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Abstract. Since 15 years, a methodology has been developed for siziepatronic systems. Based
on the use of inverse models described by bond graph, it haartitular the advantage of drastically
decreasing the number of calculus iterations, compareuktertror and trial procedure of the classical
direct approach.

The aim of this article is to extend this sizing methodologytte case where only a part of the speci-
fications can be translated in terms of functions of time (@m@vhere only a part of the model can be
inverted) and where the other part can be formulated as amalptontrol problem. In particular, the
illustration of this extension on an academic example oftwasses in series will show how a partially
inverted model can be coupled with the graphical constonatf optimizing bond graplestablished in
recent articles.

1 Introduction

Inverse modelling consists of determining the unknown tami the model directly from the specified outputs.
Taking advantage of this approach, a methodology has baatoged for sizing mechatronic systems according
to energy and dynamic criteria [13]. Based on the bond grapyuage (chosen for its multi-domain, physical and
graphical aspects), this methodology consists of: gratligichecking if the model is invertible and if the speci-
fications can be reached by the given model structure; grajhiconstructing the inverse model corresponding
to the specific sizing problem under consideration; andfiigpdhe unknown inputs by simulating the resulting in-
verse model from the given specified outputs. One of themmaldeatures of this methodology lies in its structural
analysis step where graphical guidelines are given to tigtnear to check the well-posedness of his problem.
Moreover the benefits of such a methodology have been shosonire industrial applications, especially in the
automotive domain [8].

However, this methodology can only be applied to the casesrewvtihe specifications can be translated in terms
of functions of time. But this requirement is not so easy tetrie practice [9]. Design constraints are most of
the time expressed as: not crossing upper or lower limitajmizing the weight or the energy consumption, and
so on. In order to handle this kind of design constraintsemearticles [6, 2, 7, 10] presented the bond graph
formulation of an optimal control problem. The resultingpedure leads to graphically construct what it is called
an optimizing bond graphand to couple it with thénitial bond graphmodel of the system under study. The
obtained bond graph model mirrors then a system of equatidastical to theoptimality conditionsgiven by
the Pontryagin Maximum Principle [14]. Up to now, this opization procedure was considered only for direct
models. The objective of this article is to substantiatarnkerest of such a procedure by coupling it with the sizing
methodology, and so by adapting it for inverse models.

After having recalled in Section 2 the procedure for cortding optimizing bond grapin the case of direct mod-
els, Section 3 presents the coupling of inverse modelliriy dyynamic optimization through the academic example
of two masses in series. The two manners of formulating tbelpm (inverting then optimizing or optimizing
then inverting) are in particular discussed. Numericalltesare then given in Section 4 to prove the feasibility of
such a coupling. Finally Section 5 points out some researelstébns it will be interesting to invest.

2 Bond graph formulation of dynamic optimization

Coupling dynamic optimization with bond graph models hasaly been considered in [1, 5, 16]. However these
works only present direct methods for solving the optimi@aproblem under consideration: bond graph models
are used only for modelling the system while the optimizai®really performed by classical routines such as
the genetic algorithm [5, 16]. Here, as the final objectivebisouple a dynamic optimization procedure with a
bond graph-based sizing methodology, constructing thetisal of an optimization problem (or at least a system
of equations whose solving leads to the exact solution ofptieblem) through a bond graph model appears to
be relevant. This explains why indirect solving methodshsas the Pontryagin Maximum Principle are here
considered.

Now, consider the case of linear and time-invariant systemassuppose that the optimization problem is to find
andugpt such that:



« the performance indeX is minimized:

tf tr 1
V= | g(xauﬂ:)dt:/t E[ opt* Ruop: - Uopt + Paisg dt (1)
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wherex € R" is the state vector € R™ denotes the input vectar,= | uj Udy ]T with u, € R™ (resp.

Uopt € R™) is the vector of fixed inputs (resp. of inputs to be optimjzé,,,, € RMr*Mert is a weighting

, : R, 0 . - ,
matrix, supposed to be diagonRl,, = “8"*“ ] with Ry, andRy ,, the weighting matrices
Ut opt '

respectively associated with the effort and flow sourcesetoftitimized;Pyiss is all or a part of the energy
dissipated by the system;

« the initial and final conditions (2) on state and time aredixe

{X(to) = Xo @

X(tf) = Xt
« the state-space equations (3) of the model are taken as&@iots
x =f(x,u,t) 3

The Pontryagin Maximum Principle [14, 15] states then thatéxact solutioriXopt, A opt, Uopt) Of such an opti-
mization problem is given by the analytical solving of thédaing system:

X = OHp(x,A,u)
T dA
A= _ dHp(X,A,u)

OHp(x,A,u) o (4)
XAU)
guopt =0

whereA € R" is the co-state vector artdl, = .Z(x,u,t) +AT-f(x,u,t) is called thePontryagin function

As already written, a procedure has been established fatreating, in a systematical manner, angmented
bond graphwhich mirrors the equations of thesptimality conditiong4). This procedure can be summed up into
the four steps below [6, 7]:

Step 1: Duplication. Duplicate the bond graph model of the system under study. ofigenal part of the bond
graph model will hereafter be calléditial bond graphwhile the duplicated part will be callegbtimizing bond
graph

Step 2: Characteristics of theoptimizing bond graph. In the optimizing bond graphreplace the characteristic
matricesR of theR-elements by their corresponding transposed and reveigedstrices—R".

Step 3: Taken into account the performance index.

A - For the dissipative phenomeiavolved in the performance index, couple fReslements present simultane-
ously in theinitial bond graphand in theoptimizing bond grapland corresponding to the same phenomena. Then,

add the matri%[RopﬁT] as the lower extra diagonal submatrix wh&g, = [ 2” Ecr ] is the characteristic
rc cc
T _pT
matrix of the corresponding-elements in thénitial bond graphandT = —RRgrrTC RRCFEV (the subscripts and

¢ correspond to the ports in a resistance and in a conductansality respectively when the bond graph model is
in preferential integral causality). Note that, in the gfiecase of 1-porR-element, the tern%[RothrT] reduces
itself to Rypt.

B - For the inputs to be determingimsert a0-junction (resp.1-junction) between each effort source (resp. flow
source) and the structure junction and then insert one pauttR-element per pair of corresponding sources in
theinitial andoptimizing bond graphsFor effort sources (resp. flow sources), set the charatitematrices to
RUe‘opt 0 Ruf,opt 0

RUe‘opt _Rueopt :| (resp. |: RUf,opt _Ruf.opt

C - For the inputs not to be optimizgde. which are supposed to be known), replace the corresporidifeand
MSf-elements respectively By f andDe-elements in theptimizing bond graph

Step 4: Bicausality assignment.Replace the source elements involved in the performanaxibg double de-
tectorsDeDf in theinitial bond graphand by double sourceseSf in the optimizing bond graphwhich impose
both null efforts and flows. Then propagate bicausality [8hf the double sources to the double detectors through
theR-elements associated with the inputs to be determinedIlfassign the preferential integral causality to the
rest of the model in order to obtain theagmented bond grapmirror of theoptimality conditiong4).




3 Coupling of inverse modelling with dynamic optimization

The first advantage of the optimization procedure desciib&e previous section lies in the fact that thgtimality
conditionsare obtained in a systematical and graphical manner cgrivathe Pontryagin Maximum Principle
which requires analytical developments. Now even if thigiarent is appealing, the first interest of this procedure
is to couple dynamic optimization with the sizing methodpl@nd so with inverse modelling.

3.1 Framework

To initiate the coupling between inverse modelling and dyitcaoptimization, only linear and time-invariant sys-
tems are addressed in this article. Besides the sizinggmoisl considered to be the determination of the open-loop
controls in the case where the specifications can be divittedwo parts: a first one where the specification can
be expressed as a function of time, and another one wheretliigndconstraint formulates itself as a problem of
dissipative energy minimization.
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Figure 1: Example of two masses in series: technological diagram.

To illustrate this case, let consider the example of two e&mgs series, joined by springs and dampers in parallel
and where the controls are the effdfisandF, (Fig. 1). Now, suppose that the sizing problem is to ffadndF,
so that:

* the speed/; of the first massn follows a given trajectory, ., (specification fl);

* the dissipative energiissp, due to the second damper is minimized (specificatitit).n
The key idea here is to simultaneously meet the specificatibiby inversion and the specificatioAzhby dynamic
optimization. The following sections will present the twasgible approaches for managing such a coupling: the

first one where the model is partially inverted before beipginoized and the second one where, on the contrary,
the optimization problem is formulated before the invemsio

3.2 Approach 1: inverse modelling before optimization

Let proceed to the first approach consisting of previoushgiiting the model before formulating the optimization
problem.

Bond graph model: State-space model:
Sesf pr = mVy,, (5)
. TJELE'H P2 = b1V, — % P2 — ki1 + P
Se Ho— 1] 0 1 Ibent G =-Vi, + % D2 (6)
F”i P G2 = — 5202+ p, 2
1:mp I:my
Output equation:
1 1
ANy AN ' by
Fi=mVy  +biVi, — —po—kin (7)
C:1/ky R:b, C:1/ky R:by mp

Table 1: Inverse model with respect {61,V1).

In the case of the example, meeting the specificatidnby inversion amounts to partially invert the bond graph
model with respect to the coup{€;,V1) by using the bicausality concept (Tab. 1). It can then be dedby the
exploitation of the causality assignment, that the renngjiniynamic part of this inverse model is governed by the
state-space equations (6) and that, once the optimal steterwvill be known, the unknowR; will be computed
such as in (7).

Once this first step has be done, the specificatitthaan be met by considering only the remaining dynamic
part of the inverse model and formulating the following aml control problem:find the input K, such that the

2
performance index \& %ftgf (,';F—ZZ + Paissb, )dt is minimized when initial and final conditions on state &inte are

fixed and the state-space equatigfsare taken as constraintsThe unknowns of this optimization problem are
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Figure 2: Augmented bond graph modwupling both inversion and optimization.

(p2,01,02,A2,A3,A4,F»). Besides, after having constructed the corresponBomgryagin functionapplying the
Pontryagin Maximum Principle in an analytical manner lethds to theoptimality conditiong8).

. OH _
P2 = 59?\5 P2 =b1Vy, — % p2 — k101 + P2
= n G = Vi + i P2
QZ—% Q2:—%Q2+g125
] H N, — b1y 1
/-\2:_,‘?35 = ;2—;2/\)\2 m A3 (8)
Ay =9 3=kiA2
S e Bk ke
/\4:—qu 4 b2q2+bi 4+b2F2
2 k
%_O (%+é)5:%QZ*%pA2*H§QAZ

As a consequence, according to the approach 1, finding té@o( p1, p2, a1, 02, A2, A3, A4, F1, ) meeting the
specifications il and 12 onV; andPyissh, amounts to solve the following system, made of equationg{$and

(8):

P1 = MV,

P2 = b1V, — % P2 — ki +F
G = Vi + P2

=-Rh+ gk

5. _ b 1

A2 = A2 — iy As ©)
Az =kiAr

M= —p o+ 2ha+ 2
Fi =mVy,, +biVy,, — % P2 — k01

(R +5;)F2= 20— A2~ g A

Now, from the bond graph point of view, as the remaining dyicgpart of the inverse model can be viewed, to
some extent, as a direct model with= [ p2 g1 }T, Uy = {Vlref} anduopt = [F2], the previous procedure
for constructingoptimizing bond graphean still be applied to this case. The only differences lithanfact that:

« only the remaining dynamic part (the part of the bond gragdeh whose causality is remained the same
even after the partial inversion) is duplicated to form dipgimizing bond graph



» eachSeSf-element representing a fixed input in théial bond graph(i.e. 4, in the case of the example)
must be replaced byaeD f-element in theptimizing bond graph

» eachDeDf-element in thenitial bond graphhas to be replaced bySeS f-element imposing both null flow
and effort in theoptimizing bond graph

Following these modifications, applying the four steps fmasly described in Section 2 comes up thus to the
augmented bond grapimodel in Fig. 2. The analytical exploitation of this cauaalgmented bond grapkvill
show that it leads to the same result than (9).

3.3 Approach 2: optimization before inverse modelling

Now let proceed to the second approach where the optimizptiablem is formulated before the inversion.

Bond graph model: State-space model:
Df . b b
J}‘/ Pr=—m P+ m P2+ kil +F
B [ R P2 =, P1— i, P2 — kil + (10)
Se 0 1 0 1 Se .
A A A O1=—pm; PL+ 7y P2
" pi o = —g2 02+ p, P2
1:mp I:m
1 1 Output equation:
LNy AN 1
C: 1k R:bs C:1/k R:by Vi=—p1 (11)

Table 2: Direct model.

In the case of the example, this comes up to start with thectdivend graph model (Tab. 2) governed by the
state-space equations (10) and the output equation (11th&®ane hand, meeting the specificatiord can be
reformulated as satisfaying the following constaint:

1
Vlref = Hlpl (12)

On the other hand, meeting the specificatio? wan be obtained by solving the following dissipative egerg
2

minimization problem:find the inputs k£ and K such that the performance indexﬂv’%féf (RFTZ + Paissh, )dt is
3 ,

minimized when initial and final conditions on state and tamefixed and the state-space equati¢b8) and the
output equatiorn(12) are taken as constraints’lndeed, as the unknowfy is determined by both inversion and
optimization, the space of solution féf has to be restricted to the space where the inversion cantstt2) is
satisfied. However, as this constraint (12) is algebraePtbntryagin Maximum Principle is not available anymore.
One has to consider thaptimality conditionggiven by the Euler-Lagrange conditions (13) to solve theblanm
[15].

oF, d oFa __
A “digr =0 (13)
J0Fa d dFa __

ﬁngt T dt (9U0pt
whereA € RY is the co-state vectoq is the number of constraintg (x, u,t) = 0 is theit" constraint and/, =

q
Z(x,u,t)+ Zl/\iqq(x,u,t) is called theaugmented function
i=

In the case of the example, applying the Euler-Lagrangeitiond leads to the system (14).



gél %‘gél_ pL=— p1+ L p2+ k101 + F1
Vra U lrma _ b
9% dtop, pZ—mllpl—@pz—qul—i-Fz
OFa _ ddFRa _ q 7ip +1p
g/\g dtg)\3 1= 1 mz 2
OFa _ dOFa _ (o
oAy T dtar, Q2= Q2+b2F2
o~ dior = Vier = m P
5 b

%7%%i0 = /\l_ l)\l_ )\2+ A3—i)\5 (14)
p p
oF _dom _g Ay =— b1A1+b1)\2_i,\3
dp, dtoap, ;
Ok _ d ok _ /\3_—k1/\1+k1/\2

o1 dtogy — .
OFg _ dOFg _ )\4—bQ2+ )\4— 2P

a0 dt 9qp 2
L

1 R 1,1 ko 1
OFa _ doF _ (R ta)P2= g+t A2+ p; A4
7 dtﬁ—o Re, ' by by by

Then, once this first step has be done, the specificafibtrcan be met by inversion with respect to the couple
(F1,V1). Proceeding to such an inversion and substitulipdy its value, enables then to conclude that, accord-
ing to the approach 2, finding the solutiopy, p2, 01,02, A1, A2, A3, A4, As, F1, ) amounts to solve the following
systems:

p1 = MV,
P2 = b1V, — r?]lz P2 — kg1 +F2
01 = Vlref + mz P2

%——*%+m5
M= A — A (15)
A= kl)\z

= DZQ2+ RAs— 2 I:2
Fi=mVy,, + b1V1ref mz L pp —kiQ1
(%erflz)l:z Q2+/\2+b A4

A1=0
{7\5 = —b1A2+ %)\3 (16)

It can be noticed that, sincg andAs appear each one in only one equation, their solving is jotatlependent
from the solving of the other variables. In fact, solvingyotiie system (15) is sufficient to answer to the sizing
problem under consideration and to determine the optiniakgeof the variableps, p2, g1, 0z, F1 andF.

Finally, one can remark that this system (15) is identicaht® system (9) obptimality conditionsobtained by
the approach 1. Indeed, if some differences between the sifjthe equations can be noticed, this is only due
to the fact that the variable are defined to within a sign between the Pontryagin Maximuimciple and the
Euler-Lagrange method. As a consequence, the transldttbe system (15) into the bond graph language will be
the same as in Fig. 2. An equivalent but simplifeymented bond gragh possible too and shown in Fig. 3.

3.4 Discussion

The previous subsections have presented the two possipteaghes for coupling inversion and dynamic opti-
mization on the specific example of two masses in series. isetigls here some features of each approach and
draw a brief comparison.

At the first sight, the approach 2 consisting of optimizing thirect model and then inverting it, seems to be
more complicated than the approach 1. In fact, this approaghires toa priori anticipate on the inversion by
considering an additional constraint (such as one of thput@quations of the direct model) for the optimization
problem. Without such an anticipation, there is no guasatitat the found solutions will satisfy the specifications
of inversion and thus meet the requirements of the sizinplpm. But, even if this task is relatively easy for
the example dealt in this article, this can reveal itself smisimple in the general case. Moreover, taking into
account additional constraints implies the introductidradditional variablesd.g. A1 and A5 in the example)
and so of additionabptimality conditionge.g. the system (16) in the example) to solve the problem. Fongizi
problems with numerous specifications and where it is necg$s consider many constraints, this approach can
thus appear as less efficient, inducing the solving of a mopigied system obptimality conditions The number

of unknowns willa priori be greater than with the approach 1 and will then require rtiore to be calculated.
Here, the example of two masses in series is a very specificveasre the solving of the additional variables is
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Figure 3: Simplifiedaugmented bond graph modmlupling both inversion and optimization.

totally independent from the solving of the other variatsiad where the simplication of ttegptimality conditions
can be made manually. But, in the general case, this sintiglicavill not be so explicit. In particular, further
studies have to be made on other examples to conclude if thesspproaches are really equivalent in the general
case or not.

Now, comparing to the approach 2, the approach 1 consistiimgerting the model and then optimizing it, appears
not only to be easier but more intuitive too: once the modiehMsrted, one can proceed to the optimization without
anticipating on anything. If the optimization problem isrfaulated on the remaining dynamic part of the model, it
automatically encloses the constraints due to the inversithout introducing any additional variabl@ Moreover

it enables to check in one sense if the sizing problem is peadled or not:

« if all of the inputs are entirely determined by the specifiedputs, it means that the model has totally been
inverted. Adding a sizing specification expressed in amaigtition problem form will amount to obtain an
over-constrained problem with no solution.

« if some inputs remain undetermined on the inverted motledgians that the problem is under-constrained
and that it is possible to add some sizing specifications.

Finally, it is worth noting that, even if such a coupling i&aling, the two approaches present the same ambiguity:
no indication is given to determine according to which ceuglvariables the inversion has to be made for resulting
a posteriorito the smallest performance index value.

4 Numerical results

In the specific example of two masses in series, the previeet®as have proved that the approaches 1 and 2 lead
to the same system (9) optimality conditions This section will handle more specifically the numericdi/sm
of such equations.

In fact, if the initial and final conditions on state and tinte éixed by the initial sizing problem, one can remark
that no information is priori given on the initial and final values of the co-state ve@omBut, since the system
of optimality conditionds a set of differential-algebraic equations, its solviaguires at least the initial value of
the co-state vector.

However, if the inputs are replaced by their expressionstfans of the state and the co-state vectors, the system
of theoptimality conditionsan be written under the following form:

(30) (58 )oms



As this system is linear and time-invariant, its analytmalving results to [4]:
t
+/ exg ") Buyes (1) dT
t

X(t) ) _ (t—to) [ X(to)
(A(t)>_equ ’ ()\to) .
_( Mu(t) Maft) X(to) Na(t)
—< Mat) Mat) )\ Ato) ) T N20) (18)
Then, taking into account the fixed conditions on the indiadl final state leads to the following equation:

x(t) = (Maltg) Matto) ) (X)) +matt) (19

Thus, as already shown in [2], it can be deduced that thain@ilue of the co-state vector is given in an analytical

manner by:
A (to) = M3 (to) (X(tr) —M1(to)X(to) — Na(tr)) (20)

This method has in particular been applied to the case ofthmpgle of two masses in series. Tab. 3 sums up the
several numerical values fixed by the sizing problem and tspdrametrize the model. Note on that subject that

the sizing problem can not impose arbitrary initial and ficahditions on state: these values have to be coherent
with the given specificied outputs (here only the valuepohave to match withvs, ., the initial and final values

of the other state variables can be chosen arbitrarily).

Model parameters: Optimization problem parameters:
my = 10.0 kg
mp = 5.0 kg to=0s
k1 = 1.0 N/m tf=5s
ko =2.0 N/m Rr, =100
b1 = 0.1 N/(m.s?) Vi, (t) =sin(t) m.st
b, = 0.4 N/m
State initial conditions: State final conditions:
P1, = MVy,, (to) = 0 kg.m.st p1, = MVy,, (tf) ~ —9.58924 kg.m.st
P2, = 0.5 kg.m.st P2, = 1.0 kg.m.st
Qi = 0.4 m qi; = 25m
Oz, =0.3m O, =50m

Table 3: Parameters for the example of two masses in series.

Because of the difficulties announced in [11] to calculateogentials of matrices, it has been preferred to deter-
mine the values of the matric&4:(to), M2(to) andN1(t;) by simulation as detailed in [10]. Thanks to the MS1
software (a software which supports among another thirgbdimd graph language) [12], these simulations have
enabled to obtain:

Mgy = —1.75168 m.s!

Az, = —3.02466 N (21)

A4y = —1.55337 N

After having injected these initial values, the simulatafrithe augmented bond grapshown in Fig. 3 (and then
of the system (9)) has been carried out on MS1. Fig. 4 thugpteshe evolution of the state variables, the inputs
and the two variables representing the initial specificetiv’; andPyissp, -

It can in particular be checked that the state variableshréee specified final values at the timpe(Fig. 4(a)) and
that the specification°d is well satisfied since the spe¥dof the first mass perfectly follows the sinusoidal form
of V., (Fig. 4(c)).

5 Conclusion

Up to now, the optimization procedure has only been carnigan direct models: the performance index was min-
imized by taking into account the state-space equationtsenfitodel and then by solving tieptimality conditions
given by the Pontryagin Maximum Principle. But, nothiagriori forbids to consider constraints representing
the state-space equations of an inverse model. Mathertgtinboth cases (inverse models or direct models), it
amounts to take into account a set of differential-algebeguations. The coupling of dynamic optimization with
inverse modelling is then legitimate. This is truer thatitkeses a real relevance in the sizing context. Coupling
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Figure 4: Numerical results for the approach 1.

the sizing methodology based on the use of inverse modefetogtimization procedure takes the advantages of
the two approaches by limiting their drawbacks. In fact thémization procedure enables the handling of design
constraints not expressed as functions of time, while therion gives a stronger constraint in term of trajectory
tracking (compared to a problem minimizing the error betwie output and the specified trajectory on this out-
put). It then enables to handle some very general sizinglgmbwhere the specifications are of heterogeneous

kind.

This article presents the first works made on managing sucugliog. The first challenge was in particular to
adapt the optimizing procedure to the case of inverse modéis adaptation has been made on the example of
two masses in series. It has allowed to conjecture some stigtlifications on the construction optimizing bond
graphsfor inverse models. In fact, the only difference with theimyization procedure for direct models lies in the

fact that:
« theoptimizing bond graplis only form by the remaining dynamic part of the initial inge model;
» eachSeSf-element (respDeD f-element) in thenitial bond graphis replaced by @eD f-element (resp. a
SeSf imposing both null flow and effort) in theptimizing bond graph
Of course, the extension of this optimization procedure tbase demonstrated theoretically to check if these
modifications are still available for the general case.

Besides, not only theptimality conditionshave been successfully translated in terms ofaeagmented bond
graph, but some numerical results have been given to prove thébflsof such a coupling: the simulation
of the resultingaugmented bond graphas enabled the determination of the optimal controls whieltch the

specifications given by the sizing problem.
In the theoretical point of view, theptimality condition$iave been obtained according to two different approaches:
the first one where the model is inverted before being optchand the second one where, on the contrary, the

optimization problem is formulated before the inversioheTeed to separate the inversion from the formulation
of the optimization problem is obviously due to a spirit ga@hview where the analytical calculus have to be made



in a chronological order. But, in reality, the numericahsofjs of the equations resulting from the inversion and of
those issued from the optimization are performed simutiasly. In the example of two masses in series, the two
approaches lead to the same systemoptimality conditionseven if the second approach (consisting of optimizing
and then inverting) seems to be more complicated to carryldovever, this example can reveal itself as a very
specific problem and further cases have to be studied to wdad these two approaches are really equivalent in
the general case. Anyway, the first approach appears as ntoite/e and more pertinent in the sense that it allows
to check if the sizing problem is well-posed or not: if the rabid entirely invertedi(e. the totality of its inputs are
determined by the specified outputs), no sizing specifioatém be added whereas if the model is partially inverted
(i.e. some inputs remain undetermined after the inversionpgigpecifications such as optimization problems can
be added.

Finally, it is worth underlying that this article constigst the first step toward the coupling between dynamic
optimization and inverse modelling. In that way it deserfigsher developments concerning the comparison
between the theoretical approaches (are they really dguiva), the extended optimization procedure (is it still
valid in the general case ?), the numerical solving (howestie case of non-linear systems where no analytical
solution is given to determine the initial co-state ?) areldpplications (the example dealt in this article concerns
an optimal control problem but the problem of generatinggjpations can be envisaged t00).
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