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1 Introduction

Carleson measures and the Nevanlinna counting function are two classical
concepts in complex analysis. Carleson measures emerged (under the initial
form µ =

∑∞
n=1(1 − |zn|)δzn) when L. Carleson ([1], [2]) tried to characterize

the interpolation sequences (zn)n≥1 of the open unit disk D, and showed at this
occasion his famous embedding theorem: For any positive finite measure µ on
the closed unit disk D, the following two conditions, analytic and geometric, are
equivalent:

(1) There exists a constant C > 0 such that ‖f‖Lp(µ) ≤ C ‖f‖Hp , for every
f in the Hardy space Hp, for some (or all) 0 < p <∞;

(2) The measure µ satisfies the geometric condition sup|ξ|=1 µ[W (ξ, h)] =
O (h), where W (ξ, h) is the Carleson window of size h centered at ξ.

A measure µ satisfying one of those two equivalent properties is now called
a Carleson measure and the supremum in (2) is called the Carleson function

ρµ of µ. Later, it was realized that a quite different type of Carleson measures
naturally appears in the context of composition operators: If ϕ is an analytic
self-map of D and µ = mϕ is the image by ϕ∗, the boundary values function
of ϕ, of the normalized Lebesgue measure on the circle, then µ is a Carleson
measure, whatever ϕ is. One says then that ρϕ = ρµ is the Carleson function

of ϕ.

1



The Nevanlinna counting function Nϕ traces back earlier, in connection with
the Jensen formula and the Nevanlinna theory of defect ([22] or [18]). In a
slightly different context, Littlewood used it implicitly ([13], see Theorem 4)
when he showed that, for every analytic self-map ϕ of D, we have Nϕ(z) =
O (1 − |z|) as |z| → 1. This turns out to imply ([25], [24]) that the composition
operator f 7→ f ◦ ϕ = Cϕ(f) is continuous on Hp (which precisely means, in
present language, that mϕ is a Carleson measure).

Later, and till now, the regularity of composition operators Cϕ on H2 (their
compactness, or membership in a Schatten class) in terms of their “symbol” ϕ
has been studied either from the point of view of Carleson measures or from the
point of view of the Nevanlinna counting function, those two points of view being
completely separated. For example, the compactness of Cϕ : H2 → H2 has been
characterized in terms of the Carleson function of the symbol ρϕ(h) = o (h),
as h → 0, by B. McCluer ([16] – see also [20]). In another paper, it was
characterized in terms of the Nevanlinna counting function Nϕ of the symbol:
Nϕ(w) = o (1− |w|), as |w| → 1, by J. Shapiro ([25]). A similar situation exists
for the characterization of the membership of Cϕ in a prescribed Schatten class
([14] and [15]). There should therefore exist a direct link between these two
parameters (the Carleson measure mϕ and the Nevanlinna counting function
Nϕ), but results of this type are still very sparse and rather disconnected in the
literature. Let us quote two of them:

- B. R. Choe ([4]) showed that lim suph→0(ρϕ(h)/h)1/2 is equivalent, up to
constants, to the distance of Cϕ to the space of compact operators on H2; since
J. Shapiro had proved ([25]) that this distance is exactly

lim sup
|w|→1

(Nϕ(w)/ log |w|)1/2,

one gets, in an indirect way, the fact that

lim sup
|w|→1

Nϕ(w)/ log |w| ≈ lim sup
h→0

ρϕ(h)/h.

- Later, J. S. Choa and H. O. Kim ([3]) gave a somewhat direct proof of
the equivalence of the above two conditions, without using the properties of the
associated composition operator. But they did not give any explicit relation
between the two functions ρϕ and Nϕ.

The aim of this paper is precisely to establish, on the basis of Green’s formula
(under a form due to Stanton) and of Orlicz functions, a general equivalence be-
tween those two functions, from a “complex variable” point of view which seems
to have an independent interest, and without help of the associated composition
operator. More specifically, the main result of this work is that the Nevanlinna
counting function and the Carleson function of an analytic self-map ϕ : D → D

are “equivalent” in the following sense:
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Theorem 1.1 There exist some universal constants C, c > 1, such that, for

every analytic self-map ϕ : D → D, one has:

(1.1) (1/C) ρϕ(h/c) ≤ sup
|w|≥1−h

Nϕ(w) ≤ C ρϕ(c h),

for 0 < h < 1 small enough.

More precisely, for every ξ ∈ ∂D, one has:

(1.2) (1/64)mϕ[W (ξ, h/64)] ≤ sup
w∈W (ξ,h)∩D

Nϕ(w) ≤ 196 mϕ[W (ξ, 24 h)] ,

for 0 < h < (1 − |ϕ(0)|)/16.

Actually the above explicit constants are not relevant and we did not try to
have “best” constants. It can be shown that for every α > 1, there is a constant
Cα > 0 such that mϕ

(
S(ξ, h)

)
≤ Cα ν̃ϕ(ξ, αh) and ν̃ϕ(ξ, h) ≤ Cαmϕ

(
S(ξ, αh)

)

for 0 < h < (1 − |ϕ(0)|)/α, where S(ξ, h) is defined in (2.3) and ν̃(ξ, h) =
supw∈S(ξ,h)∩D

Nϕ(w) (see (3.29)).

We end the paper with some applications to composition operators on Hardy-
Orlicz spaces (which were introduced in [10]): we give generalizations of results
known in the classical case of Hardy spaces Hp, 1 ≤ p <∞, some of which have
already been mentioned in this introduction. We shall see that in the general
case of Hardy-Orlicz spaces, new difficulties occur with regard to the classical
case.

First, we characterize their compactness with the Nevalinna counting func-
tion and show the necessity of a boundary condition, analogous to the angular

derivative criterion of McCluer and Shapiro ([17]), which is sufficient when the
symbol is finitely-valent. We construct then a “slow” Blaschke product (gen-
eralizing [24], § 10.2 and [10], Proposition 5.5) showing that this condition is
not sufficient in general. We also construct a compact composition operator
Cϕ : HΨ → HΨ with surjective symbol ϕ, generalizing a result of B. McCluer
and J. Shapiro ([17], Example 3.12; see also the survey [21], § 2). We show
directly the equivalence of Luecking’s and Luecking-Zhu’s criteria ([14], [15])
for the membership of Cϕ : H2 → H2 in the Schatten classes. We finally give
a characterization of composition operators Cϕ : Hp → Hp, 1 ≤ p < ∞, with a
closed range, simpler than the former ones (see [5] and [28]).

2 Notation

We shall denote by D = {z ∈ C ; |z| < 1} the open unit disk of the complex
plane and by T = ∂D = {z ∈ C ; |z| = 1} its boundary; m will be the normalized
Lebesgue measure dt/2π on T, and A the normalized Lebesgue measure dxdy/π
on D. For every analytic self-map ϕ of D, mϕ will be the pull-back measure of
m by ϕ∗, where ϕ∗ is the boundary values function of ϕ.
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For every ξ ∈ T and 0 < h < 1, the Carleson window W (ξ, h) centered at ξ
and of size h is the set

(2.1) W (ξ, h) = {z ∈ D ; |z| ≥ 1 − h and | arg(zξ̄)| ≤ h}.

For convenience, we shall set W (ξ, h) = D for h ≥ 1.
For every analytic self-map ϕ of D, one defines the maximal function of mϕ,

for 0 < h < 1, by:

(2.2) ρϕ(h) = sup
ξ∈T

m
(
{ζ ∈ T ; ϕ∗(ζ) ∈W (ξ, h)}

)
= sup

ξ∈T

mϕ

(
W (ξ, h)

)
.

We have ρϕ(h) = 1 for h ≥ 1. We shall call this function ρϕ the Carleson

function of ϕ. For convenience, we shall often also use, instead of the Carleson
window W (ξ, h), the set

(2.3) S(ξ, h) = {z ∈ D ; |z − ξ| ≤ h},

which has an equivalent size.

The Nevanlinna counting function Nϕ is defined, for w ∈ ϕ(D) \ {ϕ(0)}, by

(2.4) Nϕ(w) =
∑

ϕ(z)=w

log
1

|z| ,

each term log 1
|z| being repeated according to the multiplicity of z, and Nϕ(w) =

0 for the other w ∈ D. Its maximal function will be denoted by

(2.5) νϕ(t) = sup
|w|≥1−t

Nϕ(w).

3 Proof of the main theorem

3.1 Majorizing the Nevanlinna counting function by the

Carleson function

The goal of this section is to prove:

Theorem 3.1 For every analytic self-map ϕ of D, one has, for every a ∈ D:

(3.1) Nϕ(a) ≤ 196mϕ

(
W (ξ, 12h)

)
,

for 0 < h < (1 − |ϕ(0)|)/4, where ξ = a
|a| and h = 1 − |a|.

In particular, for 0 < h < (1 − |ϕ(0)|)/4:

(3.2) νϕ(h) = sup
|a|≥1−h

Nϕ(a) ≤ 196 ρϕ(12h).
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Let us note that, since W (ζ, s) ⊆ W (ξ, 2t) whenever 0 < s ≤ t and ζ ∈
W (ξ, t) ∩ ∂D, we get from (3.1) that

(3.3) sup
w∈W (ξ,h)∩D

Nϕ(w) ≤ 196mϕ

(
W (ξ, 24h)

)
.

We shall first prove the following lemma.

Lemma 3.2 Let ϕ be an analytic self map of D. For every z ∈ D, one has, if

w = ϕ(z), ξ = w/|w| and h = 1 − |w| ≤ 1/4:

(3.4) mϕ

(
W (ξ, 12 h)

)
≥ mϕ

(
S(ξ, 6h)

)
≥ |w|

8
(1 − |z|) .

Proof. We may assume, by making a rotation, that w is real and positive:
3/4 ≤ w < 1.

Let:

(3.5) T (u) =
au+ 1

u+ a
,

where

a = w − 2

w
< −1 ,

so that T : D → D is analytic, and T (w) = w/2.
If Pz is the Poisson kernel at z, one has:

w

2
= T [ϕ(z)] =

∫

T

(T ◦ ϕ)∗Pz dm =

∫

T

Re [(T ◦ ϕ)∗]Pz dm.

Hence, if one sets:

E = {Re (T ◦ ϕ∗) ≥ w/4} = {Re [(T ◦ ϕ)∗] ≥ w/4},

one has:

w

2
≤

∫

E

Pz dm+
w

4

∫

Ec

Pz dm ≤
∫

E

Pz dm+
w

4

∫

D

Pz dm =

∫

E

Pz dm+
w

4
;

therefore: ∫

E

Pz dm ≥ w

4
·

Since

‖Pz‖∞ =
1 + |z|
1 − |z| ≤

2

1 − |z|
,

we get:

(3.6) m(E) ≥ w

8
(1 − |z|) .
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On the other hand, (3.5) writes

(3.7) u = T−1(U) =
aU − 1

a− U
;

hence:

|1 − u| = |a+ 1| |1 − U |
|a− U | ≤

2 |a+ 1|
|a− U | ·

But a < −1 is negative, so ReU ≥ w/4 implies that

|a− U | ≥ Re (U − a) ≥ w

4
− a =

2

w
− 3

4
w ≥ 5

4
·

Moreover, for w ≥ 3/4:

|a+ 1| = (1 − w)
( 2

w
+ 1

)
≤ 11

3
(1 − w) .

We get hence |1 − u| ≤ 6 h when (3.7) holds and ReU ≥ w/4.
It follows that:

(3.8) ϕ∗(E) ⊆ T−1({ReU ≥ w/4}) ⊆ S(1, 6h),

giving mϕ

(
W (1, 12h)

)
≥ mϕ

(
S(1, 6h)

)
≥ m(E).

Combining this with (3.6), that finishes the proof. �

Remark. Theorem 3.1 follows immediately when ϕ is univalent since then, for
|w| ≥ 3/4 and ϕ(z) = w:

Nϕ(w) = log
1

|z| ≈ (1 − |z|) . mϕ

(
W (1, 12h)

)
.

When proving the equivalence between the conditions ρϕ(h) = o (h), as
h→ 0, and Nϕ(w) = o (1 − |w|), as |w| → 1, J. S. Choa and H. O. Kim proved
(see [3], page 112) the following inequality, for every analytic self-map ϕ : D → D

and every w ∈ D, close enough to 1:

(3.9) Nϕ(w) ≤ (1 − |w|2)2
8|w|2

∫

∂D

1

|1 − w̄ϕ(z)|2 dm(z) .

This result follows from an Hilbertian method, viz. Littlewood-Paley’s iden-
tity:

(3.10) ‖f ◦ ϕ‖2
2 = |f ◦ ϕ(0)|2 + 2

∫

D

|f ′(w)|2Nϕ(w) dA(w)

for every f ∈ H2. With (3.9), one cannot go beyond the order 2; for instance,
we can deduce from (3.9) (see the proof of Theorem 3.1 below), that, for 0 <
h ≤ 1/2:

(3.11) sup
|w|=1−h

Nϕ(w) . h2

∫ 1/h2

0

ρϕ

( 1√
t

)
dt . h2 + h2

∫ 1

h

ρϕ(u)

u3
du.
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This is of course interesting only when the second term in the last sum is at most
of order h2, so, when the integral is bounded. Nevertheless, this result suffices
to show that Shapiro’s criterion of compactness for Cϕ : H2 → H2 is implied
by McCluer’s one. Moreover, when the pull-back measure mϕ is an α-Carleson
measure (i.e. ρϕ(h) ≤ C hα for some constant C > 0), with 1 ≤ α ≤ 2, we get

Nϕ(w) . h2 + h2

∫ 1

h

uα

u3
du . h2 + h2hα−2 . hα.

Recall ([11], Corollary 3.2) that, when mϕ is an α-Carleson measure, the compo-
sition operator Cϕ is in the Schatten class Sp on the Hardy space H2, for every
p > 2/(α− 1), and that mϕ is α-Carleson for every α ≥ 1 when Cϕ : HΨ → HΨ

is compact, if Ψ is an Orlicz function satisfying the growth condition ∆2 ([12],
Theorem 5.2).

But (3.11) does not suffice for the compactness of Cϕ : HΨ → HΨ on general
Hardy-Orlicz spaces (see [10]).

In order to prove Theorem 3.1, we shall replace the Littlewood-Paley identity,
by a more general formula, deduced from Stanton’s formula (see [7], Theorem 2).

Theorem 3.3 (Stanton’s formula) For every analytic self-map ϕ : D → D

and every subharmonic function G : D → R, one has:

(3.12) lim
r↑1

∫

∂D

G[ϕ(rξ)] dm(ξ) = G[ϕ(0)] +
1

2

∫

D

∆G(w)Nϕ(w) dA(w),

where ∆ is the distributional Laplacian.

Proof of Theorem 3.1. If a /∈ ϕ(D), one has Nϕ(a) = 0, and the result is
trivial. We shall hence assume that a ∈ ϕ(D).

Let Φ: [0,∞) → [0,∞) be an Orlicz function, that is a non-decreasing convex
function such that Φ(0) = 0 and Φ(∞) = ∞, and we assume that Φ′ is also
an Orlicz function. In other words, Φ′′ is an arbitrary non-negative and non-
decreasing function and Φ′(x) =

∫ x
0 Φ′′(t) dt and Φ(x) =

∫ x
0 Φ′(t) dt.

Let now f : D → C be an analytic function. We have, outside the zeroes of
f , by writing ∆Φ(|f |) = 4∂∂̄Φ(

√
|f |2):

(3.13) ∆Φ(|f |) =

[
Φ′′(|f |) +

Φ′(|f |)
|f |

]
|f ′|2.

We shall only use here that:

(3.14) ∆Φ(|f |) ≥ Φ′′(|f |) |f ′|2

(this is a not too crude estimate, since, Φ′ being an Orlicz function, Φ′′ is
non-negative and non-decreasing, and hence Φ′(x) =

∫ x
0 Φ′′(t) dt ≤ xΦ′′(x) and

Φ′(x) =
∫ x
0 Φ′′(t) dt ≥

∫ x
x/2 Φ′′(t) dt ≥ (x/2)Φ′′(x/2)).
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Set now, for a ∈ D:

(3.15) fa(z) =
1 − |a|
1 − āz

, z ∈ D.

Since Φ(|fa|) is subharmonic (Φ being convex and non-decreasing) and bounded,
we can use Stanton’s formula as:

(3.16)

∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

2

∫

D

Φ′′(|fa|) |f ′
a|2Nϕ dA.

Let h = 1 − |a|. For |z − a| < h, one has

|1 − āz| = |(1 − |a|2) + ā(a− z)| ≤ (1 − |a|2) + |a− z| ≤ 2h+ h = 3h;

Hence |fa(z)| ≥ h
3h = 1

3 for |z − a| < h. It follows, since Φ′′ is non-decreasing:

(3.17)

∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

2
Φ′′

(1

3

)∫

D(a,h)

|f ′
a|2Nϕ dA.

Now, if ϕa(z) = a−z
1−āz , one has |f ′

a(z)| = |a|
1+|a| |ϕ′

a(z)| ≥ 3
7 |ϕ′

a(z)| (we may, and

do, assume that 1 − |a| = h ≤ 1/4); hence:
∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

2
Φ′′

(1

3

) 9

49

∫

D(a,h)

|ϕ′
a|2Nϕ dA

=
9

98
Φ′′

(1

3

) ∫

ϕa(D(a,h))

Nϕa◦ϕ dA

(because Nϕa◦ϕ

(
ϕa(w)

)
= Nϕ(w) and ϕ−1

a = ϕa).

But ϕa
(
D(a, h)

)
⊇ D(0, 1/3): indeed, if |w| < 1/3, then w = ϕa(z), with

|a− z| =

∣∣∣∣
(1 − |a|2)w

1 − āw

∣∣∣∣ ≤ (1 − |a|2) |w|
1 − |w| < 2h

1/3

1 − 1/3
= h.

We are going now to use the sub-averaging property of the Nevanlinna func-
tion ([24], page 190, [25], § 4.6, or [27], Proposition 10.2.4): for every analytic
self-map ψ : D → D, one has

Nψ(w0) ≤
1

A(∆)

∫

∆

Nψ(w) dA(w) ,

for every disk ∆ of center w0 which does not contain ψ(0).
This will be possible thanks to the following:

Lemma 3.4 For 1 − |a| < (1 − |ϕ(0)|)/4, one has |(ϕa ◦ ϕ)(0)| > 1/3.

Proof. One has |1− ā ϕ(0)| ≤ (1− |a|2)+ |ā| |a−ϕ(0)| ≤ (1− |a|2)+ |a−ϕ(0)|;
hence:

|ϕa
(
ϕ(0)

)
| ≥ |a− ϕ(0)|

(1 − |a|2) + |a− ϕ(0)| ≥ 1 − 1 − |a|2
(1 − |a|2) + |a− ϕ(0)|

≥ 1 − 1 − |a|2
|a− ϕ(0)| ≥ 1 − 2

1 − |a|
|a− ϕ(0)| ·
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But when 1 − |a| < (1 − |ϕ(0)|)/4, one has:

|a− ϕ(0)| ≥ |a| − |ϕ(0)| = (1 − |ϕ(0)|) − (1 − |a|) > 3(1 − |a|) ,

and the result follows. �

Hence: ∫

D(0,1/3)

Nϕa◦ϕ dA ≥ 1

9
Nϕa◦ϕ(0) =

1

9
Nϕ(a),

and

(3.18)

∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

98
Φ′′

(1

3

)
Nϕ(a).

We now have to estimate from above
∫
∂D

Φ(|fa ◦ ϕ|) dm. For that, we shall
use the following easy lemma.

Lemma 3.5 For every ξ ∈ ∂D and every h ∈ (0, 1/2], one has:

(3.19) |1 − āz|2 ≥ 1

4
(h2 + |z − ξ|2) , ∀z ∈ D,

where a = (1 − h)ξ.

Proof. The result is rotation-invariant; so we may assume that ξ = 1 (and
hence a > 0). Write z = 1 − reiθ. Since |z| ≤ 1 if and only if r ≤ 2 cos θ, one
has cos θ ≥ 0 and hence |θ| ≤ π/2. Then:

|1 − āz|2 = |1 − a(1 − reiθ)|2 = |1 − a+ areiθ|2

= (1 − a)2 + a2r2 + 2ar(1 − a) cos θ

≥ (1 − a)2 + a2r2 ≥ 1

4
(h2 + r2) =

1

4
(h2 + |z − 1|2). �

Then:
∫

∂D

Φ(|fa ◦ ϕ|) dm =

∫

D

Φ

(
1 − |a|
|1 − āz|

)
dmϕ(z)

≤
∫

D

Φ

(
2h

(h2 + |z − ξ|2)1/2
)
dmϕ(z), by (3.19)

=

∫ +∞

0

mϕ

(
Φ

( 2h

(h2 + |z − ξ|2)1/2
)
≥ t

)
dt

=

∫ +∞

0

mϕ

(
(h2 + |z − ξ|2)1/2 ≤ 2h/Φ−1(t)

)
dt

=

∫ Φ(2)

0

mϕ

(
(h2 + |z − ξ|2)1/2 ≤ 2h/Φ−1(t)

)
dt ,
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since h ≤ (h2 + |z − ξ|2)1/2 ≤ 2h/Φ−1(t) implies t ≤ Φ(2). We get:

∫

∂D

Φ(|fa ◦ ϕ|) dm ≤
∫ Φ(2)

0

mϕ

(
|z − ξ| ≤ 2h/Φ−1(t)

)
dt .

We obtain from (3.18), by setting u = 2h/Φ−1(t):

Nϕ(a) ≤ 98

Φ′′(1/3)

∫ ∞

h

mϕ

(
S(ξ, u)

) 2h

u2
Φ′

(
2h

u

)
du ·

Since Φ′(x) ≤ xΦ′′(x), we get:

(3.20) Nϕ(a) ≤ 98

Φ′′(1/3)

∫ ∞

h

mϕ

(
S(ξ, u)

) 4h2

u3
Φ′′

(
2h

u

)
du.

We are going now to choose suitably the Orlicz function Φ. It suffices to
define Φ′′, for a ∈ D given (with ξ = a/|a| and h = 1−|a| ≤ 1/4). By Lemma 3.2,
since a ∈ ϕ(D), there is a constant c0 > 0, such that mϕ

(
S(ξ, c0h)

)
> 0; we can

hence set (note that mϕ

(
S(ξ, u)

)
≤ 1):

(3.21) Φ′′(v) =





1 if 0 ≤ v ≤ h ,
1

mϕ

(
S(ξ, 2h/v)

) if h ≤ v ≤ 2/c0 ,

1

mϕ

(
S(ξ, c0h)

) if v ≥ 2/c0 .

It is a non-negative non-decreasing function, so the assumptions made on Φ at
the beginning are satisfied. One has, since mϕ

(
S(ξ, u)

)
Φ′′(2h/u) ≤ 1:

∫ ∞

h

mϕ

(
S(ξ, u)

) 4h2

u3
Φ′′

(
2h

u

)
du ≤

∫ ∞

h

4h2

u3
du = 2.

Since c0 ≤ 6, one has h ≤ 1/3 ≤ 2/c0 and hence Φ′′(1/3) = 1/mϕ

(
S(ξ, 6h)

)
;

therefore (3.20) gives, for h ≤ (1 − |ϕ(0)|)/4:

(3.22) Nϕ(a) ≤ 196mϕ

(
S(ξ, 6h)

)
,

finishing the proof since S(ξ, 6h) ⊆W (ξ, 12h). �

3.2 Domination of the Carleson function by the Nevan-

linna function

We cannot expect to estimate individually from above the mϕ-measure of
Carleson windows centered at ξ = w/|w| by Nϕ(w), as in Theorem 3.1. In fact,
consider a conformal mapping ϕ from D onto D \ [0, 1[. One has Nϕ(t) = 0 for
every t ∈ [0, 1[, though mϕ

(
W (1, h)

)
> 0 for every h > 0 (because W (1, h) ⊃

W (eih/2, h/2) and mϕ

(
W (eih/2, h/2)

)
> 0 by Lemma 3.2).
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Let us give another example. Let ϕ(z) = (1 + z)/2. Then:

a) One has ϕ(eiθ) = (cos θ/2) eiθ/2 (with |θ| ≤ π). Hence ϕ(eiθ) ∈W (eiθ0 , h)
if and only if cos(θ/2) ≥ 1−h and |(θ/2)−θ0| ≤ h, i.e. 2(θ0−h) ≤ θ ≤ 2(θ0+h).

Now, 1−cos(θ/2) ≤ θ2/8, so the modulus condition is satisfied when θ2 ≤ 8h;
in particular when |θ| ≤ 2

√
h.

For θ0 =
√
h, mϕ

(
W (eiθ0 , h)

)
is bigger than the length of the interval

[−2
√
h, 2

√
h] ∩ [2(

√
h− h), 2(

√
h+ h)] = [2

√
h− 2h, 2

√
h] ,

that is 2h. Therefore mϕ

(
W (eiθ0 , h)

)
≥ 2h.

b) Let now w = ϕ(z). Write w = 1
2 + r eiζ with 0 ≤ r < 1/2. Then, writing

r = 1
2 − s, one has |z| = |2w − 1| = 2r and

Nϕ(w) = log
1

|z| = log
1

2r
= log

1

1 − 2s
≈ s.

Now, |w|2 = 1
4 + r2 + r cos ζ and

h ≈ 1 − |w|2 =
1

2
(1 − cos ζ) + s(1 + cos ζ) − s2 ≈ ζ2

4
+ 2s.

Writing ζ = s1/2α, one gets:
(i) for “small” ζ (i.e. 0 < α ≤ 1): h ≈ s, and so Nϕ(w) ≈ h;
(ii) for “large” (i.e. α ≥ 1): h ≈ s1/α, and so Nϕ(w) ≈ hα.

On the other hand, w = eiζ/2[(1 − s) cos(ζ/2) − is sin(ζ/2)]; hence, when s
goes to 0, one has

θw := argw =
ζ

2
+ arctan

[
s sin(ζ/2)

(1 − s) cos(ζ/2)

]
∼ ζ

2
≈ ζ .

For α ≥ 1, we have h ≈ s1/α = ζ2, i.e. ζ ≈
√
h. Then, choosing α > 1 such

that ζ = θ0, we obtain mϕ

(
W (w/|w|, h)

)
≈ h, though Nϕ(w) ≈ hα ≪ h.

One cannot hence dominate mϕ

(
W (w/|w|, h)

)
by Nϕ(w).

We can remark that, nevertheless, in either case, one has ρϕ(h) ≈ h and
νϕ(h) ≈ h.

We shall prove:

Theorem 3.6 For every analytic self-map ϕ : D → D, one has, for every ξ ∈
∂D:

(3.23) mϕ

(
W (ξ, h)

)
≤ 64 sup

w∈W (ξ,64h)∩D

Nϕ(w) ,

for 0 < h < (1 − |ϕ(0)|)/16.
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Proof. We shall set:

(3.24) νϕ(ξ, h) = sup
w∈W (ξ,h)∩D

Nϕ(w) .

Note that
νϕ(h) = sup

|ξ|=1

νϕ(ξ, h) ,

where νϕ is defined in (2.5)
If for some h0 > 0, one has νϕ(ξ, h0) = 0, then ϕ(D) ⊆ D \ W (ξ, h0),

and hence mϕ

(
W (ξ, h)

)
= 0 for 0 < h < h0. Therefore we shall assume that

νϕ(ξ, h) > 0. We may, and do, also assume that h ≤ 1/4. By replacing ϕ by eiθϕ,
it suffices to estimate mϕ

(
S(1, h)

)
(recall that S(1, t) = {z ∈ D ; |1 − z| ≤ t}).

We shall use the same functions fa as in the proof of Theorem 3.1, but, for
convenience, with a different notation. We set, for 0 < r < 1:

(3.25) u(z) =
1 − r

1 − rz
·

Let us take an Orlicz function Φ as in the beginning of the proof of Theo-
rem 3.1, which will be precised later. We shall take this function in such a way
that Φ

(
|u(ϕ(0))|

)
= 0.

Since Φ′(x) ≤ xΦ′′(x), (3.13) becomes:

(3.26) ∆Φ(|u|) ≤ 2Φ′′(|u|) |u′|2,

and Stanton’s formula writes, since Φ
(
|u(ϕ(0))|

)
= 0:

(3.27)

∫

∂D

Φ(|u ◦ ϕ|) dm ≤
∫

D

Φ′′
(
|u(w)|

)
|u′(w)|2 Nϕ(w) dA(w).

In all the sequel, we shall fix h, 0 < h ≤ 1/4, and take r = 1 − h.

For |z| ≤ 1 and |1−z| ≤ h, one has |1−rz| = |(1−z)+hz| ≤ |1−z|+h ≤ 2h,
so:

|u(z)| ≥ (1 − r)

2h
=

1

2
·

Hence:

mϕ

(
S(1, h)

)
≤ 1

Φ(1/2)

∫

S(1,h)

Φ
(
|u(z)|

)
dmϕ(z)

≤ 1

Φ(1/2)

∫

D

Φ
(
|u(z)|

)
dmϕ(z)

=
1

Φ(1/2)

∫

T

Φ
(
|(u ◦ ϕ)(z)|

)
dm(z) ,

and so, by (3.27):

(3.28) mϕ

(
S(1, h)

)
≤ 1

Φ(1/2)

∫

D

Φ′′
(
|u(z)|

)
|u′(z)|2Nϕ(z) dA(z).
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We are going to estimate this integral by separating two cases: |1 − z| ≤ h
and |1 − z| > h.

For convenience, we shall set:

(3.29) ν̃(t) = sup
w∈S(1,t)∩D

Nϕ(w) .

1) Remark first that

u′(z) =
rh

(1 − rz)2
,

and so:

|u′(z)| ≤ h

(1 − r)2
=

1

h
·

Since |u(z)| ≤ 1, we get hence:
∫

|1−z|≤h

Φ′′
(
|u(z)|

)
|u′(z)|2Nϕ(z) dA(z) ≤

∫

S(1,h)

Φ′′(1)
1

h2
ν̃(h) dA(z) ,

giving, since A
(
S(1, h)

)
≤ h2:

(3.30)

∫

|1−z|≤h

Φ′′
(
|u(z)|

)
|u′(z)|2Nϕ(z) dA(z) ≤ Φ′′(1) ν̃(h) .

2) For 0 < h ≤ 1/4, one has:

|u(z)| ≤ 2h

|1 − z| and |u′(z)| ≤ 2h

|1 − z|2 ;

indeed, we have (this is obvious, by drawing a picture):

|1 − rz| = r
∣∣∣1
r
− z

∣∣∣ ≥ r |1 − z| ,

and hence |1 − rz| ≥ 3
4 |1 − z|, since r = 1 − h ≥ 3/4. We obtain:

∫

|1−z|>h

Φ′′
(
|u(z)|

)
|u′(z)|2Nϕ(z) dA(z)

≤ 4

∫

|1−z|>h

Φ′′

(
2h

|1 − z|

)
h2

|1 − z|4Nϕ(z) dA(z).

Then, using polar coordinates centered at 1 (note that we only have to
integrate over an arc of length less than π), and the obvious inequality Nϕ(z) ≤
ν̃(|1 − z|), we get:

∫

|1−z|>h

Φ′′
(
|u(z)|

)
|u′(z)|2Nϕ(z) dA(z)(3.31)

≤ 4

∫ 2

h

Φ′′

(
2h

t

)
h2

t3
ν̃(t) dt .
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We now choose the Orlicz function as follows (with a = ϕ(0)):

(3.32) Φ′′(v) =





0 if 0 ≤ v ≤ h/(1 − |a|) ,
1

ν̃(2h/v)
if h/(1 − |a|) < v < 2 ,

1

ν̃(h)
if v ≥ 2 .

This function is non-negative and non-decreasing. Moreover, one has Φ(x) = 0
for 0 ≤ x ≤ h/(1 − |a|). Hence, since |u(a)| ≤ h

1−|a| , one has Φ
(
|u(a)|

)
= 0.

Then

∫ 2

h

Φ′′

(
2h

t

)
h2

t3
ν̃(t) dt =

∫ 2(1−|a|)

h

Φ′′

(
2h

t

)
h2

t3
ν̃(t) dt(3.33)

≤
∫ ∞

h

h2

t3
dt =

1

2
·

Now,

Φ
(1

2

)
=

∫ 1/2

0

Φ′(t) dt ≥
∫ 1/2

1/4

Φ′(t) dt ≥
∫ 1/2

1/4

t

2
Φ′′

( t
2

)
dt

≥ Φ′′
(1

8

)∫ 1/2

1/4

t

2
dt =

3

64
Φ′′

(1

8

)
.

When h < (1 − |a|)/8, one has 1/8 > h/(1 − |a|); hence Φ′′(1/8) = 1/ν̃(16h),
and Φ′′(1) = 1/ν̃(2h). We get hence, from (3.28), (3.30), (3.31) and (3.33):

(3.34) mϕ

(
S(1, h)

)
≤ 64

3
ν̃(16h)

[
ν̃(h)

ν̃(2h)
+ 2

]
≤ 64 ν̃(16h) .

Since W (1, t) ⊆ S(1, 2t), we get mϕ

(
W (1, h)

)
≤ 64 supw∈S(1,32h)Nϕ(w)

for 0 < h < (1 − |ϕ(0)|)/16, and that ends the proof of Theorem 3.6, since
S(1, 32h) ⊆W (1, 64h). �

Remark. A slight modification of the proof gives the following improvement,
if one allows a (much) bigger constant.

Theorem 3.7 There are universal constants C, c > 1 such that

mϕ

(
S(ξ, h)

)
≤ C

1

A
(
S(ξ, ch)

)
∫

S(ξ,ch)

Nϕ(z) dA(z)

for every analytic self-map ϕ : D → D, every ξ ∈ ∂D, and 0 < h < (1−|ϕ(0)|)/8.
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Proof. We are going to follow the proof of Theorem 3.6. We shall assume that
ξ = 1 and we set:

(3.35) I(t) =

∫

S(1,t)

Nϕ(z) dA(z) .

Then:
1) When |1 − z| < h, , we have, instead of (3.30):

∫

|1−z|<h

Φ′′
(
|u(z)|

)
|u′(z)|2Nϕ(z) dA(z) ≤

∫

S(1,h)

Φ′′(1)
1

h2
Nϕ(z) dA(z)(3.36)

= Φ′′(1)
1

h2
I(h) .

2) For |z − 1| ≥ h, we write:
∫

|1−z|≥h

Φ′′
(
|u(z)|

)
|u′(z)|2Nϕ(z) dA(z)

=

∞∑

k=1

∫

kh≤|1−z|<(k+1)h

Φ′′
(
|u(z)|

)
|u′(z)|2Nϕ(z) dA(z)

≤ 4

∞∑

k=1

Φ′′
(2h

kh

) h2

k4h4
I
(
(k + 1)h

)

= 4

∞∑

k=1

Φ′′
(2

k

) 1

k4h2
I
(
(k + 1)h

)
.

We take, with a = ϕ(0):

(3.37) Φ′′(v) =





0 if 0 ≤ v ≤ h/(1 − |a|) ,
1

I
(
( 2
v + 1)h)

) if v > h/(1 − |a|) .

Then

(3.38)

∫

|1−z|≥h

Φ′′
(
|u(z)|

)
|u′(z)|2Nϕ(z) dA(z) ≤ 4

h2

∞∑

k=1

1

k4
=

4

h2

π4

90
≤ 5

h2
·

Since h < (1−|a|)/8, one has 1/8 > h/(1−|a|); hence Φ′′(1/8) = 1
I(17h) and

Φ′′(1) = 1
I(3h) . Therefore:

mϕ

(
S(1, h)

)
≤ 64

3
I(17h)

[
1

h2

I(h)

I(3h)
+

5

h2

]

≤ 64

3
I(17h)

6

h2
= 128

I(17h)

h2

≤ 128 × 172 I(17h)

A
(
S(1, 17h)

) ,

ending the proof of Theorem 3.7. �
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4 Some consequences

4.1 Behaviour of the Nevanlinna counting function

In [10], we proved (Theorem 4.19) that the Carleson function of an an-
alytic self-map ϕ has the following property of regularity: mϕ

(
S(ξ, ε h)

)
≤

K εmϕ

(
S(ξ, h)

)
for 0 < h < 1 − |ϕ(0)|, 0 < ε < 1 and ξ ∈ ∂D, where K is

a universal constant. It follows from Theorem 1.1, (actually Theorem 3.1 and
Theorem 3.6) that:

Theorem 4.1 There exist a universal constant K > 0 such that, for every

analytic self-map ϕ of D, one has, for 0 < ε < 1:

(4.1) νϕ(ε t) ≤ K ενϕ(t) ,

for t small enough.

More precisely, for t small enough, one has, for every ξ ∈ ∂D:

(4.2) νϕ(ξ, ε t) ≤ K ενϕ(ξ, t) ,

where νϕ(ξ, s) = supw∈W (ξ,s)∩D
Nϕ(w).

Note that the two above quoted theorems give Theorem 4.1 a priori only for
0 < ε < 1/K; but if 1/K ≤ ε < 1, one has νϕ(ξ, ε t) ≤ νϕ(ξ, t) ≤ K ενϕ(ξ, t).

4.2 Compact composition operators

We shall end this paper with some consequences of Theorem 1.1 for compo-
sition operators. Recall that if Ψ is an Orlicz function, the Hardy-Orlicz space
is the space of functions f ∈ H1 whose boundary values are in the Orlicz space

LΨ(∂D,m). We proved in [10], Theorem 4.18 that, if Ψ(x)
x −→

x→∞
∞, the compo-

sition operator Cϕ : HΨ → HΨ is compact if and only if, for every A > 0, one
has ρϕ(h) = o

[
1/Ψ

(
AΨ−1(1/h)

)]
when h goes to 0. This remains true when

HΨ = H1. Hence Theorem 1.1 gives:

Theorem 4.2 Let ϕ : D → D be an analytic self-map and Ψ be an Orlicz func-

tion. Then the composition operator Cϕ : HΨ → HΨ is compact if and only if

(4.3) sup
|w|≥1−h

Nϕ(w) = o

(
1

Ψ
(
AΨ−1(1/h)

)
)
, as h→ 0 , ∀A > 0.

It should be noted, due to the arbitrary choice of A > 0, that (4.3) may be
replaced by

(4.4) sup
|w|≥1−h

Nϕ(w) ≤ 1

Ψ
(
AΨ−1(1/h)

) , ∀A > 0,
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for h ≤ hA, and this condition also writes, setting νϕ(h) = sup|w|≥1−hNϕ(w)
(see (2.5)):

(4.5) lim
h→0

Ψ−1(1/h)

Ψ−1
(
1/νϕ(h)

) = 0 .

It is known that if Cϕ : H2 → H2 is compact, then lim|z|→1
1−|ϕ(z)|

1−|z| = ∞,

and that this condition is sufficient when ϕ is univalent, or finitely-valent, but
not sufficient in general (see [17] and [24], § 3.2). It follows from Theorem 4.2
that an analogous result holds for Hardy-Orlicz spaces:

Theorem 4.3 Let ϕ : D → D be an analytic self-map, and Ψ be an Orlicz

function. Assume that the composition operator Cϕ : HΨ → HΨ is compact.

Then:

(4.6) lim
|z|→1

Ψ−1

[
1

1 − |ϕ(z)|

]

Ψ−1

[
1

1 − |z|

] = 0 .

Conversely, if ϕ is finitely-valent, then (4.6) suffices for Cϕ : HΨ → HΨ to be

compact.

Recall that the assumption “ϕ is finitely-valent” means that there is an
integer p ≥ 1 such that each w ∈ ϕ(D) is the image by ϕ of at most p elements
of D.

Proof. To get the necessity, we could use Theorem 4.2 and the fact that
1− |z| ≤ log 1

|z| ≤ Nϕ
(
ϕ(z)

)
; but we shall give a more elementary proof. Recall

thatHΨ is the bidual ofHMΨ, the closure ofH∞ in HΨ. Since Cϕ(H∞) ⊆ H∞,
Cϕ maps HMΨ into itself and Cϕ : HΨ → HΨ is the bi-adjoint of Cϕ : HMΨ →
HMΨ. We know that the evaluation δa : f ∈ HMΨ 7→ f(a) ∈ C has norm
≈ Ψ−1

(
1

1−|a|

)
([10], Lemma 3.11). This norm tends to infinity as |a| goes to 1;

hence δa/‖δa‖ −→
|a|→1

0 weak-star (because |δa(f)| = |f(a)| ≤ ‖f‖∞ for f ∈ H∞).

If Cϕ is compact, its adjoint C∗
ϕ also; we get hence ‖C∗

ϕ(δa/‖δa‖)‖ −→
|a|→1

0. But

C∗
ϕδa = δϕ(a). Therefore

Ψ−1

[
1

1 − |ϕ(a)|

]

Ψ−1

[
1

1 − |a|

] −→
|a|→1

0 .

Conversely, assume that (4.6) holds. For every A > 0, one has, for |z|
close enough to 1: Ψ−1

(
1

1−|z|

)
≥ AΨ−1

(
1

1−|ϕ(z)|

)
; in other words, one has:

1/Ψ
(
AΨ−1(1/1 − |ϕ(z)|)

)
≥ 1 − |z|. But, when ϕ is p-valent, and if w = ϕ(z)
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with |z| > 0 minimal, one has Nϕ(w) ≤ p log 1
|z| ≈ 1 − |z|. Since |z| → 1 as

|w| = |ϕ(z)| → 1 (otherwise, we should have a sequence (zn) converging to some
z0 ∈ D and ϕ(zn) would converge to ϕ(z0) ∈ D), we get sup|w|≥1−hNϕ(w) .

1/Ψ
(
AΨ−1(1/1 − |w|)

)
≤ 1/Ψ

(
AΨ−1(1/h)

)
, for h small enough. By Theo-

rem 4.2, with (4.4), that means that Cϕ is compact on HΨ. �

4.3 Slow Blaschke products

Without the assumption that ϕ is p-valent, condition (4.6) is no longer suf-
ficient to ensure the compactness of Cϕ : HΨ → HΨ. Indeed, we are going to
construct a Blaschke product satisfying (4.6), but whose associated composi-
tion operator is of course not compact on HΨ, as this is the case for every inner
function.

Theorem 4.4 Let δ : (0, 1) → (0, 1/2] be any function such that limt→0 δ(t) =
0. Then, there exists a Blaschke product B such that:

(4.7) 1 − |B(z)| ≥ δ(1 − |z|), for all z ∈ D.

Corollary 4.5 For every Orlicz function Ψ there exists a Blaschke product B
which satisfies

lim
|z|→1

Ψ−1

[
1

1 − |B(z)|

]

Ψ−1

[
1

1 − |z|

] = 0 .

though the composition operator CB : HΨ → HΨ is not compact.

Proof. CB is not compact since every compact composition operator should
satisfy |ϕ∗| < 1 a.e. (see [10], Lemma 4.8). It suffices then to chose δ(t) =
1/Ψ

(√
Ψ−1(1/t)

)
, which satisfies the hypothesis of Theorem 4.4. Moreover:

Ψ−1
(
1/δ(t)

)

Ψ−1(1/t)
=

1√
Ψ−1(1/t)

−→
t→0

0 ,

and condition (4.7) gives the result. �

Proof of Theorem 4.4. We shall essentially construct our Blaschke product
B as an infinite product of finite Blaschke products

∏

n

Bn ;

where each finite Blaschke product Bn has pn zeros equidistributed in the cir-
cumference of radius rn. That is, we will have, writing θk = 2πk/pn and
zk = rn eiθk , for k = 1, 2, . . . , pn:

(4.8) Bn(z) =

pn∏

k=1

|zk|
zk

zk − z

1 − zkz
=

pn∏

k=1

rn − e−iθkz

1 − rne−iθkz
.

We shall need the following estimate for the finite Blaschke product in (4.8).
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Lemma 4.6 Let p ∈ N, and 0 < r < 1. Consider the finite Blaschke product

(4.9) G(z) =

p∏

k=1

r − e−iθkz

1 − re−iθkz
,

where θk = 2kπ
p , for k = 1, 2, . . . , p.

(a) Then, for every z ∈ D with |z| = r,

(4.10) |G(z)| ≤ 2rp

1 + r2p
= 1 − (1 − rp)2

1 + r2p
·

(b) If besides we have p h ≤ 1/2, where h = 1 − r, we also have, for every

z ∈ D with |z| = r,

(4.11) |G(z)| ≤ 1 − (p h)2

2e
·

Let us continue the proof of the theorem. Define χ : (0, 1) → (0, 1] by:

(4.12) χ(x) = sup
t≤x

[
max{2δ(t),

√
t}

]
.

Then χ is non-decreasing, limx→0 χ(x) = 0 and limx→1 χ(x) = 1. We can find a
decreasing sequence (hn)n≥0 of point hn ∈ (0, 1), such that χ(hn) ≤ 2−n. This
sequence converges to 0; in fact,

√
hn ≤ χ(hn) ≤ 2−n, by (4.12), and hence:

(4.13) hn ≤ 2−2n .

We now define, for every n ∈ N, a positive integer pn, by:

(4.14) pn = min{p ∈ N ;
p2h2

n

2e
> 2−n }.

We have pn > 1 because h2
n/2e < h2

n ≤ 2−4n. So, for every n, we have
4(pn − 1)2 ≥ p2

n, and then:

(4.15) 4 · 2−n ≥ 4(pn − 1)2h2
n

2e
≥ p2

nh
2
n

2e
·

This yields, for n ≥ 7, that (pnhn)
2 ≤ 8e 2−n ≤ 1/4. Therefore pnhn ≤ 1/2,

and we can use the estimate in part (b) of Lemma 4.6.

Now, for n ≥ 7, let Bn be the finite Blaschke product defined by (4.8), where
rn = 1−hn. Using (b) in Lemma 4.6, the Maximum Modulus Principle and the
definition of pn in (4.14), we have:

(4.16) |Bn(z)| ≤ 1 − p2
nh

2
n

2e
< 1 − 2−n, for |z| ≤ rn.

Consider then the Blaschke product D defined by:

(4.17) D(z) =
∞∏

n=7

Bn(z).
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This product is convergent since, by (4.15), we have

∑
pn(1 − rn) =

∑
pnhn ≤

∑√
8e 2−n < +∞ .

Finally, take N ∈ N big enough to have rN6 < 1/2, and define

(4.18) B(z) = zN D(z).

Thus B is a Blaschke product, and, if |z| ≤ r6, we have, since δ(t) ≤ 1/2:

(4.19) |B(z)| ≤ |zN | ≤ rN6 < 1/2 ≤ 1 − δ(1 − |z|).

If 1 > |z| > r6, there exists k ≥ 7 such that rk ≥ |z| > rk−1. Therefore,
thanks to (4.16),

(4.20) |B(z)| ≤ |D(z)| ≤ |Bk(z)| ≤ 1 − 2−k.

On the other hand rk ≥ |z| > rk−1 implies hk ≤ 1 − |z| < hk−1, and so

(4.21) δ(1 − |z|) ≤ 1

2
χ(1 − |z|) ≤ 1

2
χ(hk−1) ≤ 2−k .

Combining (4.20) and (4.21) we get |B(z)| ≤ 1−δ(1−|z|), when 1 > |z| > r6.
From this and (4.19), Theorem 4.4 follows. �

Proof of Lemma 4.6. It is obvious that, for all a, z ∈ C,

p∏

k=1

(z − aeiθk) = zp − ap .

Using this we have:

(4.22) G(z) =

p∏

k=1

r − e−iθkz

1 − re−iθkz
=

p∏

k=1

z − reiθk

rz − eiθk
=

zp − rp

(rz)p − 1
·

Now, if |z| = r, we can write zp = rpu, for some u with |u| = 1. Then
|G(z)| = |T (u)|, where T is the Moebius transformation

T (u) =
rp(u − 1)

r2pu− 1
·

This transformation T maps the unit circle ∂D onto a circumference C. As T
maps the extended real line R∞ to itself, and ∂D is orthogonal to R∞ at the
intersection points 1 and −1, C is the circumference orthogonal to R∞ crossing
through the points T (1) = 0 and T (−1) = α. It is easy to see that |w| ≤ |α|,
for every w ∈ C; consequently:

|G(z)| ≤ sup
u∈∂D

|T (u)| = |T (−1)| =
2rp

1 + r2p
·
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This finishes the proof of the statement (a).

To prove part (b), observe that, 1 + r2p ≤ 2, and so, for |z| = r,

(4.23) |G(z)| ≤ 1 − (1 − rp)2

1 + r2p
≤ 1 − (1 − rp)2

2
·

Remember that r = 1 − h, so r ≤ e−h, and rp ≤ e−ph. Thus 1 − rp ≥ 1 − e−ph.
Now, if x ∈ [0, 1/2], we have, by the Mean Value theorem:

1 − e−x ≥ x√
e
·

Since p h ≤ 1/2, we can apply this last estimate to (4.23) to get, as promised,

|G(z)| ≤ 1 − (1 − e−ph)2

2
≤ 1 − p2h2

2e
,

and ending the proof of Lemma 4.6. �

Remark. The key point in the proof of Theorem 4.4 is the inequality (4.10)
in Lemma 4.6. This inequality may be viewed as a consequence of the strong
triangle inequality (applied to a = zp, b = rp and c = 0):

(4.24) d(a, b) ≤ d(a, c) + d(c, b)

1 + d(a, c) d(c, b)

for the pseudo-hyperbolic distance d(u, v) = |u−v|
|1−ūv| on D. Let us recall a proof

for the convenience of the reader: by conformal invariance, we may assume that
c = 0; then

1 − [d(a, b)]2 =
(1 − |a|2)(1 − |b|2)

|1 − āb|2 ≥ (1 − |a|2)(1 − |b|2)
(1 + |a| |b|)2 = 1 − [d(|a|,−|b|)]2 ,

so that

d(a, b) ≤ d(|a|,−|b|) =
|a| + |b|

1 + |a| |b|
,

proving (4.24), since d(a, 0) = |a| and d(0, b) = |b|.

4.4 A Compact composition operator with a surjective

symbol

A well-known result of J. H. Schwartz ([23], Theorem 2.8) asserts that
Cϕ : H∞ → H∞ is compact if and only if ‖ϕ‖∞ < 1. In particular, the com-
pactness of Cϕ : H∞ → H∞ prevents the surjectivity of ϕ. It may be therefore
to be expected that, the bigger Ψ, the more difficult it will be to obtain both
the compactness of Cϕ : HΨ → HΨ and the surjectivity of ϕ. Nevertheless, this
is possible, as says the following theorem, and the case H∞ appears really as a
singular case (corresponding to an “Orlicz” function which is discontinuous and
can take infinite values).

21



Theorem 4.7 For every Orlicz function Ψ, there exists a symbol ϕ : D → D

which is 4-valent and surjective and such that Cϕ : HΨ → HΨ is compact.

In the case of H2 (Ψ(x) = x2), B. McCluer and J. Shapiro ([17], Exam-
ple 3.12) gave an example based on the Riemann mapping theorem and on the
fact that, for a finitely valent symbol ϕ, we have the equivalence:

(4.25) Cϕ : H2 → H2 compact ⇐⇒ lim
|z|

<
→ 1

1 − |ϕ(z)|
1 − |z| = ∞.

A specific example is as follows. Take

(4.26) R =
{
z = x+ iy ∈ C ; x > 0 and

1

x
< y <

1

x
+ 4π

}
,

let g : D → R be a Riemann map and set ϕ = e−g. Then, ϕ is 2-valent,
ϕ(D) = D∗ (where D∗ = D \ {0}), and the validity of (4.25) is tested through
the use of the Julia-Carathéodory theorem (see [21] for details). To get a fully
surjective mapping ϕ1, just compose ϕ with a Blaschke product B of length 2:

ϕ1(z) = B ◦ ϕ, with B(z) = z
( z − α

1 − αz

)
, α ∈ D \ {0}.

Since Cϕ1
= Cϕ ◦ CB , we see that Cϕ1

is compact as well and we are done.

Here, we can no longer rely on the Julia-Carathéodory theorem. But we shall
use the following necessary and sufficient condition, in terms of the maximal
Carleson function ρϕ, which is valid for any symbol, finitely-valent or not (see
[10], Theorem 4.18, where a different, but equivalent, formulation is given):

(4.27) Cϕ : HΨ → HΨ compact ⇐⇒ lim
h

>
→ 0

Ψ−1(1/h)

Ψ−1
(
1/ρϕ(h)

) = 0 .

For the sequel, we shall set:

(4.28) ∆(h) =
Ψ−1(1/h)

Ψ−1
(
1/ρϕ(h)

) ·

Our strategy will be to elaborate on the previous example to produce a
(nearly) surjective ϕ such that ρϕ(h) is very small (depending on Ψ) for small
h. The tool will be the notion of harmonic measure for certain open sets of the
extended plane Ĉ = C ∪ {∞}, called hyperbolic (see [6], Definition 19.9.3); for
example, every conformal image of D is hyperbolic (see [6], Proposition 19.9.2
(d) and Theorem 19.9.7). If G is a hyperbolic domain and a ∈ G, the harmonic

measure of G at a is the probability measure ωG(a, . ) supported by ∂G (in this

section, the boundaries and the closures will be taken in Ĉ) such that:

u(a) =

∫

∂G

u(z) dωG(a, z)
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for each bounded and continuous function u on G, which is harmonic in G (see
[6], Definition 21.1.3). The harmonic measure at a of a Borel set A ⊆ ∂G will
be denoted by ωG(a,A). Clearly,

ωD(0, . ) = m,

the Haar measure (i.e. normalized Lebesgue measure) of ∂D.

R. Nevanlinna (see [6], Proposition 21.1.6) showed that harmonic measures
share a conformal invariance property. Namely, assume that G is a simply
connected domain, in which the Dirichlet problem can be solved (a Dirichlet

domain), and that there is τ : D → G which maps conformally D onto G and
maps ∂D onto ∂G, one has, if τ(0) = a:

(4.29) ωG(a,A) = m
(
τ−1(A)

)

for every Borel set A ⊆ ∂G. This explains why harmonic measures enter the
matter when we consider composition operators Cϕ for which mϕ = ϕ∗(m): mϕ

is, by (4.29), nothing but the harmonic measure of G at a.

A useful alternative way of defining the harmonic measure, due to S. Kaku-
tani, and completed by J. Doob (see [26], page 454, and [9], Appendix F,
page 477) is the following: Let (Bt)t>0 be the 2-dimensional Brownian motion
starting at a ∈ G (i.e. B0 = a), and τ be the stopping time defined by

(4.30) τ = inf{t > 0 ; Bt /∈ G} ;

we have:

(4.31) ωG(a,A) = Pa(Bτ ∈ A),

i.e. the harmonic measure of A at a is the probability that the Brownian motion
starting at a exits from G through the Borel set A ⊆ ∂G. The following lemma
will be basic for the construction of our example. We shall provide two proofs,
the second one being more illuminating.

Lemma 4.8 (Hole principle) Let G0 and G1 be two hyperbolic open sets and

H ⊆ ∂G0 a Borel set such that

G0 ⊆ G1 and ∂G0 ⊆ ∂G1 ∪H.

Then, for every a ∈ G0, we have the following inequality:

(4.32) ωG1
(a, ∂G1 \ ∂G0) ≤ ωG0

(a,H).

Proof 1. From [6], Corollary 21.1.14, with ∆ = ∂G0∩∂G1, one has ωG0
(a, δ) ≤

ωG1
(a,∆). But ∂G1 \ ∆ = ∂G1 \ ∂G0, and hence, since harmonic measures are

probability measures, ωG1
(a, ∂G1 \ ∂G0) = ωG1

(a, ∂G1 \ ∆) = 1 − ωG1
(a,∆) ≤

ωG0
(a,∆); we get the result since ∂G0 = H ∪∆, which implies 1 ≤ ωG0

(a,H)+
ωG0

(∆). �
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Proof 2. Let us define

(4.33) τ0 = inf{t > 0 ; Bt /∈ G0}, τ1 = inf{t > 0 ; Bt /∈ G1}

and

(4.34) E = {Bτ1 ∈ ∂G1 \ ∂G0}, F = {Bτ0 ∈ H}.

Inequality (4.32) amounts to proving that Pa(E) ≤ Pa(F ), which will follow
from the inclusion E ⊆ F . Suppose that the event E holds. Since G0 ⊆ G1,
one has τ0 ≤ τ1. The Brownian path (Bs)0≤s≤τ1 being continuous with B0 =
a ∈ G0, one has Bτ0 ∈ ∂G0 ⊆ ∂G1 ∪H . If we had Bτ0 ∈ ∂G1, we should have
Bτ0 /∈ G1, since G1 is open, and hence τ0 = τ1, since we know that τ0 ≤ τ1. But
then Bτ1 = Bτ0 ∈ ∂G0, contrary to the definition of E. Therefore, Bτ0 ∈ H and
F holds. �

We also shall need the following result (see [6], Proposition 21.1.17).

Proposition 4.9 (Continuity principle) If G is a hyperbolic open set and

a ∈ G, then the harmonic measure ωG(a, . ) is atomless.

Proof of Theorem 4.7. It will be enough to construct a 2-valent mapping
ϕ : D → D such that ϕ(D) = D∗ and Cϕ : HΨ → HΨ is compact. We can then
modify ϕ by the same trick as the one used by B. McCluer and J. Shapiro. Note
that every point in D∗ is the image by e−z of two distinct points of R, except
those which are the image of points of the hyperbola y = (1/x)+2π, which have
only one pre-image.

For a positive integer n, set

(4.35) bn =
1

4nπ
,

and let εn > 0 such that

(4.36)
Ψ−1(2/bn+1)

Ψ−1(1/εn)
≤ 1

n
·

We now modify the domain R, including “barriers” in it (not in the sense of
potential theory, nor of Perron!) in the following way.

Let, for every n ≥ 1, Mn be the intersection point of the horizontal line
y = 4πn and of the hyperbola y = (1/x) + 2π, that is Mn = 1

4πn−2π + 4πni.

Define inductively closed sets P+
n and P−

n , which are like small points of
swords (two segments and a piece of hyperbola), in the following way:

• The lower part of P+
n or P−

n is a horizontal segment of altitude 4nπ.

• Those two horizontal segments are separated by a small open horizontal
segment Hn whose middle is Mn.
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• The upper part of P+
n is a slant segment whose upper extremity c+n lies

on the hyperbola y = 1/x.

• The upper part of P−
n is a slant segment whose upper extremity c−n lies

on the hyperbola y = (1/x) + 4π.

• The curvilinear part of P+
n is supported by the hyperbola y = 1/x.

• The curvilinear part of P−
n is supported by the hyperbola y = (1/x)+4π.

• One has 4(n+ 1)π − Im c±n > 2π.

The size of the small horizontal holes will be determined inductively in the
following way. Fix once and for all a ∈ R such that Im a < 4π. Suppose that
H1, H2, . . . , Hn−1 have already been determined. Set

(4.37) Ωn =
{
z ∈ R \

⋃

j<n

(P+
j ∪ P−

j ) ; Im z < 4nπ
}
.

We can adjust Hn so small that

(4.38) ωΩn(a,Hn) ≤ εn.

Indeed, Ωn is bounded above by the horizontal segment [bn+4inπ, bn−1 +4inπ]
of middle, say, Mn, and if Hn = [Mn − δ,Mn + δ], we see that Hn decreases to
the singleton {Mn} as δ decreases to zero. Therefore, by Proposition 4.9, we
can adjust δ so as to realize (4.38).

We now define our modified open set Ω by the formula

(4.39) Ω = R \
⋃

n≥1

(P+
n ∪ P−

n ) =
⋃

n≥1

Ωn.

It is useful to observe that

(4.40) inf
w∈∂Ωn

Rew = bn .
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This is obvious by the way we defined the upper part of ∂Ωn.

Now, we can easily finish the proof. Fix h ≤ b1/2 and let n be the integer
such that

bn+1 < 2h ≤ bn .

Let g : D → Ω be a conformal mapping such that g(0) = a. Since ∂∞Ω is con-
nected, Caratheodory’s Theorem (see [19]) ensures that g can be continuously
extended from D onto Ω̂. Set ϕ = e−g. It is clear from the remark made at the
beginnig of the proof that ϕ(D) = D∗ and that ϕ is 2-valent. Moreover, Ω is
a Dirichlet domain (because each component of ∂Ω has more than one point:
see the comment after Definition 19.7.1 in [6]), so we can use the conformal
invariance. Then by (4.29), (4.38), (4.40) and by the hole principle, we see that,
if A = {Re g∗(eit) < 2h}:

ρϕ(h) ≤ mϕ({|z| > 1 − h}) = m({e−Re g∗(eit) > 1 − h})
= m({Re g∗(eit) < log(1/1 − h)})
≤ m({Re g∗(eit) < 2h}) = ωD(0, A)

= ωg(D)

(
g(0), g(A)

)
= ωΩ(a, {Rew < 2h})

≤ ωΩ(a, {Rew ≤ bn})
≤ ωΩ(a, ∂Ω \ ∂Ωn) ≤ ωΩn(a,Hn) ≤ εn.

It remains to observe that

∆(h) =
Ψ−1(1/h)

Ψ−1(1/ρϕ(h))
≤ Ψ−1(2/bn+1)

Ψ−1(1/εn)
≤ 1

n
≤ Ch ,

in view of (4.36) and of the choice of n, C being a numerical constant. We
should point out the fact that we applied the hole principle to the domains
G0 = Ωn and G1 = Ω and that this was licit because the assumptions of the
hole principle (in particular the inclusion ∂Ωn ⊆ ∂Ω ∪ Hn) are satisfied. We
have therefore proved that:

lim
h

>
→ 0

∆(h) = 0 ,

and this ends, as we already explained, the proof of Theorem 4.7. �

4.5 Composition operators in Schatten classes

In [14], D. Luecking characterized composition operators Cϕ : H2 → H2

which are in the Schatten classes, by using, essentially, the mϕ-measure of Car-
leson windows. Five years later, D. Luecking and K. Zhu ([15]) characterized
them by using the Nevanlinna counting function of ϕ. We shall see how our
principal result makes these two characterizations directly equivalent.

It will be convenient here to work with modified Carleson windows, namely:

Wn,j =

{
z ∈ D ; 1 − 2−n ≤ |z| ≤ 1 and

(2j − 1)π

2n
≤ arg z <

(2j + 1)π

2n

}
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(j = 0, 1, . . . , 2n − 1, n = 1, 2, . . .). We shall say that Wn,j is the Carleson
window centered at e2πij/2n

with size 2−n.

Theorem 4.10 For p > 0 the two following conditions are equivalent:

a)
Nϕ(z)

log(1/|z|) ∈ Lp/2(λ) , where dλ(z) = (1 − |z|)−2 dA(z) and A is the

normalized area measure on D;

b)
∞∑

n=1

2n−1∑

j=0

[
2nmϕ(Wn,j)

]p/2
<∞ .

Condition b) in the last theorem yields that limn→∞ maxj 2nmϕ(Wn,j) = 0,
and it is not difficult to see that this implies that mϕ(∂D) = 0, or equivalently,
that |ϕ∗| < 1 almost evereywhere on ∂D. In this situation we know ([11],
Proposition 3.3) that b) in Theorem 4.10 is equivalent to Luecking’s condition
in [14]. In fact the characterization of belonging to a Schatten class in [14]
includes the requirement mϕ(∂D) = 0.

Proof. We may, and do, assume that ϕ(0) = 0.

1) Assume first that condition b) is satisfied. Let

Rn,j =
{
z ∈ D ; 1−2−n ≤ |z| < 1−2−n−1 and

(2j − 1)π

2n
≤ arg z <

(2j + 1)π

2n

}

be the (disjoint) Luecking windows (0 ≤ j ≤ 2n − 1, n ≥ 0). One has Rn,j ⊆
Wn,j .

By Theorem 3.1, there are a constant C > 0 and an integer K such that
Nϕ(z) ≤ Cmϕ(W̃n,j), for every z ∈ Rn,j , where W̃n,j is the window cen-
tered at e2πij/2n

, as Wn,j , but with size 2K−n. The windows Wn−K,j , j =

0, 1, . . . , 2n−K −1, have the same size as the windows W̃n,j , but may have a dif-

ferent center; nevertheless, each W̃n,j can be covered with two windows Wn−K,l:

for n > K, W̃n,j ⊆Wn−K,l∪Wn−K,l+1, for some l = 1, 2, . . . , 2n−K (where l+1
is understood as 0 if l = 2n−K − 1), we get (we shall use . to mean ≤ up to a
constant):

∫

D

(
Nϕ(z)

)p/2

(1 − |z|) p
2
+2

dA(z) ≤
∑

n,j

∫

Rn,j

(2n)
p
2
+2

(
Nϕ(z)

)p/2
dA(z)

.
∑

n,j

∫

Rn,j

(2n)
p
2
+2

(
mϕ(W̃n,j)

)p/2
dA(z)

.
∑

n,j

(2n)p/2
(
mϕ(W̃n,j)

)p/2

.
∑

ν,l

(2ν)p/2
(
mϕ(Wν,l)

)p/2
<∞,

and a) holds.
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2) Conversely, assume that a) is satisfied. We shall use the following in-
equality, whose proof will be postponed (for p ≥ 2, (4.41) follows directly from
Theorem 3.7 and Hölder’s inequality):

(4.41) [mϕ(Wn,j)]
p/2 .

1

A(W̃n,j)

∫

fWn,j

[Nϕ(z)]p/2 dA(z) ,

where W̃n,j is a window with the same center as Wn,j but with a bigger pro-
portional size; say of size 2−n+L. We get

∑

n,j

[2nmϕ(Wn,j)]
p/2 .

∑

n,j

2np/2 22n

∫

fWn,j

[Nϕ(z)]p/2 dA(z)

=

∫

D

( ∑

n

2n(2+ p
2
)
[∑

j

1IfWn,j
(z)

])
[Nϕ(z)]p/2 dA(z) .

Let k = 0, 1, . . . such that 1 − 2−k+1 < |z| ≤ 1 − 2−k. One has z ∈ W̃n,j only

if n ≤ k + L, and then, for each such n, z is at most in 2L windows W̃n,j . It
follows that

∑

n

2n(2+ p
2
)
∑

j

1IfWn,j
(z) ≤ 2(k+L+1)(2+ p

2
) × 2L .

But |z| ≥ 1 − 2−k+1 implies 2(k+L+1)(2+ p
2
) ≤ Cp/(1 − |z|)2+ p

2 ; hence:

∑

n,j

[2nmϕ(Wn,j)]
p/2 .

∫

D

[Nϕ(z)]p/2

(1 − |z|) p
2
+2

dA(z) <∞ ,

and b) holds.

It remains to show (4.41).
By Theorem 3.6, we can find a window W with the same center as Wn,j ,

but with greater size ch (h = 2−n is the size of the window Wn,j), such that

mϕ(Wn,j) . sup
w∈W

Nϕ(w).

There is hence some w0 ∈W such that

mϕ(Wn,j) . Nϕ(w0).

Take R = |w0| + ch (one has R ≥ 1 since w0 ∈ W and W has size ch) and
set ϕ0(z) = ϕ(z)/R. One has Nϕ0

(z) = Nϕ(Rz) for |z| < 1/R and Nϕ0
(z) = 0

if |z| ≥ 1/R.
Let now u be the upper subharmonic regularization of Nϕ0

([15], Lemma 1,
and its proof page 1140): u is a subharmonic function on D \ {0} such that
u ≥ Nϕ0

and u = Nϕ0
almost everywhere, with respect to dA.
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A result of C. Fefferman and E. M. Stein ([8], Lemma 2), generously at-
tributed by them to Hardy and Littlewood, asserts that for any q > 0, there
exists a constant C = C(q) such that

(4.42) [u(a)]q ≤ C

A
(
D(a, r)

)
∫

D(a,r)

[u(z)]q dA(z)

for every nonnegative subharmonic function u on a domain G and every disk
D(a, r) ⊆ G (see also [15], Lemma 3).

If ∆ is the disk centered at w0/R and of radius 1−|w0|/R (which is contained
in D \ {0} since R > |w0|), one has, by (4.42):

[Nϕ(w0)]
p/2 = [Nϕ0

(w0/R)]p/2 ≤ [u(w0/R)]p/2

≤ C

A(∆)

∫

∆

[u(z)]p/2 dA(z)

=
C

A(∆)

∫

∆

[Nϕ0
(z)]p/2 dA(z)

=
C

A(∆)

∫

∆∩D(0,1/R)

[Nϕ(Rz)]p/2 dA(z)

=
C

A(∆̃)

∫

∆̃∩D

[Nϕ(w)]p/2 dA(w) ,

where ∆̃ = D(w0, R− |w0|) = D(w0, ch).
Since the center w0 of ∆̃ is in D, ∆̃ ∩ D contains more than a quarter of

∆̃ (at least for ch ≤ 1), and hence A(∆̃ ∩ D) ≥ A(∆̃)/4 = c2h2/4π. Now,
let W̃n,j be the window with the same center as Wn,j and of size 2ch. Since

2ch ≥ ch + (1 − |w0|), W̃n,j contains ∆̃ ∩ D and A(W̃n,j) ≈ h2 ≈ A(∆̃) (≈
meaning that the ratio is between two absolute constants). We therefore get:

[Nϕ(w0)]
p/2 .

1

A(W̃n,j)

∫

W̃n,j

[Nϕ(w)]p/2 dA(w) ,

proving (4.41). �

4.6 Composition operators with closed range

In [5], J. Cima, J. Thomson and W. Wogen gave a characterization of com-
position operators Cϕ : Hp → Hp with closed range. This characterization
involves the Radon-Nikodym derivative of the restriction to ∂D of mϕ. They
found it not satisfactory, and asked a characterization with the range of ϕ itself.
N. Zorboska ([28]) gave such a characterization, but her statement is somewhat
complicated. We shall give here more explicit characterizations, either in terms
of the Nevanlinna counting function Nϕ, or in terms of the Carleson measure
mϕ.
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Theorem 4.11 Let ϕ : D → D be a non-constant analytic self map. Then the

composition operator Cϕ : Hp → Hp, 1 ≤ p <∞, has a closed range if and only

if there is a constant c > 0 such that, for 0 < h < 1,

(4.43)
1

A
(
S(ξ, h)

)
∫

S(ξ,h)

Nϕ(z) dA(z) ≥ c h , ∀ξ ∈ ∂D .

Theorem 4.11 will follow immediately from the next theorem, applied to
µ = mϕ, and from Theorem 3.7.

Theorem 4.12 Let µ be a finite positive measure on D. Assume that the canon-

ical map J : Hp → Lp(µ) is continuous, 1 ≤ p < ∞. Then J is one-to-one

and has a closed range if and only if there is a constant c > 0 such that, for

0 < h < 1,

(4.44) µ
[
W (ξ, h)

]
≥ c h , ∀ξ ∈ ∂D .

Proof. 1) Assume that J has a closed range. By making a rotation on the
variable z, we only have to find a constant c > 0 such that

(4.45) µ(Sh) ≥ c h ,

for h > 0 small enough, where Sh = S(1, h).
Since J is one-to-one, there is a constant C > 0 such that

(4.46) ‖f‖pLp(µ) ≥ Cp ‖f‖pp , ∀f ∈ Hp.

We are going to test (4.46) on

(4.47) fN(z) =

(
1 + z

2

)N
.

It is classical that there is a constant cp > 0 such that

(4.48) ‖fN‖pp =

∫ π

−π

∣∣ cos
t

2

∣∣pN dt ≥ cp√
N

·

Now, since |z + 1|2 + |z − 1|2 = 2(|z|2 + 1) ≤ 4 for every z ∈ D, one has

|fN(z)| ≤
(
1 − |z − 1|2

4

)N/2
≤ e−

N
8

|z−1|2 .

Hence, using |fN(z)| ≤ 1 when |z − 1| ≤ h, one has

‖fN‖pLp(µ) ≤ µ(Sh) +

∫

|z−1|>h

e−p
N
8

|z−1|2 dµ

= µ(Sh) +

∫ e−pNh2/8

0

µ
(
{e−pN

8
|z−1|2 > u}

)
du ,
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that is, making the change of variable u = e−p
N
8
x2

,

‖fN‖pLp(µ) ≤ µ(Sh) +

∫ ∞

h

µ({|z − 1| ≤ x}) pN
4
x e−p

N
8
x2

dx .

Now, the continuity of J means, by Carleson’s Theorem, that there is a
constant K > 0 such that

(4.49) sup
|ξ|=1

µ
(
S(ξ, x)

)
≤ K x , 0 ≤ x < 1 .

We get hence:

‖fN‖pLp(µ) ≤ µ(Sh) +

∫ ∞

h

K x
pN

4
x e−p

N
8
x2

dx

= µ(Sh) +
K
√

8√
p

1√
N

∫ ∞

h
√

pN
8

y2 e−y
2

dy .

We take now for N the smaller integer > 1/h2, multiplied by some constant
integer ap, large enough to have

K
√

8√
p

∫ ∞

√
p ap
8

y2 e−y
2

dy ≤ cpC
p

2
·

We get then, from (4.46) and (4.48):

µ(Sh) ≥
Cp cp

2

1√
N

,

which gives (4.45).

2) Conversely, assume that (4.44) holds. Since the disk algebra A(D) is
dense in Hp, it suffices to show that there exists a constant C > 0 such that
‖f‖Lp(µ) ≥ C ‖f‖p for every f ∈ A(D).

Let f ∈ A(D) such that ‖f‖p = 1. Choose an integer N such that

1

N

N∑

n=1

|f(e2πin/N )|p ≥ 1

2

∫

∂D

|f(ξ)|p dm(ξ) =
1

2
,

and such that, due to the uniform continuity of f ,

z, z′ ∈ D and |z − z′| ≤ 2π

N
=⇒ |f(z) − f(z′)| ≤ 1

2(p+1)/p
·

Then, setting Wn = W (e2πin/N , π/N), 1 ≤ n ≤ N , one has

‖f‖pLp(µ) =

∫

D

|f |p dµ ≥
N∑

n=1

∫

Wn

|f |p dµ .
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If we choose zn ∈ Wn such that |f(zn)| = minz∈Wn |f(z)|, we get, using (4.44):

‖f‖pLp(µ) ≥
N∑

n=1

|f(zn)|p µ(Wn) ≥ cπ

N

N∑

n=1

|f(zn)|p .

Since Ap ≤ 2p−1[(A−B)p +Bp], by Hölder’s inequality, one has

|f(zn)|p ≥
1

2p−1
|f(e2πin/N )|p − |f(zn) − f(e2πin/N )|p

and hence

‖f‖pLp(µ) ≥
cπ

N

N∑

n=1

[
1

2p−1
|f(e2πin/N )|p − |f(zn) − f(e2πin/N )|p

]
.

Now, since zn ∈ Wn, one has

|zn − e2πin/N | ≤
∣∣∣∣zn − zn

|zn|

∣∣∣∣ +

∣∣∣∣
zn
|zn|

− e2πin/N

∣∣∣∣ ≤
π

N
+
π

N
=

2π

N
;

therefore |f(zn) − f(e2πin/N )| ≤ 1/2p+1 and we get:

‖f‖pLp(µ) ≥ cπ

[
1

N

N∑

n=1

1

2p−1
|f(e2πin/N )|p − 1

2p+1

]

≥ cπ
( 1

2p−1

1

2
− 1

2p+1

)
=

cπ

2p+1
·

That ends the proof of Theorem 4.12. �

Remark. To make the link with Cima-Thomson-Wogen’s criterion, we shall
see that condition 4.44 implies that the restriction of µ to the boundary T = ∂D

of the disk dominates the Lebesgue measure m. In fact, let I be an arc of T. If
m(I) = h, we can write

I =
⋂

n≥1

n⋃

j=1

W (ξn,j , h/2n) ,

with disjoint windows W (ξn,1, h/2n), . . . ,W (ξn,n, h/2n); hence

µ(I) = lim
n→∞

n∑

j=1

µ[W (ξn,j , h/2n)] ≥ c

n∑

j=1

h

2n
=
c

2
h .
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Fédération CNRS Nord-Pas-de-Calais FR 2956,
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