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Abstract. Since 15 years, a methodology has been developed for sizing mechatronic systems. Based
on the use of inverse models described by bond graph, it has inparticular the advantage of drastically
decreasing the number of calculus iterations, compared to the error and trial procedure of the classical
direct approach.
The aim of this article is to extend this sizing methodology to the case where only a part of the speci-
fications can be translated in terms of functions of time (andso where only a part of the model can be
inverted) and where the other part can be formulated as an optimal control problem. In particular, the
illustration of this extension on an academic example of twomasses in series will show how a partially
inverted model can be coupled with the graphical construction ofoptimizing bond graphestablished in
recent articles.

1 Introduction
Inverse modelling consists of determining the unknown inputs of the model directly from the specified outputs.
Taking advantage of this approach, a methodology has been developed for sizing mechatronic systems according
to energy and dynamic criteria [13]. Based on the bond graph language (chosen for its multi-domain, physical and
graphical aspects), this methodology consists of: graphically checking if the model is invertible and if the speci-
fications can be reached by the given model structure; graphically constructing the inverse model corresponding
to the specific sizing problem under consideration; and finding the unknown inputs by simulating the resulting in-
verse model from the given specified outputs. One of the original features of this methodology lies in its structural
analysis step where graphical guidelines are given to the engineer to check the well-posedness of his problem.
Moreover the benefits of such a methodology have been shown insome industrial applications, especially in the
automotive domain [8].
However, this methodology can only be applied to the cases where the specifications can be translated in terms
of functions of time. But this requirement is not so easy to meet in practice [9]. Design constraints are most of
the time expressed as: not crossing upper or lower limits, minimizing the weight or the energy consumption, and
so on. In order to handle this kind of design constraints, recent articles [6, 2, 7, 10] presented the bond graph
formulation of an optimal control problem. The resulting procedure leads to graphically construct what it is called
an optimizing bond graph, and to couple it with theinitial bond graphmodel of the system under study. The
obtained bond graph model mirrors then a system of equations, identical to theoptimality conditionsgiven by
the Pontryagin Maximum Principle [14]. Up to now, this optimization procedure was considered only for direct
models. The objective of this article is to substantiate theinterest of such a procedure by coupling it with the sizing
methodology, and so by adapting it for inverse models.
After having recalled in Section 2 the procedure for constructingoptimizing bond graphin the case of direct mod-
els, Section 3 presents the coupling of inverse modelling with dynamic optimization through the academic example
of two masses in series. The two manners of formulating the problem (inverting then optimizing or optimizing
then inverting) are in particular discussed. Numerical results are then given in Section 4 to prove the feasibility of
such a coupling. Finally Section 5 points out some research directions it will be interesting to invest.

2 Bond graph formulation of dynamic optimization
Coupling dynamic optimization with bond graph models has already been considered in [1, 5, 16]. However these
works only present direct methods for solving the optimization problem under consideration: bond graph models
are used only for modelling the system while the optimization is really performed by classical routines such as
the genetic algorithm [5, 16]. Here, as the final objective isto couple a dynamic optimization procedure with a
bond graph-based sizing methodology, constructing the solution of an optimization problem (or at least a system
of equations whose solving leads to the exact solution of theproblem) through a bond graph model appears to
be relevant. This explains why indirect solving methods such as the Pontryagin Maximum Principle are here
considered.

Now, consider the case of linear and time-invariant systemsand suppose that the optimization problem is to findx
anduopt such that:



• the performance indexV is minimized:

V =
∫ t f

t0
L (x,u, t)dt =

∫ t f

t0

1
2
[uT

opt ·Ruopt ·uopt +Pdiss]dt (1)

wherex ∈ R
n is the state vector;u ∈ R

m denotes the input vector,u =
[

uT
u uT

opt

]T
with uu ∈ R

mu (resp.
uopt ∈ R

mopt) is the vector of fixed inputs (resp. of inputs to be optimized); Ruopt ∈ R
mopt×mopt is a weighting

matrix, supposed to be diagonal,Ruopt =

[

R−1
ue,opt

0
0 Ru f ,opt

]

with Rue,opt andRu f ,opt the weighting matrices

respectively associated with the effort and flow sources to be optimized;Pdiss is all or a part of the energy
dissipated by the system;

• the initial and final conditions (2) on state and time are fixed;
{

x(t0) = x0

x(t f ) = x f
(2)

• the state-space equations (3) of the model are taken as constraints.

ẋ = f(x,u, t) (3)

The Pontryagin Maximum Principle [14, 15] states then that the exact solution(xopt,λλλ opt,uopt) of such an opti-
mization problem is given by the analytical solving of the following system:















ẋ =
∂Hp(x,λλλ ,u)

∂λλλ
λ̇λλ = −

∂Hp(x,λλλ ,u)
∂x

∂Hp(x,λλλ ,u)
∂uopt

= 0

(4)

whereλλλ ∈ R
n is the co-state vector andHp = L (x,u, t)+λλλ T

· f(x,u, t) is called thePontryagin function.

As already written, a procedure has been established for constructing, in a systematical manner, anaugmented
bond graphwhich mirrors the equations of theseoptimality conditions(4). This procedure can be summed up into
the four steps below [6, 7]:

Step 1: Duplication. Duplicate the bond graph model of the system under study. Theoriginal part of the bond
graph model will hereafter be calledinitial bond graphwhile the duplicated part will be calledoptimizing bond
graph.
Step 2: Characteristics of theoptimizing bond graph. In theoptimizing bond graph, replace the characteristic
matricesR of theR-elements by their corresponding transposed and reversed sign matrices−RT .
Step 3: Taken into account the performance index.
A - For the dissipative phenomenainvolved in the performance index, couple theR-elements present simultane-
ously in theinitial bond graphand in theoptimizing bond graphand corresponding to the same phenomena. Then,

add the matrix1
2[Ropt +T] as the lower extra diagonal submatrix whereRopt =

[

Rrr Rcr
Rrc Rcc

]

is the characteristic

matrix of the correspondingR-elements in theinitial bond graphandT =

[

RT
rr −RT

cr
−RT

rc RT
cc

]

(the subscriptsr and

c correspond to the ports in a resistance and in a conductance causality respectively when the bond graph model is
in preferential integral causality). Note that, in the specific case of 1-portR-element, the term1

2[Ropt +T] reduces
itself toRopt.
B - For the inputs to be determined, insert a0-junction (resp.1-junction) between each effort source (resp. flow
source) and the structure junction and then insert one multiport R-element per pair of corresponding sources in
the initial andoptimizing bond graphs. For effort sources (resp. flow sources), set the characteristic matrices to
[

Rue,opt 0
Rue,opt −Rue,opt

]

(resp.

[

Ru f ,opt 0
Ru f ,opt −Ru f ,opt

]

).

C - For the inputs not to be optimized(i.e. which are supposed to be known), replace the correspondingMSe and
MS f -elements respectively byD f andDe-elements in theoptimizing bond graph.
Step 4: Bicausality assignment.Replace the source elements involved in the performance index by double de-
tectorsDeD f in the initial bond graphand by double sourcesSeS f in theoptimizing bond graph, which impose
both null efforts and flows. Then propagate bicausality [3] from the double sources to the double detectors through
theR-elements associated with the inputs to be determined. Finally assign the preferential integral causality to the
rest of the model in order to obtain theaugmented bond graph, mirror of theoptimality conditions(4).



3 Coupling of inverse modelling with dynamic optimization
The first advantage of the optimization procedure describedin the previous section lies in the fact that theoptimality
conditionsare obtained in a systematical and graphical manner contrary to the Pontryagin Maximum Principle
which requires analytical developments. Now even if this argument is appealing, the first interest of this procedure
is to couple dynamic optimization with the sizing methodology and so with inverse modelling.

3.1 Framework

To initiate the coupling between inverse modelling and dynamic optimization, only linear and time-invariant sys-
tems are addressed in this article. Besides the sizing problem is considered to be the determination of the open-loop
controls in the case where the specifications can be divided into two parts: a first one where the specification can
be expressed as a function of time, and another one where the design constraint formulates itself as a problem of
dissipative energy minimization.

m2 m1
k2 k1

b2 b1

F1
V1F2

Figure 1: Example of two masses in series: technological diagram.

To illustrate this case, let consider the example of two masses in series, joined by springs and dampers in parallel
and where the controls are the effortsF1 andF2 (Fig. 1). Now, suppose that the sizing problem is to findF1 andF2
so that:

• the speedV1 of the first massm1 follows a given trajectoryV1re f (specification n◦1);

• the dissipative energyPdiss,b2 due to the second damper is minimized (specification n◦2).

The key idea here is to simultaneously meet the specificationn◦1 by inversion and the specification n◦2 by dynamic
optimization. The following sections will present the two possible approaches for managing such a coupling: the
first one where the model is partially inverted before being optimized and the second one where, on the contrary,
the optimization problem is formulated before the inversion.

3.2 Approach 1: inverse modelling before optimization

Let proceed to the first approach consisting of previously inverting the model before formulating the optimization
problem.

Bond graph model: State-space model:

ṗ2

1

I : m2

0Se
F2

1

q̇2

C : 1/k2 R : b2

ṗ1

0 DeDf

SeSf

1

I : m1

V1re f

F1

1

q̇1

C : 1/k1 R : b1

0

p1 = m1V1re f (5)










ṗ2 = b1V1re f −
b1
m2

p2−k1q1 +F2

q̇1 = −V1re f +
1

m2
p2

q̇2 = −
k2
b2

q2 + 1
b2

F2

(6)

Output equation:

F1 = m1V̇1re f +b1V1re f −
b1

m2
p2−k1q1 (7)

Table 1: Inverse model with respect to(F1,V1).

In the case of the example, meeting the specification n◦1 by inversion amounts to partially invert the bond graph
model with respect to the couple(F1,V1) by using the bicausality concept (Tab. 1). It can then be deduced by the
exploitation of the causality assignment, that the remaining dynamic part of this inverse model is governed by the
state-space equations (6) and that, once the optimal state vector will be known, the unknownF1 will be computed
such as in (7).

Once this first step has be done, the specification n◦2 can be met by considering only the remaining dynamic
part of the inverse model and formulating the following optimal control problem:‘find the input F2 such that the

performance index V= 1
2

∫ t f
t0 (

F2
2

RF2
+Pdiss,b2)dt is minimized when initial and final conditions on state andtime are

fixed and the state-space equations(6) are taken as constraints’. The unknowns of this optimization problem are



SeSf

V1re f

F1

0

ṗ1
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Figure 2: Augmented bond graph modelcoupling both inversion and optimization.

(p2,q1,q2,λ2,λ3,λ4,F2). Besides, after having constructed the correspondingPontryagin function, applying the
Pontryagin Maximum Principle in an analytical manner leadsthen to theoptimality conditions(8).
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ṗ2 =
∂Hp
∂λ2

q̇1 =
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∂λ3

q̇2 =
∂Hp
∂λ4

λ̇2 = −
∂Hp
∂ p2

λ̇3 = −
∂Hp
∂q1

λ̇4 = −
∂Hp
∂q2

∂Hp
∂F2
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⇒
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
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ṗ2 = b1V1re f −
b1
m2

p2−k1q1 +F2

q̇1 = −V1re f +
1

m2
p2

q̇2 = −
k2
b2

q2 + 1
b2

F2

λ̇2 = b1
m2

λ2−
1

m2
λ3

λ̇3 = k1λ2

λ̇4 = −
k2
2

b2
q2 + k2

b2
λ4 + k2

b2
F2

( 1
RF2

+ 1
b2

)F2 = k2
b2

q2−
1

m2
pλ2

−
k2
b2

qλ2

(8)

As a consequence, according to the approach 1, finding the solution (p1, p2,q1,q2,λ2,λ3,λ4,F1,F2) meeting the
specifications n◦1 and n◦2 onV1 andPdiss,b2 amounts to solve the following system, made of equations (5), (7) and
(8):
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
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
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
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
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


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p1 = m1V1re f

ṗ2 = b1V1re f −
b1
m2

p2−k1q1 +F2

q̇1 = −V1re f +
1

m2
p2

q̇2 = −
k2
b2

q2 + 1
b2

F2

λ̇2 = b1
m2

λ2−
1

m2
λ3

λ̇3 = k1λ2

λ̇4 = −
k2
2

b2
q2 + k2

b2
λ4 + k2

b2
F2

F1 = m1V̇1re f +b1V1re f −
b1
m2

p2−k1q1

( 1
RF2

+ 1
b2

)F2 = k2
b2

q2−λ2−
1
b2

λ4

(9)

Now, from the bond graph point of view, as the remaining dynamic part of the inverse model can be viewed, to

some extent, as a direct model withx =
[

p2 q1 q2
]T

, uu =
[

V1re f

]

anduopt = [F2], the previous procedure

for constructingoptimizing bond graphscan still be applied to this case. The only differences lie inthe fact that:

• only the remaining dynamic part (the part of the bond graph model whose causality is remained the same
even after the partial inversion) is duplicated to form theoptimizing bond graph;



• eachSeS f -element representing a fixed input in theinitial bond graph(i.e. V1re f in the case of the example)
must be replaced by aDeD f -element in theoptimizing bond graph;

• eachDeD f -element in theinitial bond graphhas to be replaced by aSeS f -element imposing both null flow
and effort in theoptimizing bond graph.

Following these modifications, applying the four steps previously described in Section 2 comes up thus to the
augmented bond graphmodel in Fig. 2. The analytical exploitation of this causalaugmented bond graphwill
show that it leads to the same result than (9).

3.3 Approach 2: optimization before inverse modelling

Now let proceed to the second approach where the optimization problem is formulated before the inversion.

Bond graph model: State-space model:

ṗ2

1

I : m2

0Se
F2

1

q̇2

C : 1/k2 R : b2

ṗ1

0 Se

Df

1
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1

q̇1

C : 1/k1 R : b1



















ṗ1 = −
b1
m1

p1 + b1
m2

p2 +k1q1 +F1

ṗ2 = b1
m1

p1−
b1
m2

p2−k1q1 +F2

q̇1 = −
1

m1
p1 + 1

m2
p2

q̇2 = −
k2
b2

q2 + 1
b2

F2

(10)

Output equation:

V1 =
1

m1
p1 (11)

Table 2: Direct model.

In the case of the example, this comes up to start with the direct bond graph model (Tab. 2) governed by the
state-space equations (10) and the output equation (11). Onthe one hand, meeting the specification n◦1 can be
reformulated as satisfaying the following constaint:

V1re f =
1

m1
p1 (12)

On the other hand, meeting the specification n◦2 can be obtained by solving the following dissipative energy

minimization problem:‘find the inputs F1 and F2 such that the performance index V= 1
2

∫ t f
t0 (

F2
2

RF2
+Pdiss,b2)dt is

minimized when initial and final conditions on state and timeare fixed and the state-space equations(10) and the
output equation(12) are taken as constraints’. Indeed, as the unknownF1 is determined by both inversion and
optimization, the space of solution forF1 has to be restricted to the space where the inversion constraint (12) is
satisfied. However, as this constraint (12) is algebraic, the Pontryagin Maximum Principle is not available anymore.
One has to consider theoptimality conditionsgiven by the Euler-Lagrange conditions (13) to solve the problem
[15].











∂Fa
∂x −

d
dt

∂Fa
∂ ẋ = 0

∂Fa
∂λλλ −

d
dt

∂Fa

∂ λ̇λλ
= 0

∂Fa
∂uopt

−
d
dt

∂Fa
∂ u̇opt

= 0
(13)

whereλλλ ∈ R
q is the co-state vector,q is the number of constraints,φi(x,u, t) = 0 is theith constraint andFa =

L (x,u, t)+
q

∑
i=1

λiφi(x,u, t) is called theaugmented function.

In the case of the example, applying the Euler-Lagrange conditions leads to the system (14).
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∂ Ḟ2

= 0

⇒


























































































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Then, once this first step has be done, the specification n◦1 can be met by inversion with respect to the couple
(F1,V1). Proceeding to such an inversion and substitutingλ1 by its value, enables then to conclude that, accord-
ing to the approach 2, finding the solution(p1, p2,q1,q2,λ1,λ2,λ3,λ4,λ5,F1,F2) amounts to solve the following
systems:
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λ̇2 = b1
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1
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λ̇3 = k1λ2

λ̇4 =
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λ4−
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( 1
RF2

+ 1
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q2 +λ2 + 1
b2
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(15)

{

λ1 = 0
λ5 = −b1λ2 + m1

m3
λ3

(16)

It can be noticed that, sinceλ1 andλ5 appear each one in only one equation, their solving is totally independent
from the solving of the other variables. In fact, solving only the system (15) is sufficient to answer to the sizing
problem under consideration and to determine the optimal values of the variablesp1, p2, q1, q2, F1 andF2.

Finally, one can remark that this system (15) is identical tothe system (9) ofoptimality conditionsobtained by
the approach 1. Indeed, if some differences between the signs of the equations can be noticed, this is only due
to the fact that the variablesλi are defined to within a sign between the Pontryagin Maximum Principle and the
Euler-Lagrange method. As a consequence, the translation of the system (15) into the bond graph language will be
the same as in Fig. 2. An equivalent but simplifiedaugmented bond graphis possible too and shown in Fig. 3.

3.4 Discussion

The previous subsections have presented the two possible approaches for coupling inversion and dynamic opti-
mization on the specific example of two masses in series. Let discuss here some features of each approach and
draw a brief comparison.

At the first sight, the approach 2 consisting of optimizing the direct model and then inverting it, seems to be
more complicated than the approach 1. In fact, this approachrequires toa priori anticipate on the inversion by
considering an additional constraint (such as one of the output equations of the direct model) for the optimization
problem. Without such an anticipation, there is no guarantee that the found solutions will satisfy the specifications
of inversion and thus meet the requirements of the sizing problem. But, even if this task is relatively easy for
the example dealt in this article, this can reveal itself notso simple in the general case. Moreover, taking into
account additional constraints implies the introduction of additional variables (e.g. λ1 and λ5 in the example)
and so of additionaloptimality conditions(e.g. the system (16) in the example) to solve the problem. For sizing
problems with numerous specifications and where it is necessary to consider many constraints, this approach can
thus appear as less efficient, inducing the solving of a non-simplified system ofoptimality conditions. The number
of unknowns willa priori be greater than with the approach 1 and will then require moretime to be calculated.
Here, the example of two masses in series is a very specific case where the solving of the additional variables is
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Figure 3: Simplifiedaugmented bond graph modelcoupling both inversion and optimization.

totally independent from the solving of the other variablesand where the simplication of theoptimality conditions
can be made manually. But, in the general case, this simplication will not be so explicit. In particular, further
studies have to be made on other examples to conclude if thesetwo approaches are really equivalent in the general
case or not.

Now, comparing to the approach 2, the approach 1 consisting of inverting the model and then optimizing it, appears
not only to be easier but more intuitive too: once the model isinverted, one can proceed to the optimization without
anticipating on anything. If the optimization problem is formulated on the remaining dynamic part of the model, it
automatically encloses the constraints due to the inversion without introducing any additional variableλi . Moreover
it enables to check in one sense if the sizing problem is well-posed or not:

• if all of the inputs are entirely determined by the specifiedoutputs, it means that the model has totally been
inverted. Adding a sizing specification expressed in an optimization problem form will amount to obtain an
over-constrained problem with no solution.

• if some inputs remain undetermined on the inverted model, it means that the problem is under-constrained
and that it is possible to add some sizing specifications.

Finally, it is worth noting that, even if such a coupling is appealing, the two approaches present the same ambiguity:
no indication is given to determine according to which couple of variables the inversion has to be made for resulting
a posteriorito the smallest performance index value.

4 Numerical results
In the specific example of two masses in series, the previous sections have proved that the approaches 1 and 2 lead
to the same system (9) ofoptimality conditions. This section will handle more specifically the numerical solving
of such equations.

In fact, if the initial and final conditions on state and time are fixed by the initial sizing problem, one can remark
that no information isa priori given on the initial and final values of the co-state vectorλλλ . But, since the system
of optimality conditionsis a set of differential-algebraic equations, its solving requires at least the initial value of
the co-state vector.

However, if the inputs are replaced by their expressions functions of the state and the co-state vectors, the system
of theoptimality conditionscan be written under the following form:

(

ẋ(t)
λ̇λλ (t)

)

= A
(

x(t)
λλλ (t)

)

+Bure f(t) (17)



As this system is linear and time-invariant, its analyticalsolving results to [4]:
(

x(t)
λλλ (t)

)

=expA(t−t0)
(

x(t0)
λλλ (t0)

)

+
∫ t

t0
expA(τ−t0)Bure f (τ)dτ

=

(

M1(t) M2(t)
M3(t) M4(t)

)(

x(t0)
λλλ (t0)

)

+

(

N1(t)
N2(t)

)

(18)

Then, taking into account the fixed conditions on the initialand final state leads to the following equation:

x(t f ) =
(

M1(t0) M2(t0)
)

(

x(t0)
λλλ (t0)

)

+N1(t f ) (19)

Thus, as already shown in [2], it can be deduced that the initial value of the co-state vector is given in an analytical
manner by:

λλλ (t0) = M−1
2 (t0)(x(t f )−M1(t0)x(t0)−N1(t f )) (20)

This method has in particular been applied to the case of the example of two masses in series. Tab. 3 sums up the
several numerical values fixed by the sizing problem and usedto parametrize the model. Note on that subject that
the sizing problem can not impose arbitrary initial and finalconditions on state: these values have to be coherent
with the given specificied outputs (here only the values ofp1 have to match withV1re f , the initial and final values
of the other state variables can be chosen arbitrarily).

Model parameters: Optimization problem parameters:


































m1 = 10.0 kg
m2 = 5.0 kg
k1 = 1.0 N/m
k2 = 2.0 N/m
b1 = 0.1 N/(m.s−1)
b2 = 0.4 N/m



















t0 = 0 s
t f = 5 s
RF2 = 10.0
V1re f (t) = sin(t) m.s−1

State initial conditions: State final conditions:


















p10 = m1V1re f (t0) = 0 kg.m.s−1

p20 = 0.5 kg.m.s−1

q10 = 0.4 m
q20 = 0.3 m



















p1f = m1V1re f (t f ) ≈−9.58924 kg.m.s−1

p2f = 1.0 kg.m.s−1

q1f = 2.5 m
q2f = 5.0 m

Table 3: Parameters for the example of two masses in series.

Because of the difficulties announced in [11] to calculate exponentials of matrices, it has been preferred to deter-
mine the values of the matricesM1(t0), M2(t0) andN1(t f ) by simulation as detailed in [10]. Thanks to the MS1
software (a software which supports among another things the bond graph language) [12], these simulations have
enabled to obtain:











λ20 = −1.75168 m.s−1

λ30 = −3.02466 N
λ40 = −1.55337 N

(21)

After having injected these initial values, the simulationof theaugmented bond graphshown in Fig. 3 (and then
of the system (9)) has been carried out on MS1. Fig. 4 thus presents the evolution of the state variables, the inputs
and the two variables representing the initial specifications:V1 andPdiss,b2.

It can in particular be checked that the state variables reach the specified final values at the timet f (Fig. 4(a)) and
that the specification n◦1 is well satisfied since the speedV1 of the first mass perfectly follows the sinusoidal form
of V1re f (Fig. 4(c)).

5 Conclusion
Up to now, the optimization procedure has only been carried out on direct models: the performance index was min-
imized by taking into account the state-space equations of the model and then by solving theoptimality conditions
given by the Pontryagin Maximum Principle. But, nothinga priori forbids to consider constraints representing
the state-space equations of an inverse model. Mathematically, in both cases (inverse models or direct models), it
amounts to take into account a set of differential-algebraic equations. The coupling of dynamic optimization with
inverse modelling is then legitimate. This is truer that it encloses a real relevance in the sizing context. Coupling



(a) State variables. (b) Inputs.

(c) Verification of the specification n◦1. (d) Verification of the specification n◦2.

Figure 4: Numerical results for the approach 1.

the sizing methodology based on the use of inverse models to the optimization procedure takes the advantages of
the two approaches by limiting their drawbacks. In fact the optimization procedure enables the handling of design
constraints not expressed as functions of time, while the inversion gives a stronger constraint in term of trajectory
tracking (compared to a problem minimizing the error between the output and the specified trajectory on this out-
put). It then enables to handle some very general sizing problems where the specifications are of heterogeneous
kind.

This article presents the first works made on managing such a coupling. The first challenge was in particular to
adapt the optimizing procedure to the case of inverse models. The adaptation has been made on the example of
two masses in series. It has allowed to conjecture some slight modifications on the construction ofoptimizing bond
graphsfor inverse models. In fact, the only difference with the optimization procedure for direct models lies in the
fact that:

• theoptimizing bond graphis only form by the remaining dynamic part of the initial inverse model;

• eachSeS f -element (resp.DeD f -element) in theinitial bond graphis replaced by aDeD f -element (resp. a
SeS f imposing both null flow and effort) in theoptimizing bond graph.

Of course, the extension of this optimization procedure hasto be demonstrated theoretically to check if these
modifications are still available for the general case.

Besides, not only theoptimality conditionshave been successfully translated in terms of anaugmented bond
graph, but some numerical results have been given to prove the feasibility of such a coupling: the simulation
of the resultingaugmented bond graphhas enabled the determination of the optimal controls whichmatch the
specifications given by the sizing problem.

In the theoretical point of view, theoptimality conditionshave been obtained according to two different approaches:
the first one where the model is inverted before being optimized and the second one where, on the contrary, the
optimization problem is formulated before the inversion. The need to separate the inversion from the formulation
of the optimization problem is obviously due to a spirit point of view where the analytical calculus have to be made



in a chronological order. But, in reality, the numerical solvings of the equations resulting from the inversion and of
those issued from the optimization are performed simultaneously. In the example of two masses in series, the two
approaches lead to the same system ofoptimality conditionseven if the second approach (consisting of optimizing
and then inverting) seems to be more complicated to carry out. However, this example can reveal itself as a very
specific problem and further cases have to be studied to conclude if these two approaches are really equivalent in
the general case. Anyway, the first approach appears as more intuitive and more pertinent in the sense that it allows
to check if the sizing problem is well-posed or not: if the model is entirely inverted (i.e. the totality of its inputs are
determined by the specified outputs), no sizing specification can be added whereas if the model is partially inverted
(i.e. some inputs remain undetermined after the inversion), sizing specifications such as optimization problems can
be added.

Finally, it is worth underlying that this article constitutes the first step toward the coupling between dynamic
optimization and inverse modelling. In that way it deservesfurther developments concerning the comparison
between the theoretical approaches (are they really equivalent ?), the extended optimization procedure (is it still
valid in the general case ?), the numerical solving (how solve the case of non-linear systems where no analytical
solution is given to determine the initial co-state ?) and the applications (the example dealt in this article concerns
an optimal control problem but the problem of generating specifications can be envisaged too).
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