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BOND GRAPH SIZING OF MECHATRONIC SYSTEMS: COUPLING OF INVERSE MODELLING WITH DYNAMIC OPTIMIZATION

Since 15 years, a methodology has been developed for sizing mechatronic systems. Based on the use of inverse models described by bond graph, it has in particular the advantage of drastically decreasing the number of calculus iterations, compared to the error and trial procedure of the classical direct approach. The aim of this article is to extend this sizing methodology to the case where only a part of the specifications can be translated in terms of functions of time (and so where only a part of the model can be inverted) and where the other part can be formulated as an optimal control problem. In particular, the illustration of this extension on an academic example of two masses in series will show how a partially inverted model can be coupled with the graphical construction of optimizing bond graph established in recent articles.

C -For the inputs not to be optimized (i.e. which are supposed to be known), replace the corresponding MSe and MS f -elements respectively by D f and De-elements in the optimizing bond graph.

Step 4: Bicausality assignment. Replace the source elements involved in the performance index by double detectors DeD f in the initial bond graph and by double sources SeS f in the optimizing bond graph, which impose both null efforts and flows. Then propagate bicausality [3] from the double sources to the double detectors through the R-elements associated with the inputs to be determined. Finally assign the preferential integral causality to the rest of the model in order to obtain the augmented bond graph, mirror of the optimality conditions (4).

Introduction

Inverse modelling consists of determining the unknown inputs of the model directly from the specified outputs. Taking advantage of this approach, a methodology has been developed for sizing mechatronic systems according to energy and dynamic criteria [START_REF] Ngwompo | Physical model-based inversion in control systems design using bond graph representation, Part 1: theory[END_REF]. Based on the bond graph language (chosen for its multi-domain, physical and graphical aspects), this methodology consists of: graphically checking if the model is invertible and if the specifications can be reached by the given model structure; graphically constructing the inverse model corresponding to the specific sizing problem under consideration; and finding the unknown inputs by simulating the resulting inverse model from the given specified outputs. One of the original features of this methodology lies in its structural analysis step where graphical guidelines are given to the engineer to check the well-posedness of his problem. Moreover the benefits of such a methodology have been shown in some industrial applications, especially in the automotive domain [START_REF] Mechin | A dynamic sizing methodology in the context of an automotive application[END_REF]. However, this methodology can only be applied to the cases where the specifications can be translated in terms of functions of time. But this requirement is not so easy to meet in practice [START_REF] Mechin | Sizing of an Electric Power Steering system on dynamic and energetic criteria[END_REF]. Design constraints are most of the time expressed as: not crossing upper or lower limits, minimizing the weight or the energy consumption, and so on. In order to handle this kind of design constraints, recent articles [START_REF] Marquis-Favre | A bond graph representation of an optimal control problem : the example of the DC motor[END_REF][START_REF] Chereji | An optimal control problem: bond graph representation and solver implementation[END_REF][START_REF] Marquis-Favre | Bond graph formulation of an optimal control problem for linear time-invariant systems[END_REF][START_REF] Mouhib | Optimal control problem in bond graph formalism[END_REF] presented the bond graph formulation of an optimal control problem. The resulting procedure leads to graphically construct what it is called an optimizing bond graph, and to couple it with the initial bond graph model of the system under study. The obtained bond graph model mirrors then a system of equations, identical to the optimality conditions given by the Pontryagin Maximum Principle [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF]. Up to now, this optimization procedure was considered only for direct models. The objective of this article is to substantiate the interest of such a procedure by coupling it with the sizing methodology, and so by adapting it for inverse models. After having recalled in Section 2 the procedure for constructing optimizing bond graph in the case of direct models, Section 3 presents the coupling of inverse modelling with dynamic optimization through the academic example of two masses in series. The two manners of formulating the problem (inverting then optimizing or optimizing then inverting) are in particular discussed. Numerical results are then given in Section 4 to prove the feasibility of such a coupling. Finally Section 5 points out some research directions it will be interesting to invest.

Bond graph formulation of dynamic optimization

Coupling dynamic optimization with bond graph models has already been considered in [START_REF] Cabanellas | Dynamic systems optimization based on pseudo bond graph[END_REF][START_REF] Lo | Fusion of qualitative bond graph and genetic algorithms: a fault diagnosis application[END_REF][START_REF] Seo | Toward a unified and automated design methodology for multi-domain dynamic systems using bond graphs and genetic programming[END_REF]. However these works only present direct methods for solving the optimization problem under consideration: bond graph models are used only for modelling the system while the optimization is really performed by classical routines such as the genetic algorithm [START_REF] Lo | Fusion of qualitative bond graph and genetic algorithms: a fault diagnosis application[END_REF][START_REF] Seo | Toward a unified and automated design methodology for multi-domain dynamic systems using bond graphs and genetic programming[END_REF]. Here, as the final objective is to couple a dynamic optimization procedure with a bond graph-based sizing methodology, constructing the solution of an optimization problem (or at least a system of equations whose solving leads to the exact solution of the problem) through a bond graph model appears to be relevant. This explains why indirect solving methods such as the Pontryagin Maximum Principle are here considered. Now, consider the case of linear and time-invariant systems and suppose that the optimization problem is to find x and u opt such that:

• the performance index V is minimized:

V = t f t 0 L (x, u,t) dt = t f t 0 1 2 [u T opt • R u opt • u opt + P diss ] dt (1)
where x ∈ R n is the state vector; u ∈ R m denotes the input vector,

u = u T u u T opt T with u u ∈ R m u (resp.
u opt ∈ R m opt ) is the vector of fixed inputs (resp. of inputs to be optimized); R u opt ∈ R m opt ×m opt is a weighting matrix, supposed to be diagonal,

R u opt = R -1 u e,opt 0 0 R u f ,opt
with R u e,opt and R u f ,opt the weighting matrices respectively associated with the effort and flow sources to be optimized; P diss is all or a part of the energy dissipated by the system;

• the initial and final conditions (2) on state and time are fixed;

x(t 0 ) = x 0 x(t f ) = x f (2)
• the state-space equations (3) of the model are taken as constraints.

ẋ = f(x, u,t) (3) 
The Pontryagin Maximum Principle [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF][START_REF] Pun | Introduction à la pratique de l'optimisation[END_REF] states then that the exact solution (x opt , λ λ λ opt , u opt ) of such an opti- mization problem is given by the analytical solving of the following system:

       ẋ = ∂ H p (x,λ λ λ ,u) ∂ λ λ λ λ λ λ = - ∂ H p (x,λ λ λ ,u) ∂ x ∂ H p (x,λ λ λ ,u) ∂ u opt = 0 (4) 
where λ λ λ ∈ R n is the co-state vector and

H p = L (x, u,t) + λ λ λ T • f(x, u,t) is called the Pontryagin function.
As already written, a procedure has been established for constructing, in a systematical manner, an augmented bond graph which mirrors the equations of these optimality conditions (4). This procedure can be summed up into the four steps below [START_REF] Marquis-Favre | A bond graph representation of an optimal control problem : the example of the DC motor[END_REF][START_REF] Marquis-Favre | Bond graph formulation of an optimal control problem for linear time-invariant systems[END_REF]:

Step 1: Duplication. Duplicate the bond graph model of the system under study. The original part of the bond graph model will hereafter be called initial bond graph while the duplicated part will be called optimizing bond graph.

Step 2: Characteristics of the optimizing bond graph. In the optimizing bond graph, replace the characteristic matrices R of the R-elements by their corresponding transposed and reversed sign matrices -R T .

Step 3: Taken into account the performance index.

A -For the dissipative phenomena involved in the performance index, couple the R-elements present simultaneously in the initial bond graph and in the optimizing bond graph and corresponding to the same phenomena. Then, add the matrix 

= R T rr -R T cr -R T rc R T cc
(the subscripts r and c correspond to the ports in a resistance and in a conductance causality respectively when the bond graph model is in preferential integral causality). Note that, in the specific case of 1-port R-element, the term 1 2 [R opt + T ] reduces itself to R opt . B -For the inputs to be determined, insert a 0-junction (resp. 1-junction) between each effort source (resp. flow source) and the structure junction and then insert one multiport R-element per pair of corresponding sources in the initial and optimizing bond graphs. For effort sources (resp. flow sources), set the characteristic matrices to R u e,opt 0 R u e,opt -R u e,opt (resp.

R u f ,opt 0 R u f ,opt -R u f ,opt
).

Coupling of inverse modelling with dynamic optimization

The first advantage of the optimization procedure described in the previous section lies in the fact that the optimality conditions are obtained in a systematical and graphical manner contrary to the Pontryagin Maximum Principle which requires analytical developments. Now even if this argument is appealing, the first interest of this procedure is to couple dynamic optimization with the sizing methodology and so with inverse modelling.

Framework

To initiate the coupling between inverse modelling and dynamic optimization, only linear and time-invariant systems are addressed in this article. Besides the sizing problem is considered to be the determination of the open-loop controls in the case where the specifications can be divided into two parts: a first one where the specification can be expressed as a function of time, and another one where the design constraint formulates itself as a problem of dissipative energy minimization. To illustrate this case, let consider the example of two masses in series, joined by springs and dampers in parallel and where the controls are the efforts F 1 and F 2 (Fig. 1). Now, suppose that the sizing problem is to find F 1 and F 2 so that:

m 2 m 1 k 2 k 1 b 2 b 1 F 1 V 1 F 2
• the speed V 1 of the first mass m 1 follows a given trajectory V 1 re f (specification n • 1); • the dissipative energy P diss,b 2 due to the second damper is minimized (specification n • 2).
The key idea here is to simultaneously meet the specification n • 1 by inversion and the specification n • 2 by dynamic optimization. The following sections will present the two possible approaches for managing such a coupling: the first one where the model is partially inverted before being optimized and the second one where, on the contrary, the optimization problem is formulated before the inversion.

Approach 1: inverse modelling before optimization

Let proceed to the first approach consisting of previously inverting the model before formulating the optimization problem.

Bond graph model:

State-space model:

ṗ2 1 I : m2 0 Se F2 1 q2 C : 1/k2 R : b2 ṗ1 0 DeDf SeSf 1 I : m1 V1 re f F1 1 q1 C : 1/k1 R : b1 0 p 1 = m 1 V 1 re f (5)      ṗ2 = b 1 V 1 re f -b 1 m 2 p 2 -k 1 q 1 + F 2 q1 = -V 1 re f + 1 m 2 p 2 q2 = -k 2 b 2 q 2 + 1 b 2 F 2 (6) 
Output equation:

F 1 = m 1 V1 re f + b 1 V 1 re f - b 1 m 2 p 2 -k 1 q 1 (7) Table 1: Inverse model with respect to (F 1 ,V 1 ).
In the case of the example, meeting the specification n • 1 by inversion amounts to partially invert the bond graph model with respect to the couple (F 1 ,V 1 ) by using the bicausality concept (Tab. 1). It can then be deduced by the exploitation of the causality assignment, that the remaining dynamic part of this inverse model is governed by the state-space equations [START_REF] Marquis-Favre | A bond graph representation of an optimal control problem : the example of the DC motor[END_REF] and that, once the optimal state vector will be known, the unknown F 1 will be computed such as in [START_REF] Marquis-Favre | Bond graph formulation of an optimal control problem for linear time-invariant systems[END_REF].

Once this first step has be done, the specification n • 2 can be met by considering only the remaining dynamic part of the inverse model and formulating the following optimal control problem: 'find the input F 2 such that the (p 2 , q 1 , q 2 , λ 2 , λ 3 , λ 4 , F 2 ). Besides, after having constructed the corresponding Pontryagin function, applying the Pontryagin Maximum Principle in an analytical manner leads then to the optimality conditions [START_REF] Mechin | A dynamic sizing methodology in the context of an automotive application[END_REF].

performance index V = 1 2 t f t 0 ( F 2 2 R F 2 + P diss,b 2 )dt is
                           ṗ2 = ∂ H p ∂ λ 2 q1 = ∂ H p ∂ λ 3 q2 = ∂ H p ∂ λ 4 λ2 = - ∂ H p ∂ p 2 λ3 = - ∂ H p ∂ q 1 λ4 = - ∂ H p ∂ q 2 ∂ H p ∂ F 2 = 0 ⇒                          ṗ2 = b 1 V 1 re f -b 1 m 2 p 2 -k 1 q 1 + F 2 q1 = -V 1 re f + 1 m 2 p 2 q2 = -k 2 b 2 q 2 + 1 b 2 F 2 λ2 = b 1 m 2 λ 2 -1 m 2 λ 3 λ3 = k 1 λ 2 λ4 = - k 2 2 b 2 q 2 + k 2 b 2 λ 4 + k 2 b 2 F 2 ( 1 R F 2 + 1 b 2 )F 2 = k 2 b 2 q 2 -1 m 2 p λ 2 -k 2 b 2 q λ 2 (8) 
As a consequence, according to the approach 1, finding the solution (p 1 , p 2 , q 1 , q 2 , λ 2 , λ 3 , λ 4 , F 1 , F 2 ) meeting the specifications n • 1 and n • 2 on V 1 and P diss,b 2 amounts to solve the following system, made of equations ( 5), ( 7) and ( 8):

                                   p 1 = m 1 V 1 re f ṗ2 = b 1 V 1 re f -b 1 m 2 p 2 -k 1 q 1 + F 2 q1 = -V 1 re f + 1 m 2 p 2 q2 = -k 2 b 2 q 2 + 1 b 2 F 2 λ2 = b 1 m 2 λ 2 -1 m 2 λ 3 λ3 = k 1 λ 2 λ4 = - k 2 2 b 2 q 2 + k 2 b 2 λ 4 + k 2 b 2 F 2 F 1 = m 1 V1 re f + b 1 V 1 re f -b 1 m 2 p 2 -k 1 q 1 ( 1 R F 2 + 1 b 2 )F 2 = k 2 b 2 q 2 -λ 2 -1 b 2 λ 4 (9)
Now, from the bond graph point of view, as the remaining dynamic part of the inverse model can be viewed, to some extent, as a direct model with

x = p 2 q 1 q 2 T , u u = V 1 re f and u opt = [F 2 ]
, the previous procedure for constructing optimizing bond graphs can still be applied to this case. The only differences lie in the fact that:

• only the remaining dynamic part (the part of the bond graph model whose causality is remained the same even after the partial inversion) is duplicated to form the optimizing bond graph;

• each SeS f -element representing a fixed input in the initial bond graph (i.e. V 1 re f in the case of the example) must be replaced by a DeD f -element in the optimizing bond graph;

• each DeD f -element in the initial bond graph has to be replaced by a SeS f -element imposing both null flow and effort in the optimizing bond graph.

Following these modifications, applying the four steps previously described in Section 2 comes up thus to the augmented bond graph model in Fig. 2. The analytical exploitation of this causal augmented bond graph will show that it leads to the same result than (9).

Approach 2: optimization before inverse modelling

Now let proceed to the second approach where the optimization problem is formulated before the inversion.

Bond graph model:

State-space model:

ṗ2 1 I : m2 0 Se F2 1 q2 C : 1/k2 R : b2 ṗ1 0 Se Df 1 I : m1 V1 F1 1 q1 C : 1/k1 R : b1          ṗ1 = -b 1 m 1 p 1 + b 1 m 2 p 2 + k 1 q 1 + F 1 ṗ2 = b 1 m 1 p 1 -b 1 m 2 p 2 -k 1 q 1 + F 2 q1 = -1 m 1 p 1 + 1 m 2 p 2 q2 = -k 2 b 2 q 2 + 1 b 2 F 2 ( 10 
)
Output equation:

V 1 = 1 m 1 p 1 ( 11 
)
Table 2: Direct model.

In the case of the example, this comes up to start with the direct bond graph model (Tab. 2) governed by the state-space equations [START_REF] Mouhib | Optimal control problem in bond graph formalism[END_REF] and the output equation [START_REF] Moler | Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later[END_REF]. On the one hand, meeting the specification n • 1 can be reformulated as satisfaying the following constaint:

V 1 re f = 1 m 1 p 1 ( 12 
)
On the other hand, meeting the specification n • 2 can be obtained by solving the following dissipative energy minimization problem: 'find the inputs F 1 and F 2 such that the performance index V = 1 2

t f t 0 ( F 2 2 R F 2 + P diss,b 2 )dt is
minimized when initial and final conditions on state and time are fixed and the state-space equations [START_REF] Mouhib | Optimal control problem in bond graph formalism[END_REF] and the output equation (12) are taken as constraints'. Indeed, as the unknown F 1 is determined by both inversion and optimization, the space of solution for F 1 has to be restricted to the space where the inversion constraint ( 12) is satisfied. However, as this constraint ( 12) is algebraic, the Pontryagin Maximum Principle is not available anymore. One has to consider the optimality conditions given by the Euler-Lagrange conditions [START_REF] Ngwompo | Physical model-based inversion in control systems design using bond graph representation, Part 1: theory[END_REF] to solve the problem [START_REF] Pun | Introduction à la pratique de l'optimisation[END_REF].

     ∂ F a ∂ x -d dt ∂ F a ∂ ẋ = 0 ∂ F a ∂ λ λ λ -d dt ∂ F a ∂ λ λ λ = 0 ∂ F a ∂ u opt -d dt ∂ F a ∂ uopt = 0 ( 13 
)
where λ λ λ ∈ R q is the co-state vector, q is the number of constraints, φ i (x, u,t) = 0 is the i th constraint and F a = L (x, u,t) + q ∑ i=1 λ i φ i (x, u,t) is called the augmented function.

In the case of the example, applying the Euler-Lagrange conditions leads to the system [START_REF] Pontryagin | The Mathematical Theory of Optimal Processes[END_REF].

                                               ∂ F a ∂ λ 1 -d dt ∂ F a ∂ λ1 = 0 ∂ F a ∂ λ 2 -d dt ∂ F a ∂ λ2 = 0 ∂ F a ∂ λ 3 -d dt ∂ F a ∂ λ3 = 0 ∂ F a ∂ λ 4 -d dt ∂ F a ∂ λ4 = 0 ∂ F a ∂ λ 5 -d dt ∂ F a ∂ λ5 = 0 ∂ F a ∂ p 1 -d dt ∂ F a ∂ ṗ1 = 0 ∂ F a ∂ p 2 -d dt ∂ F a ∂ ṗ2 = 0 ∂ F a ∂ q 1 -d dt ∂ F a ∂ q1 = 0 ∂ F a ∂ q 2 -d dt ∂ F a ∂ q2 = 0 ∂ F a ∂ F 1 -d dt ∂ F a ∂ Ḟ1 = 0 ∂ F a ∂ F 2 -d dt ∂ F a ∂ Ḟ2 = 0 ⇒                                              ṗ1 = -b 1 m 1 p 1 + b 1 m 2 p 2 + k 1 q 1 + F 1 ṗ2 = b 1 m 1 p 1 -b 1 m 2 p 2 -k 1 q 1 + F 2 q1 = -1 m 1 p 1 + 1 m 2 p 2 q2 = -k 2 b 2 q 2 + 1 b 2 F 2 V 1 re f = 1 m 1 p 1 λ1 = b 1 m 1 λ 1 -b 1 m 1 λ 2 + 1 m 1 λ 3 -1 m 1 λ 5 λ2 = -b 1 m 2 λ 1 + b 1 m 2 λ 2 -1 m 2 λ 3 λ3 = -k 1 λ 1 + k 1 λ 2 λ4 = k 2 2 b 2 q 2 + k 2 b 2 λ 4 -k 2 b 2 F 2 λ 1 = 0 ( 1 R F 2 + 1 b 2 )F 2 = k 2 b 2 q 2 + λ 2 + 1 b 2 λ 4 (14) 
Then, once this first step has be done, the specification n • 1 can be met by inversion with respect to the couple

(F 1 ,V 1 )
. Proceeding to such an inversion and substituting λ 1 by its value, enables then to conclude that, accord- ing to the approach 2, finding the solution (p 1 , p 2 , q 1 , q 2 , λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , F 1 , F 2 ) amounts to solve the following systems:

                                   p 1 = m 1 V 1 re f ṗ2 = b 1 V 1 re f -b 1 m 2 p 2 -k 1 q 1 + F 2 q1 = -V 1 re f + 1 m 2 p 2 q2 = -k 2 b 2 q 2 + 1 b 2 F 2 λ2 = b 1 m 2 λ 2 -1 m 2 λ 3 λ3 = k 1 λ 2 λ4 = k 2 2 b 2 q 2 + k 2 b 2 λ 4 -k 2 b 2 F 2 F 1 = m 1 V1 re f + b 1 V 1 re f -b 1 m 2 p 2 -k 1 q 1 ( 1 R F 2 + 1 b 2 )F 2 = k 2 b 2 q 2 + λ 2 + 1 b 2 λ 4 (15) 
λ 1 = 0 λ 5 = -b 1 λ 2 + m 1 m 3 λ 3 ( 16 
)
It can be noticed that, since λ 1 and λ 5 appear each one in only one equation, their solving is totally independent from the solving of the other variables. In fact, solving only the system [START_REF] Pun | Introduction à la pratique de l'optimisation[END_REF] is sufficient to answer to the sizing problem under consideration and to determine the optimal values of the variables p 1 , p 2 , q 1 , q 2 , F 1 and F 2 .

Finally, one can remark that this system ( 15) is identical to the system (9) of optimality conditions obtained by the approach 1. Indeed, if some differences between the signs of the equations can be noticed, this is only due to the fact that the variables λ i are defined to within a sign between the Pontryagin Maximum Principle and the Euler-Lagrange method. As a consequence, the translation of the system (15) into the bond graph language will be the same as in Fig. 2. An equivalent but simplified augmented bond graph is possible too and shown in Fig. 3.

Discussion

The previous subsections have presented the two possible approaches for coupling inversion and dynamic optimization on the specific example of two masses in series. Let discuss here some features of each approach and draw a brief comparison.

At the first sight, the approach 2 consisting of optimizing the direct model and then inverting it, seems to be more complicated than the approach 1. In fact, this approach requires to a priori anticipate on the inversion by considering an additional constraint (such as one of the output equations of the direct model) for the optimization problem. Without such an anticipation, there is no guarantee that the found solutions will satisfy the specifications of inversion and thus meet the requirements of the sizing problem. But, even if this task is relatively easy for the example dealt in this article, this can reveal itself not so simple in the general case. Moreover, taking into account additional constraints implies the introduction of additional variables (e.g. λ 1 and λ 5 in the example) and so of additional optimality conditions (e.g. the system [START_REF] Seo | Toward a unified and automated design methodology for multi-domain dynamic systems using bond graphs and genetic programming[END_REF] in the example) to solve the problem. For sizing problems with numerous specifications and where it is necessary to consider many constraints, this approach can thus appear as less efficient, inducing the solving of a non-simplified system of optimality conditions. The number of unknowns will a priori be greater than with the approach 1 and will then require more time to be calculated.

Here, the example of two masses in series is a very specific case where the solving of the additional variables is totally independent from the solving of the other variables and where the simplication of the optimality conditions can be made manually. But, in the general case, this simplication will not be so explicit. In particular, further studies have to be made on other examples to conclude if these two approaches are really equivalent in the general case or not. Now, comparing to the approach 2, the approach 1 consisting of inverting the model and then optimizing it, appears not only to be easier but more intuitive too: once the model is inverted, one can proceed to the optimization without anticipating on anything. If the optimization problem is formulated on the remaining dynamic part of the model, it automatically encloses the constraints due to the inversion without introducing any additional variable λ i . Moreover it enables to check in one sense if the sizing problem is well-posed or not:

• if all of the inputs are entirely determined by the specified outputs, it means that the model has totally been inverted. Adding a sizing specification expressed in an optimization problem form will amount to obtain an over-constrained problem with no solution.

• if some inputs remain undetermined on the inverted model, it means that the problem is under-constrained and that it is possible to add some sizing specifications.

Finally, it is worth noting that, even if such a coupling is appealing, the two approaches present the same ambiguity: no indication is given to determine according to which couple of variables the inversion has to be made for resulting a posteriori to the smallest performance index value.

Numerical results

In the specific example of two masses in series, the previous sections have proved that the approaches 1 and 2 lead to the same system (9) of optimality conditions. This section will handle more specifically the numerical solving of such equations.

In fact, if the initial and final conditions on state and time are fixed by the initial sizing problem, one can remark that no information is a priori given on the initial and final values of the co-state vector λ λ λ . But, since the system of optimality conditions is a set of differential-algebraic equations, its solving requires at least the initial value of the co-state vector.

However, if the inputs are replaced by their expressions functions of the state and the co-state vectors, the system of the optimality conditions can be written under the following form:

ẋ(t) λ λ λ (t) = A x(t) λ λ λ (t) + Bu re f (t) (17) 
As this system is linear and time-invariant, its analytical solving results to [START_REF] Kailath | Linear Systems[END_REF]:

x(t) λ λ λ (t) =exp A(t-t 0 ) x(t 0 ) λ λ λ (t 0 ) + t t 0 exp A(τ-t 0 ) Bu re f (τ) dτ = M 1 (t) M 2 (t) M 3 (t) M 4 (t) x(t 0 ) λ λ λ (t 0 ) + N 1 (t) N 2 (t) (18) 
Then, taking into account the fixed conditions on the initial and final state leads to the following equation:

x(t f ) = M 1 (t 0 ) M 2 (t 0 ) x(t 0 ) λ λ λ (t 0 ) + N 1 (t f ) (19) 
Thus, as already shown in [START_REF] Chereji | An optimal control problem: bond graph representation and solver implementation[END_REF], it can be deduced that the initial value of the co-state vector is given in an analytical manner by: λ λ λ

(t 0 ) = M -1 2 (t 0 )(x(t f ) -M 1 (t 0 )x(t 0 ) -N 1 (t f )) (20) 
This method has in particular been applied to the case of the example of two masses in series. Tab. 3 sums up the several numerical values fixed by the sizing problem and used to parametrize the model. Note on that subject that the sizing problem can not impose arbitrary initial and final conditions on state: these values have to be coherent with the given specificied outputs (here only the values of p 1 have to match with V 1 re f , the initial and final values of the other state variables can be chosen arbitrarily).

Model parameters:

Optimization problem parameters:

                 m 1 = 10.0 kg m 2 = 5.0 kg k 1 = 1.0 N/m k 2 = 2.0 N/m b 1 = 0.1 N/(m.s -1 ) b 2 = 0.4 N/m          t 0 = 0 s t f = 5 s R F 2 = 10.0 V 1 re f (t) = sin (t) m.s -1

State initial conditions:

State final conditions: Because of the difficulties announced in [START_REF] Moler | Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later[END_REF] to calculate exponentials of matrices, it has been preferred to determine the values of the matrices M 1 (t 0 ), M 2 (t 0 ) and N 1 (t f ) by simulation as detailed in [START_REF] Mouhib | Optimal control problem in bond graph formalism[END_REF]. Thanks to the MS1 software (a software which supports among another things the bond graph language) [12], these simulations have enabled to obtain:

         p 1 0 = m 1 V 1 re f (t 0 ) = 0 kg.m.s -1 p 2 0 = 0.5 kg.m.s -1 q 1 0 = 0.4 m q 2 0 = 0.3 m          p 1 f = m 1 V 1 re f (t f ) ≈ -9.58924 kg.m.s -1 p 2 f = 1.0 kg.m.s -1 q 1 f = 2.5 m q 2 f = 5.0 m
     λ 2 0 = -1.75168 m.s -1 λ 3 0 = -3.02466 N λ 4 0 = -1.55337 N (21) 
After having injected these initial values, the simulation of the augmented bond graph shown in Fig. 3 (and then of the system ( 9)) has been carried out on MS1. Fig. 4 thus presents the evolution of the state variables, the inputs and the two variables representing the initial specifications: V 1 and P diss,b 2 .

It can in particular be checked that the state variables reach the specified final values at the time t f (Fig. 4(a)) and that the specification n • 1 is well satisfied since the speed V 1 of the first mass perfectly follows the sinusoidal form of V 1 re f (Fig. 4(c)).

Conclusion

Up to now, the optimization procedure has only been carried out on direct models: the performance index was minimized by taking into account the state-space equations of the model and then by solving the optimality conditions given by the Pontryagin Maximum Principle. But, nothing a priori forbids to consider constraints representing the state-space equations of an inverse model. Mathematically, in both cases (inverse models or direct models), it amounts to take into account a set of differential-algebraic equations. The coupling of dynamic optimization with inverse modelling is then legitimate. This is truer that it encloses a real relevance in the sizing context. Coupling the sizing methodology based on the use of inverse models to the optimization procedure takes the advantages of the two approaches by limiting their drawbacks. In fact the optimization procedure enables the handling of design constraints not expressed as functions of time, while the inversion gives a stronger constraint in term of trajectory tracking (compared to a problem minimizing the error between the output and the specified trajectory on this output). It then enables to handle some very general sizing problems where the specifications are of heterogeneous kind.

This article presents the first works made on managing such a coupling. The first challenge was in particular to adapt the optimizing procedure to the case of inverse models. The adaptation has been made on the example of two masses in series. It has allowed to conjecture some slight modifications on the construction of optimizing bond graphs for inverse models. In fact, the only difference with the optimization procedure for direct models lies in the fact that:

• the optimizing bond graph is only form by the remaining dynamic part of the initial inverse model;

• each SeS f -element (resp. DeD f -element) in the initial bond graph is replaced by a DeD f -element (resp. a SeS f imposing both null flow and effort) in the optimizing bond graph.

Of course, the extension of this optimization procedure has to be demonstrated theoretically to check if these modifications are still available for the general case.

Besides, not only the optimality conditions have been successfully translated in terms of an augmented bond graph, but some numerical results have been given to prove the feasibility of such a coupling: the simulation of the resulting augmented bond graph has enabled the determination of the optimal controls which match the specifications given by the sizing problem.

In the theoretical point of view, the optimality conditions have been obtained according to two different approaches: the first one where the model is inverted before being optimized and the second one where, on the contrary, the optimization problem is formulated before the inversion. The need to separate the inversion from the formulation of the optimization problem is obviously due to a spirit point of view where the analytical calculus have to be made in a chronological order. But, in reality, the numerical solvings of the equations resulting from the inversion and of those issued from the optimization are performed simultaneously. In the example of two masses in series, the two approaches lead to the same system of optimality conditions even if the second approach (consisting of optimizing and then inverting) seems to be more complicated to carry out. However, this example can reveal itself as a very specific problem and further cases have to be studied to conclude if these two approaches are really equivalent in the general case. Anyway, the first approach appears as more intuitive and more pertinent in the sense that it allows to check if the sizing problem is well-posed or not: if the model is entirely inverted (i.e. the totality of its inputs are determined by the specified outputs), no sizing specification can be added whereas if the model is partially inverted (i.e. some inputs remain undetermined after the inversion), sizing specifications such as optimization problems can be added.

Finally, it is worth underlying that this article constitutes the first step toward the coupling between dynamic optimization and inverse modelling. In that way it deserves further developments concerning the comparison between the theoretical approaches (are they really equivalent ?), the extended optimization procedure (is it still valid in the general case ?), the numerical solving (how solve the case of non-linear systems where no analytical solution is given to determine the initial co-state ?) and the applications (the example dealt in this article concerns an optimal control problem but the problem of generating specifications can be envisaged too).
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