
HAL Id: hal-00375955
https://hal.science/hal-00375955v1

Preprint submitted on 16 Apr 2009 (v1), last revised 17 Dec 2009 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nevanlinna counting function and Carleson function of
analytic maps

Pascal Lefèvre, Daniel Li, Hervé Queffélec, Luis Rodriguez-Piazza

To cite this version:
Pascal Lefèvre, Daniel Li, Hervé Queffélec, Luis Rodriguez-Piazza. Nevanlinna counting function and
Carleson function of analytic maps. 2009. �hal-00375955v1�

https://hal.science/hal-00375955v1
https://hal.archives-ouvertes.fr


Nevanlinna counting function and

Carleson function of analytic maps
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April 16, 2009

Abstract. We show that the maximal Nevanlinna counting function and the

Carleson function of analytic self-maps of the unit disk are equivalent, up to

constants.

Mathematics Subject Classification. Primary: 30C80 – Secondary: 47B33;
47B10

Key-words. Carleson function – Carleson measure – composition operator –
Nevanlinna counting function

1 Introduction

Carleson measures and Nevanlinna counting function are two classical con-
cepts in Complex analysis. Carleson measures appeared when L. Carleson ([1],
[2]) characterized measures µ on the closed unit disk D for which there is a
constant C > 0 such that ‖f‖Lp(µ) ≤ C ‖f‖Hp , for every f in the Hardy space
Hp, 0 < p < ∞: µ is such a measure if and only if sup|ξ|=1 µ[W (ξ, h)] = O (h),
where W (ξ, h) is the Carleson window of size h centered at ξ. This supremum
is called the Carleson function ρµ of µ. If ϕ is an analytic self-map of D and
µ = mϕ is the image by ϕ∗, the boundary values function of ϕ, of the Lebesgue
measure on the circle, ρϕ = ρµ is said to be the Carleson function of ϕ. Nevan-
linna counting function traces back earlier, and Littlewood ([9]) used it when
he showed that, for every analytic self-map ϕ of D, the composition operator
f 7→ f ◦ ϕ is continuous on Hp (which means that mϕ is a Carleson measure).

Compact composition operators on H2 have been characterized in terms of
the Carleson function of their symbol ϕ: ρϕ(h) = o (h), as h→ 0, by B. McCluer
([10]), and in terms of the Nevanlinna counting function Nϕ of this symbol:
Nϕ(w) = o (1 − |w|), as |w| → 1, by J. Shapiro ([13]). There should therefore
exist a link between these two quantities. Some results in this direction had been
given: B. R. Choe ([4]) showed that lim suph→0(ρϕ(h)/h)1/2 is equivalent, up to
constants, to the distance of Cϕ to the space of compact operators on H2; since
J. Shapiro proved ([13]) that this distance is lim sup|w|→1(Nϕ(w)/ log |w|)1/2,
one gets that lim sup|w|→1Nϕ(w)/ log |w| ≈ lim suph→0 ρϕ(h)/h. Later, J. S.
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Choa and H. O. Kim ([3]) gave a somewhat direct proof of the equivalence
of the two above conditions, without using the properties of the composition
operator, but without giving explicitly a direct relation between them.

In this paper, we show that the Nevanlinna counting function and the Car-
leson function are equivalent in the following sense:

Theorem 1.1 There exist some universal constants C, c > 1, such that, for

every analytic self-map ϕ : D → D, one has:

(1.1) (1/C) ρϕ(h/c) ≤ sup
|w|≥1−h

Nϕ(w) ≤ C ρϕ(c h),

for 0 < h < 1 small enough.

More precisely, for every ξ ∈ ∂D, one has:

(1.2) (1/64)mϕ[W (ξ, h/64)] ≤ sup
w∈W (ξ,h)∩D

Nϕ(w) ≤ 196 mϕ[W (ξ, 24 h)] ,

for 0 < h < (1 − |ϕ(0)|)/16.

2 Notation

We shall denote by D = {z ∈ C ; |z| < 1} the open unit disc of the complex
plane and by T = ∂D = {z ∈ C ; |z| = 1} its boundary; m will be the normalized
Lebesgue measure dt/2π on T, and A the normalized Lebesgue measure dxdy/π
on D. For every analytic self-map ϕ of D, mϕ will be the pull-back measure of
m by ϕ∗, where ϕ∗ is the boundary values function of ϕ.

For every ξ ∈ T and 0 < h < 1, the Carleson window W (ξ, h) is the set

(2.1) W (ξ, h) = {z ∈ D ; |z| ≥ 1 − h and | arg(zξ̄)| ≤ h}.
For convenience, we shall set W (ξ, h) = D for h ≥ 1.

For every analytic self-map ϕ of D, one defines the maximal function of mϕ,
for 0 < h < 1, by:

(2.2) ρϕ(h) = sup
ξ∈T

m
(

{ζ ∈ T ; ϕ∗(ζ) ∈W (ξ, h)}
)

= sup
ξ∈T

mϕ

(

W (ξ, h)
)

.

We have ρϕ(h) = 1 for h ≥ 1. We shall call this function ρϕ the Carleson

function of ϕ. For convenience, we shall often also use, instead of the Carleson
window W (ξ, h), the set S(ξ, h) = {z ∈ D ; |z−ξ| ≤ h}, which has an equivalent
measure.

The Nevanlinna counting function Nϕ is defined, for w ∈ ϕ(D) \ {ϕ(0)}, by

(2.3) Nϕ(w) =
∑

ϕ(z)=w

log
1

|z| ,

each term log 1
|z| being repeated according to the multiplicity of z, and Nϕ(w) =

0 for the other w ∈ D. Its maximal function will be denoted by

(2.4) νϕ(t) = sup
|w|≥1−t

Nϕ(w).
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3 Majorizing the Nevanlinna counting function

by the Carleson function

The goal of this section is to prove:

Theorem 3.1 For every analytic self-map ϕ of D, one has, for every a ∈ D:

(3.1) Nϕ(a) ≤ 196mϕ

(

W (ξ, 12h)
)

,

for 0 < h < (1 − |ϕ(0)|)/4, where ξ = a
|a| and h = 1 − |a|.

In particular, for 0 < h < (1 − |ϕ(0)|)/4:

(3.2) νϕ(h) = sup
|a|≥1−h

Nϕ(a) ≤ 196 ρϕ(12h).

Let us note that, since W (ζ, s) ⊆ W (ξ, 2t) whenever 0 < s ≤ t and ζ ∈
W (ξ, t) ∩ ∂D, we get from (3.1) that

(3.3) sup
w∈W (ξ,h)∩D

Nϕ(w) ≤ 196mϕ

(

W (ξ, 24h)
)

.

We shall first prove the following lemma.

Lemma 3.2 Let ϕ be an analytic self map of D. For every z ∈ D, one has, if

w = ϕ(z), ξ = w/|w| and h = 1 − |w| ≤ 1/4:

(3.4) mϕ

(

W (ξ, 12 h)
)

≥ mϕ

(

S(ξ, 6h)
)

≥ |w|
8

(1 − |z|) .

Proof. We may assume, by making a rotation, that w is real and positive:
3/4 ≤ w < 1.

Let:

(3.5) T (u) =
au+ 1

u+ a
,

where

a = w − 2

w
< −1 ,

so that T : D → D is analytic, and T (w) = w/2.
If Pz is the Poisson kernel at z, one has:

w

2
= T [ϕ(z)] =

∫

T

(T ◦ ϕ)∗Pz dm =

∫

T

Re [(T ◦ ϕ)∗]Pz dm.

Hence, if one sets:

E = {Re (T ◦ ϕ∗) ≥ w/4} = {Re [(T ◦ ϕ)∗] ≥ w/4},
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one has:

w

2
≤

∫

E

Pz dm+
w

4

∫

Ec

Pz dm ≤
∫

E

Pz dm+
w

4

∫

D

Pz dm =

∫

E

Pz dm+
w

4
;

therefore:
∫

E

Pz dm ≥ w

4
·

Since

‖Pz‖∞ =
1 + |z|
1 − |z| ≤

2

1 − |z|
,

we get:

(3.6) m(E) ≥ w

8
(1 − |z|) .

On the other hand, (3.5) writes

(3.7) u = T−1(U) =
aU − 1

a− U
;

hence:

|1 − u| = |a+ 1| |1 − U |
|a− U | ≤

2 |a+ 1|
|a− U | ·

But a < −1 is negative, so ReU ≥ w/4 implies that

|a− U | ≥ Re (U − a) ≥ w

4
− a =

2

w
− 3

4
w ≥ 5

4
·

Moreover, for w ≥ 3/4:

|a+ 1| = (1 − w)
( 2

w
+ 1

)

≤ 11

3
(1 − w) .

We get hence |1 − u| ≤ 6 h when (3.7) holds and ReU ≥ w/4.
It follows that:

(3.8) ϕ∗(E) ⊆ T−1({ReU ≥ w/4}) ⊆ S(1, 6h),

giving mϕ

(

W (1, 12h)
)

≥ mϕ

(

S(1, 6h)
)

≥ m(E).

Combining this with (3.6), that finishes the proof. �

Remark. Theorem 3.1 follows immediately when ϕ is univalent since then, for
|w| ≥ 3/4 and ϕ(z) = w:

Nϕ(w) = log
1

|z| ≈ (1 − |z|) . mϕ

(

W (1, 12h)
)

.

When proving the equivalence between the conditions ρϕ(h) = o (h), as
h→ 0, and Nϕ(w) = o (1 − |w|), as |w| → 1, J. S. Choa and H. O. Kim proved
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(see [3], page 112) the following inequality, for every analytic self-map ϕ : D → D

and every w ∈ D, close enough to 1:

(3.9) Nϕ(w) ≤ (1 − |w|2)2
8|w|2

∫

∂D

1

|1 − w̄ϕ(z)|2 dm(z) .

This result follows from an Hilbertian method, viz. Littlewood-Paley’s iden-
tity:

(3.10) ‖f ◦ ϕ‖2
2 = |f ◦ ϕ(0)|2 + 2

∫

D

|f ′(w)|2Nϕ(w) dA(w)

for every f ∈ H2. With (3.9), one cannot go beyond the order 2; for instance,
we can deduce from (3.9) (see the proof of Theorem 3.1 below), that, for 0 <
h ≤ 1/2:

(3.11) sup
|w|=1−h

Nϕ(w) . h2

∫ 1/h2

0

ρϕ

( 1√
t

)

dt . h2 + h2

∫ 1

h

ρϕ(u)

u3
du.

This is of course interesting only when the second term in the last sum is at most
of order h2, so, when the integral is bounded. Nevertheless, this result suffices
to show that Shapiro’s criterion of compactness for Cϕ : H2 → H2 is implied
by McCluer’s one. Moreover, when the pull-back measure mϕ is an α-Carleson
measure (i.e. ρϕ(h) ≤ C hα for some constant C > 0), with 1 ≤ α ≤ 2, we get

Nϕ(w) . h2 + h2

∫ 1

h

uα

u3
du . h2 + h2hα−2 . hα.

Recall ([7], Corollary 3.2) that, when mϕ is an α-Carleson measure, the compo-
sition operator Cϕ is in the Schatten class Sp on the Hardy space H2, for every
p > 2/(α− 1), and that mϕ is α-Carleson for every α ≥ 1 when Cϕ : HΨ → HΨ

is compact, if Ψ is an Orlicz function satisfying the growth condition ∆2 ([8],
Theorem 5.2).

But (3.11) does not suffice for the compactness of Cϕ : HΨ → HΨ on general
Hardy-Orlicz spaces (see [6]).

In order to prove Theorem 3.1, we shall replace the Littlewood-Paley identity,
by a more general formula, deduced from Stanton’s formula (see [5], Theorem 2).

Theorem 3.3 (Stanton’s formula) For every analytic self-map ϕ : D → D

and every subharmonic function G : D → R, one has:

(3.12) lim
r↑1

∫

∂D

G[ϕ(rξ)] dm(ξ) = G[ϕ(0)] +
1

2

∫

D

∆G(w)Nϕ(w) dA(w),

where ∆ is the distributional Laplacian.

Proof of Theorem 3.1. If a /∈ ϕ(D), one has Nϕ(a) = 0, and the result is
trivial. We shall hence assume that a ∈ ϕ(D).
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Let Φ: [0,∞) → [0,∞) be an Orlicz function, that is a non-decreasing convex
function such that Φ(0) = 0 and Φ(∞) = ∞, and we assume that Φ′ is also
an Orlicz function. In other words, Φ′′ is an arbitrary non-negative and non-
decreasing function and Φ′(x) =

∫ x

0 Φ′′(t) dt and Φ(x) =
∫ x

0 Φ′(t) dt.

Let now f : D → C be an analytic function. We have, outside the zeroes of
f , in writing ∆Φ(|f |) = 4∂∂̄Φ(

√

|f |2):

(3.13) ∆Φ(|f |) =

[

Φ′′(|f |) +
Φ′(|f |)
|f |

]

|f ′|2.

We shall only use here that:

(3.14) ∆Φ(|f |) ≥ Φ′′(|f |) |f ′|2

(this is a not too crude estimate, since, Φ′ being an Orlicz function, Φ′′ is
non-negative and non-decreasing, and hence Φ′(x) =

∫ x

0
Φ′′(t) dt ≤ xΦ′′(x) and

Φ′(x) =
∫ x

0
Φ′′(t) dt ≥

∫ x

x/2
Φ′′(t) dt ≥ (x/2)Φ′′(x/2)).

Set now, for a ∈ D:

(3.15) fa(z) =
1 − |a|
1 − āz

, z ∈ D.

Since Φ(|fa|) is subharmonic (Φ being convex and non-decreasing) and bounded,
we can use Stanton’s formula as:

(3.16)

∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

2

∫

D

Φ′′(|fa|) |f ′
a|2Nϕ dA.

Let h = 1 − |a|. For |z − a| < h, one has

|1 − āz| = |(1 − |a|2) + ā(a− z)| ≤ (1 − |a|2) + |a− z| ≤ 2h+ h = 3h;

Hence |fa(z)| ≥ h
3h = 1

3 for |z − a| < h. It follows, since Φ′′ is non-decreasing:

(3.17)

∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

2
Φ′′

(1

3

)

∫

D(a,h)

|f ′
a|2Nϕ dA.

Now, if ϕa(z) = a−z
1−āz , one has |f ′

a(z)| = |a|
1+|a| |ϕ′

a(z)| ≥ 3
7 |ϕ′

a(z)| (we may, and

do, assume that 1 − |a| = h ≤ 1/4); hence:
∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

2
Φ′′

(1

3

) 9

49

∫

D(a,h)

|ϕ′
a|2Nϕ dA

=
9

98
Φ′′

(1

3

)

∫

ϕa(D(a,h))

Nϕa◦ϕ dA

(because Nϕa◦ϕ

(

ϕa(w)
)

= Nϕ(w) and ϕ−1
a = ϕa).

But ϕa
(

D(a, h)
)

⊇ D(0, 1/3): indeed, if |w| < 1/3, then w = ϕa(z), with

|a− z| =

∣

∣

∣

∣

(1 − |a|2)w
1 − āw

∣

∣

∣

∣

≤ (1 − |a|2) |w|
1 − |w| < 2h

1/3

1 − 1/3
= h.
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We are going now to use the sub-averaging property of the Nevanlinna func-
tion ([12], page 190, [13], § 4.6, or [14], Proposition 10.2.4): for every analytic
self-map ψ : D → D, one has

Nψ(w0) ≤
1

A(∆)

∫

∆

Nψ(w) dA(w) ,

for every disk ∆ of center w0 which does not contain ψ(0).
This will be possible thanks to the following:

Lemma 3.4 For 1 − |a| < (1 − |ϕ(0)|)/4, one has |(ϕa ◦ ϕ)(0)| > 1/3.

Proof. One has |1− ā ϕ(0)| ≤ (1− |a|2)+ |ā| |a−ϕ(0)| ≤ (1− |a|2)+ |a−ϕ(0)|;
hence:

|ϕa
(

ϕ(0)
)

| ≥ |a− ϕ(0)|
(1 − |a|2) + |a− ϕ(0)| ≥ 1 − 1 − |a|2

(1 − |a|2) + |a− ϕ(0)|

≥ 1 − 1 − |a|2
|a− ϕ(0)| ≥ 1 − 2

1 − |a|
|a− ϕ(0)| ·

But when 1 − |a| < (1 − |ϕ(0)|)/4, one has:

|a− ϕ(0)| ≥ |a| − |ϕ(0)| = (1 − |ϕ(0)|) − (1 − |a|) > 3(1 − |a|) ,

and the result follows. �

Hence:
∫

D(0,1/3)

Nϕa◦ϕ dA ≥ 1

9
Nϕa◦ϕ(0) =

1

9
Nϕ(a),

and

(3.18)

∫

∂D

Φ(|fa ◦ ϕ|) dm ≥ 1

98
Φ′′

(1

3

)

Nϕ(a).

We now have to estimate from above
∫

∂D
Φ(|fa ◦ ϕ|) dm. For that, we shall

use the following easy lemma.

Lemma 3.5 For every ξ ∈ ∂D and every h ∈ (0, 1/2], one has:

(3.19) |1 − āz|2 ≥ 1

4
(h2 + |z − ξ|2) , ∀z ∈ D,

where a = (1 − h)ξ.

Proof. The result is rotation-invariant; so we may assume that ξ = 1 (and
hence a > 0). Write z = 1 − reiθ. Since |z| ≤ 1 if and only if r ≤ 2 cos θ, one
has cos θ ≥ 0 and hence |θ| ≤ π/2. Then:

|1 − āz|2 = |1 − a(1 − reiθ)|2 = |1 − a+ areiθ|2

= (1 − a)2 + a2r2 + 2ar(1 − a) cos θ

≥ (1 − a)2 + a2r2 ≥ 1

4
(h2 + r2) =

1

4
(h2 + |z − 1|2). �
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Then:
∫

∂D

Φ(|fa ◦ ϕ|) dm =

∫

D

Φ

(

1 − |a|
|1 − āz|

)

dmϕ(z)

≤
∫

D

Φ

(

2h

(h2 + |z − ξ|2)1/2
)

dmϕ(z), by (3.19)

=

∫ +∞

0

mϕ

(

Φ
( 2h

(h2 + |z − ξ|2)1/2
)

≥ t
)

dt

=

∫ +∞

0

mϕ

(

(h2 + |z − ξ|2)1/2 ≤ 2h/Φ−1(t)
)

dt

=

∫ Φ(2)

0

mϕ

(

(h2 + |z − ξ|2)1/2 ≤ 2h/Φ−1(t)
)

dt ,

since h ≤ (h2 + |z − ξ|2)1/2 ≤ 2h/Φ−1(t) implies t ≤ Φ(2). We get:

∫

∂D

Φ(|fa ◦ ϕ|) dm ≤
∫ Φ(2)

0

mϕ

(

|z − ξ| ≤ 2h/Φ−1(t)
)

dt .

We obtain from (3.18), by setting u = 2h/Φ−1(t):

Nϕ(a) ≤ 98

Φ′′(1/3)

∫ ∞

h

mϕ

(

S(ξ, u)
) 2h

u2
Φ′

(

2h

u

)

du ·

Since Φ′(x) ≤ xΦ′′(x), we get:

(3.20) Nϕ(a) ≤ 98

Φ′′(1/3)

∫ ∞

h

mϕ

(

S(ξ, u)
) 4h2

u3
Φ′′

(

2h

u

)

du.

We are going now to choose suitably the Orlicz function Φ. It suffices to
define Φ′′, for a ∈ D given (with ξ = a/|a| and h = 1−|a| ≤ 1/4). By Lemma 3.2,
since a ∈ ϕ(D), there is a constant c0 > 0, such that mϕ

(

S(ξ, c0h)
)

> 0; we can

hence set (note that mϕ

(

S(ξ, u)
)

≤ 1):

(3.21) Φ′′(v) =























1 if 0 ≤ v ≤ h ,
1

mϕ

(

S(ξ, 2h/v)
) if h ≤ v ≤ 2/c0 ,

1

mϕ

(

S(ξ, c0h)
) if v ≥ 2/c0 .

It is a non-negative non-decreasing function, so the assumptions made on Φ at
the beginning are satisfied. One has, since mϕ

(

S(ξ, u)
)

Φ′′(2h/u) ≤ 1:

∫ ∞

h

mϕ

(

S(ξ, u)
) 4h2

u3
Φ′′

(

2h

u

)

du ≤
∫ ∞

h

4h2

u3
du = 2.

Since c0 ≤ 6, one has h ≤ 1/3 ≤ 2/c0 and hence Φ′′(1/3) = 1/mϕ

(

S(ξ, 6h)
)

;
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therefore (3.20) gives, for h ≤ (1 − |ϕ(0)|)/4:

(3.22) Nϕ(a) ≤ 196mϕ

(

S(ξ, 6h)
)

,

finishing the proof since S(ξ, 6h) ⊆W (ξ, 12h). �

4 Domination of the Carleson function by the

Nevanlinna function

We cannot expect to estimate individually from above the mϕ-measure of
Carleson windows centered at ξ = w/|w| by Nϕ(w), as in Theorem 3.1. In fact,
consider a conformal mapping ϕ from D onto D \ [0, 1[. One has Nϕ(t) = 0 for
every t ∈ [0, 1[, though mϕ

(

W (1, h)
)

> 0 for every h > 0 (because W (1, h) ⊃
W (eih/2, h/2) and mϕ

(

W (eih/2, h/2)
)

> 0 by Lemma 3.2).

Let us give another example. Let ϕ(z) = (1 + z)/2. Then:

a) One has ϕ(eiθ) = (cos θ/2) eiθ/2 (with |θ| ≤ π). Hence ϕ(eiθ) ∈W (eiθ0 , h)
if and only if cos(θ/2) ≥ 1−h and |(θ/2)−θ0| ≤ h, i.e. 2(θ0−h) ≤ θ ≤ 2(θ0+h).

Now, 1−cos(θ/2) ≤ θ2/8, so the modulus condition is satisfied when θ2 ≤ 8h;
in particular when |θ| ≤ 2

√
h.

For θ0 =
√
h, mϕ

(

W (eiθ0 , h)
)

is bigger than the length of the interval

[−2
√
h, 2

√
h] ∩ [2(

√
h− h), 2(

√
h+ h)] = [2

√
h− 2h, 2

√
h] ,

that is 2h. Therefore mϕ

(

W (eiθ0 , h)
)

≥ 2h.

b) Let now w = ϕ(z). Write w = 1
2 + r eiζ with 0 ≤ r < 1/2. Then, writing

r = 1
2 − s, one has |z| = |2w − 1| = 2r and

Nϕ(w) = log
1

|z| = log
1

2r
= log

1

1 − 2s
≈ s.

Now, |w|2 = 1
4 + r2 + r cos ζ and

h ≈ 1 − |w|2 =
1

2
(1 − cos ζ) + s(1 + cos ζ) − s2 ≈ ζ2

4
+ 2s.

Writing ζ = s1/2α, one gets:
(i) for “small” ζ (i.e. 0 < α ≤ 1): h ≈ s, and so Nϕ(w) ≈ h;
(ii) for “large” (i.e. α ≥ 1): h ≈ s1/α, and so Nϕ(w) ≈ hα.

On the other hand, w = eiζ/2[(1 − s) cos(ζ/2) − is sin(ζ/2)]; hence, when s
goes to 0, one has

θw := argw =
ζ

2
+ arctan

[

s sin(ζ/2)

(1 − s) cos(ζ/2)

]

∼ ζ

2
≈ ζ .
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For α ≥ 1, one has h ≈ s1/α = ζ2, i.e. ζ ≈
√
h. Then, choosing α > 1 such that

ζ = θ0, one has mϕ

(

W (w/|w|, h)
)

≈ h, though Nϕ(w) ≈ hα ≪ h.

One cannot hence dominate mϕ

(

W (w/|w|, h)
)

by Nϕ(w).

We can remark that, nevertheless, in either case, one has ρϕ(h) ≈ h and
νϕ(h) ≈ h.

We shall prove:

Theorem 4.1 For every analytic self-map ϕ : D → D, one has, for every ξ ∈
∂D:

(4.1) mϕ

(

W (ξ, h)
)

≤ 64 sup
w∈W (ξ,64h)∩D

Nϕ(w) ,

for 0 < h < (1 − |ϕ(0)|)/16.

Proof. We shall set:

(4.2) νϕ(ξ, h) = sup
w∈W (ξ,h)∩D

Nϕ(w) .

If for some h0 > 0, one has νϕ(ξ, h0) = 0, then ϕ(D) ⊆ D \ W (ξ, h0),
and hence mϕ

(

W (ξ, h)
)

= 0 for 0 < h < h0. Therefore we shall assume that
νϕ(ξ, h) > 0. We may, and do, also assume that h ≤ 1/4. By replacing ϕ by eiθϕ,
it suffices to estimate mϕ

(

S(1, h)
)

(recall that S(1, t) = {z ∈ D ; |1 − z| ≤ t}).
We shall use the same functions fa as in the proof of Theorem 3.1, but, for

convenience, with a different notation. We set, for 0 < r < 1:

(4.3) u(z) =
1 − r

1 − rz
·

Let us take an Orlicz function Φ as in the beginning of the proof of Theo-
rem 3.1, which will be precised later. We shall take this function in such a way
that Φ

(

|u(ϕ(0))|
)

= 0.
Since Φ′(x) ≤ xΦ′′(x), (3.13) becomes:

(4.4) ∆Φ(|u|) ≤ 2Φ′′(|u|) |u′|2,

and Stanton’s formula writes, since Φ
(

|u(ϕ(0))|
)

= 0:

(4.5)

∫

∂D

Φ(|u ◦ ϕ|) dm ≤
∫

D

Φ′′
(

|u(w)|
)

|u′(w)|2 Nϕ(w) dA(w).

In all the sequel, we shall fix h, 0 < h ≤ 1/4, and take r = 1 − h.

For |z| ≤ 1 and |1−z| ≤ h, one has |1−rz| = |(1−z)+hz| ≤ |1−z|+h ≤ 2h,
so:

|u(z)| ≥ (1 − r)

2h
=

1

2
·

10



Hence:

mϕ

(

S(1, h)
)

≤ 1

Φ(1/2)

∫

S(1,h)

Φ
(

|u(z)|
)

dmϕ(z)

≤ 1

Φ(1/2)

∫

D

Φ
(

|u(z)|
)

dmϕ(z)

=
1

Φ(1/2)

∫

T

Φ
(

|(u ◦ ϕ)(z)|
)

dm(z) ,

and so, by (4.5):

(4.6) mϕ

(

S(1, h)
)

≤ 1

Φ(1/2)

∫

D

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z).

We are going to estimate this integral by separating two cases: |1 − z| ≤ h
and |1 − z| > h.

For convenience, we shall set:

(4.7) ν̃(t) = sup
w∈S(1,t)∩D

Nϕ(w) .

1) Remark first that

u′(z) =
rh

(1 − rz)2
,

and so:

|u′(z)| ≤ h

(1 − r)2
=

1

h
·

Since |u(z)| ≤ 1, we get hence:

∫

|1−z|≤h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z) ≤
∫

S(1,h)

Φ′′(1)
1

h2
ν̃(h) dA(z) ,

giving, since A
(

S(1, h)
)

≤ h2:

(4.8)

∫

|1−z|≤h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z) ≤ Φ′′(1) ν̃(h) .

2) For 0 < h ≤ 1/4, one has:

|u(z)| ≤ 2h

|1 − z| and |u′(z)| ≤ 2h

|1 − z|2 ;

indeed, we have (this is obvious, by drawing a picture):

|1 − rz| = r
∣

∣

∣

1

r
− z

∣

∣

∣
≥ r |1 − z| ,
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and hence |1 − rz| ≥ 3
4 |1 − z|, since r = 1 − h ≥ 3/4. We obtain:

∫

|1−z|>h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z)

≤ 4

∫

|1−z|>h

Φ′′

(

2h

|1 − z|

)

h2

|1 − z|4Nϕ(z) dA(z).

Then, using polar coordinates centered at 1 (note that we only have to
integrate over an arc of length less than π), and the obvious inequality Nϕ(z) ≤
ν̃(|1 − z|), we get:

∫

|1−z|>h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z)(4.9)

≤ 4

∫ 2

h

Φ′′

(

2h

t

)

h2

t3
ν̃(t) dt .

We now choose the Orlicz function as follows (with a = ϕ(0)):

(4.10) Φ′′(v) =























1

ν̃(h)
if v ≥ 2 ,

1

ν̃(2h/v)
if h/(1 − |a|) < v < 2 ,

0 if 0 ≤ v ≤ h/(1 − |a|) .

This function is non-negative and non-decreasing. Moreover, one has Φ(x) = 0
for 0 ≤ x ≤ h/(1 − |a|). Hence, since |u(a)| ≤ h

1−|a| , one has Φ
(

|u(a)|
)

= 0.

Then

∫ 2

h

Φ′′

(

2h

t

)

h2

t3
ν̃(t) dt =

∫ 2(1−|a|)

h

Φ′′

(

2h

t

)

h2

t3
ν̃(t) dt(4.11)

≤
∫ ∞

h

h2

t3
dt =

1

2
·

Now,

Φ
(1

2

)

=

∫ 1/2

0

Φ′(t) dt ≥
∫ 1/2

1/4

Φ′(t) dt ≥
∫ 1/2

1/4

t

2
Φ′′

( t

2

)

dt

≥ Φ′′
(1

8

)

∫ 1/2

1/4

t

2
dt =

3

64
Φ′′

(1

8

)

.

When h < (1 − |a|)/8, one has 1/8 > h/(1 − |a|); hence Φ′′(1/8) = 1/ν̃(16h),
and Φ′′(1) = 1/ν̃(2h). We get hence, from (4.6), (4.8), (4.9) and (4.11):

(4.12) mϕ

(

S(1, h)
)

≤ 64

3
ν̃(16h)

[

ν̃(h)

ν̃(2h)
+ 2

]

≤ 64 ν̃(16h) .
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Since W (1, t) ⊆ S(1, 2t), we get mϕ

(

W (1, h)
)

≤ 64 supw∈S(1,32h)Nϕ(w)
for 0 < h < (1 − |ϕ(0)|)/16, and that ends the proof of Theorem 4.1, since
S(1, 32h) ⊆W (1, 64h). �

Remark. A slight modification of the proof gives the following improvement,
if one allows a (much) bigger constant.

Theorem 4.2 There are universal constants C, c > 1 such that

mϕ

(

S(ξ, h)
)

≤ C
1

A
(

S(ξ, ch)
)

∫

S(ξ,ch)

Nϕ(z) dA(z)

for every analytic self-map ϕ : D → D, every ξ ∈ ∂D, and 0 < h < (1−|ϕ(0)|)/8.

Proof. We are going to follow the proof of Theorem 4.1. We shall assume that
ξ = 1 and we set:

(4.13) I(t) =

∫

S(1,t)

Nϕ(z) dA(z) .

Then:
1) When |1 − z| < h, , we have, instead of (4.8):

∫

|1−z|<h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z) ≤
∫

S(1,h)

Φ′′(1)
1

h2
Nϕ(z) dA(z)(4.14)

= Φ′′(1)
1

h2
I(h) .

2) For |z − 1| ≥ h, we write:

∫

|1−z|≥h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z)

=

∞
∑

k=1

∫

kh≤|1−z|<(k+1)h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z)

≤ 4

∞
∑

k=1

Φ′′
(2h

kh

) h2

k4h4
I
(

(k + 1)h
)

= 4

∞
∑

k=1

Φ′′
(2

k

) 1

k4h2
I
(

(k + 1)h
)

.

We take, with a = ϕ(0):

(4.15) Φ′′(v) =







1

I
(

( 2
v + 1)h)

) if v > h/(1 − |a|) ,

0 if 0 ≤ v ≤ h/(1 − |a|) .

13



Then

(4.16)

∫

|1−z|≥h

Φ′′
(

|u(z)|
)

|u′(z)|2Nϕ(z) dA(z) ≤ 4

h2

∞
∑

k=1

1

k4
=

4

h2

π4

90
≤ 5

h2
·

Since h < (1−|a|)/8, one has 1/8 > h/(1−|a|); hence Φ′′(1/8) = 1
I(17h) and

Φ′′(1) = 1
I(3h) . Therefore:

mϕ

(

S(1, h)
)

≤ 64

3
I(17h)

[

1

h2

I(h)

I(3h)
+

5

h2

]

≤ 64

3
I(17h)

6

h2
= 128

I(17h)

h2

≤ 128 × 172 I(17h)

A
(

S(1, 17h)
) ,

ending the proof of Theorem 4.2. �

5 Some consequences

In [6], we proved (Theorem 4.19) that the Carleson function of an ana-
lytic self-map ϕ has the following property of regularity: mϕ

(

S(ξ, ε h)
)

≤
K εmϕ

(

S(ξ, h)
)

for 0 < h < 1 − |ϕ(0)|, 0 < ε < 1 and ξ ∈ ∂D, where K
is a universal constant. It follows from Theorem 1.1, (actually Theorem 3.1 and
Theorem 4.1) that:

Theorem 5.1 There exist a universal constants K > 0 such that, for every

analytic self-map ϕ of D, one has, for 0 < ε < 1:

(5.1) νϕ(ε t) ≤ K ενϕ(t) ,

for t small enough.

More precisely, for every ξ ∈ ∂D, one has, for t small enough:

(5.2) sup
w∈W (ξ,ε t)∩D

Nϕ(w) ≤ K ε sup
w∈W (ξ,t)∩D

Nϕ(w) .

We shall end this paper with some consequences of Theorem 1.1 for compo-
sition operators. Recall that if Ψ is an Orlicz function, the Hardy-Orlicz space
is the space of functions f ∈ H1 whose boundary values are in the Orlicz space

LΨ(∂D,m). We proved in [6], Theorem 4.18 that, if Ψ(x)
x −→

x→∞
∞, the compo-

sition operator Cϕ : HΨ → HΨ is compact if and only if, for every A > 0, one
has ρϕ(h) = o

[

1/Ψ
(

AΨ−1(1/h)
)]

when h goes to 0. This remains true when
HΨ = H1. Hence Theorem 1.1 gives:
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Theorem 5.2 Let ϕ : D → D be an analytic self-map and Ψ be an Orlicz func-

tion. Then the composition operator Cϕ : HΨ → HΨ is compact if and only if

(5.3) sup
|w|≥1−h

Nϕ(w) = o

(

1

Ψ
(

AΨ−1(1/h)
)

)

, as h→ 0 , ∀A > 0.

It should be noted, due to the arbitrary A > 0, that (5.3) may be replaced
by

(5.4) sup
|w|≥1−h

Nϕ(w) ≤ 1

Ψ
(

AΨ−1(1/h)
) , ∀A > 0,

for h ≤ hA.

It is known that if Cϕ : H2 → H2 is compact, then lim|z|→1
1−|ϕ(z)|

1−|z| = ∞,

and that this condition is sufficient when ϕ is univalent, or p-valent, but not
sufficient in general (see [11] and [12], § 3.2). It follows from Theorem 5.2 that
an analogous result holds for Hardy-Orlicz spaces:

Theorem 5.3 Let ϕ : D → D be an analytic self-map, and Ψ be an Orlicz

function. Assume that the composition operator Cϕ : HΨ → HΨ is compact.

Then:

(5.5) lim
|z|→1

Ψ−1

(

1

1 − |z|

)

Ψ−1

(

1

1 − |ϕ(z)|

) = ∞ .

Conversely, if ϕ is p-valent, then (5.5) suffices to Cϕ : HΨ → HΨ be compact.

Proof. For the necessity, we could use Theorem 5.2 and the fact that 1− |z| ≤
log 1

|z| ≤ Nϕ
(

ϕ(z)
)

; but we shall give a more elementary proof. Recall that HΨ

is the bidual of HMΨ, the closure of H∞. Since Cϕ(H∞) ⊆ H∞, Cϕ maps
HMΨ into itself and Cϕ : HΨ → HΨ is the bi-adjoint of Cϕ : HMΨ → HMΨ.
We know that the evaluation δa : f ∈ HMΨ 7→ f(a) ∈ C has norm ≈ Ψ−1

(

1
1−|a|

)

([6], Lemma 3.11); hence δa/‖δa‖ −→
|a|→1

0 weak-star (because |δa(f)| = |f(a)| ≤
‖f‖∞ for f ∈ H∞). If Cϕ is compact, its adjoint C∗

ϕ also; we get hence
‖C∗

ϕ(δa/‖δa‖)‖ −→
|a|→1

0. But C∗
ϕδa = δϕ(a). Therefore

Ψ−1

(

1

1 − |ϕ(a)|

)

Ψ−1

(

1

1 − |a|

) −→
|a|→1

0 .

Conversely, assume that (5.5) holds. For every A > 0, one has, for |z|
close enough to 1: Ψ−1

(

1
1−|z|

)

≥ AΨ−1
(

1
1−|ϕ(z)|

)

; in other words, one has:

1/Ψ
(

AΨ−1(1/1 − |ϕ(z)|)
)

≥ 1 − |z|. But, when ϕ is p-valent, and if w = ϕ(z)
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with |z| > 0 minimal, one has Nϕ(w) ≤ p log 1
|z| ≈ 1 − |z|. Since |z| → 1 when

|w| = |ϕ(z)| → 1 (otherwise, we should have a sequence (zn) converging to some
z0 ∈ D and ϕ(zn) would converge to ϕ(z0) ∈ D), we get sup|w|≥1−hNϕ(w) .

1/Ψ
(

AΨ−1(1/1 − |w|)
)

≤ 1/Ψ
(

AΨ−1(1/1 − h)
)

, for h small enough. By Theo-
rem 5.2, with (5.4), that means that Cϕ is compact on HΨ. �
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sidad de Sevilla, in April 2007; it is a pleasure to thanks all its members for their
warm hospitality. Part of this work was also made during the fourth-named au-
thor visited the University of Lille 1 and the University of Artois (Lens) in June
2007. The fourth-named author is partially supported by a Spanish research
project MTM2006-05622.

References

[1] L. Carleson, An interpolation problem for bounded analytic functions,
Amer. J. Math. 80 (1958), 921–930.

[2] L. Carleson, Interpolations by bounded analytic functions and the corona
problem, Annals of Math. (2) 76 (1962), 547–559.

[3] J. S. Choa and H.O. Kim, On function-theoretic conditions characterizing
compact composition operators onH2, Proc. Japan Acad. 75, Ser. A (1999),
109–112.

[4] B. R. Choe, The essential norms of composition operators, Glasg. Math. J.
34, No. 2 (1992), 143–155.

[5] M. Essén, D. F. Shea, and C. S. Stanton, A value-distribution criterion for
the class L logL and some related questions, Ann. Inst. Fourier (Grenoble),
35 (1985), 125–150.
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