46), we have

g 21 = d c 3 β 2 K -c 3 β 3 (1 -e -iωcτc ) ω c i -β 0 β 2 E 1 + 2E 2 + 3g 20 + g 02 3ω c i + 2(g 11 -g 11 ) ω c i -β 0 β 3 ,
where K is given by (51). Based on the above analysis and calculation, we can see that each g ij in (39) is determined by the parameters and delay in equation ( 4). Thus we can explicitly compute the following quantities:

L 1 (0) = i 2ω c g 20 g 11 -2|g 11 | 2 - 1 3 |g 02 | 2 + 1 2 g 21 , l 1 (0) = Re (L 1 (0)) , µ 2 = - l 1 (0) Re(λ ′ (τ c )) , b 2 = 2l 1 (0), T 2 = - Im(L 1 (0)) + µ 2 Imλ ′ (τ c ) ω c . (52) 
One knows from [START_REF] Hassard | Theory and Applications of Hopf Bifurcation[END_REF] that the following properties hold: if µ 2 > 0 (< 0) then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions exist for τ > τ c (τ < τ c ); solutions are orbitally stable (unstable) if b 2 < 0 (> 0); and the period of bifurcating periodic solution increases (decreases) if T 2 > 0 (< 0). The coefficient λ ′ (τ c ) in ( 52) is given by ( 16) and [START_REF] Hassard | Theory and Applications of Hopf Bifurcation[END_REF]. In particularly, we have proved in Section 2, property [START_REF] Stepan | Retarded dynamical systems: stability and characteristic functions[END_REF], that Re(λ ′ (τ c )) > 0.

In summary, this leads to the following result:

Theorem 3.1. If the Lyapunov coefficient l 1 (0), defined in (52), is negative (resp. positive) then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions exist for τ > τ c (τ < τ c ), and solutions are orbitally stable (unstable); The coefficient T 2 determines the period of the bifurcating periodic solutions: the period increases (decreases) if T 2 > 0 (< 0).

Numerical results and simulations

We numerically compute, in this section, the formulas obtained above to determine the behavior of the periodic solutions of equation ( 4). We choose f as in [START_REF] Mackey | Biophysical and Biochemical Information Transfer in Recognition[END_REF]. In order to satisfy the assumptions of Theorem 2.1, we have to choose δ, β 0 and n such that β 1 < 0 and (12) holds true; that is

n > 2(1 -h(x 0 )) 1 -2h(x 0 ) β 0 β 0 -δ .
We take δ and β 0 as given in (3 Even though we do not give values of l 1 (0) and T 2 for all n ≥ 2.42, we can notice that observations indicate that l 1 (0) is strictly negative and T 2 strictly positive for n ≥ 2.42. Hence the unique Hopf bifurcation of equation ( 4) seems to be supercritical and solutions orbitally stable, with increasing periods.

Using the Matlab solver dde23 [START_REF] Shampine | Solving DDEs in Matlab[END_REF], we can compute the solutions of equation ( 4 

Discussion

Many hematological diseases involve oscillations about a steady-state during the chronic period. These oscillations give rise to instability in the hematopoietic stem cell count. Chronic myelogenous leukemia (see Fortin and Mackey [START_REF] Fortin | Periodic chronic myelogenous leukemia: Spectral analysis of blood cell counts and etiological implications[END_REF]) is one of the most common types of hematological disease characterized by the existence of periodic oscillations (oscillations of leukocytes with periods from 30 to 100 days). Experimental observations have led to the conclusion that this dynamic instability is located in the hematopoietic stem cells compartment.

We have studied, in this paper, a mathematical model of pluripotent hematopoietic stem cells dynamics in which the length of the proliferating phase is uniformly distributed on an interval. We have shown that instability can occur in this model via a Hopf bifurcation, leading to periodic solutions usually orbitally stable with increasing periods. This has been obtained throughout the description of a center manifold and the subsequently study of the normal form.

Periods of the oscillations obtained in numerical simulations, in Section 4, may be in the order of 30 to 50 days (at the bifurcation) when the parameter n is not too large, corresponding to what can be observed with chronic myelogenous leukemia. It has already been noticed by Pujo-Menjouet and Mackey [START_REF] Mackey | Contribution to the study of periodic chronic myelogenous leukemia[END_REF] that this parameter n, which describes the sensitivity of the rate of reintroduction β, plays a crucial role in the appearance of periodic solutions when the delay is constant. The sensitivity n describes the way the rate of introduction in the proliferating phase reacts to changes in the resting phase population produced by external stimuli: a release of erythropoietin, for example, or the action of some growth factors. Since periodic hematological diseases are supposed to be due to hormonal control destabilization (see [START_REF] Fortin | Periodic chronic myelogenous leukemia: Spectral analysis of blood cell counts and etiological implications[END_REF]), then n seems to be appropriate to identify causes leading to periodic solutions.
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 1 Figure 1: Graph of the function f given by (5) for different values of n.
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 2 Figure 2: Solutions of (4) are displayed when n = 3. Periods of the oscillations are close to 46 days.
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 3 Figure 3: Solutions of (4) are displayed when n = 4. Periods of the oscillations are close to 30 days.
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 4 Figure 4: Solutions of (4) are displayed when n = 5. Periods of the oscillations are close to 23 days.
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 5 Figure 5: Solutions of (4) are displayed when n = 6. Periods of the oscillations are close to 18 days.
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 6 Figure 6: Solutions of (4) are displayed when n = 7. Periods of the oscillations are close to 15 days.

Figure 7 :

 7 Figure 7: Solutions of (4) are displayed when n = 8. Periods of the oscillations are close to 13 days.

  ). Then the above conditions are in fact satisfied for n ≥ 2.42. Using Maple 9, we are able to compute the coefficients in (52), listed in the following table for n ∈ {3, 4, 5, 6, 7, 8}:

	n	x *	τc	ωc	l1(0)	T2
	3 3.2523 18.1270 0.1380 -0.0026	0.1540
	4 2.4218 10.9688 0.2091 -0.0375	0.8083
	5 2.0291	7.8748	0.2785 -0.1504	2.2097
	6 1.8034	6.1447	0.3472 -0.3975	4.5441
	7 1.6577	5.0385	0.4155 -0.8399	7.9335
	8 1.5562	4.2702	0.4836 -1.5412 12.4589