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E-mail: mostafa.adimy@univ-pau.fr, E-mail: fabien.crauste@univ-pau.fr

† Department of Physiology, McGill University, McIntyre Medical Sciences Building,
3655 Promenade Sir William Osler, Montreal, QC, Canada H3G 1Y6.

E-mail: pujo@cnd.mcgill.ca

Abstract

We analyse the asymptotic behaviour of a nonlinear mathematical model of cellular proliferation

which describes the production of blood cells in the bone marrow. This model takes the form of a

system of two maturity structured partial differential equations, with a retardation of the maturation

variable and a time delay depending on this maturity. We show that the stability of this system

depends strongly on the behaviour of the immature cells population. We obtain conditions for the

global stability and the instability of the trivial solution.

Keywords: Nonlinear partial differential equation, Maturity structured model, Blood production system,
Delay depending on the maturity, Global stability, Instability.

1 Introduction and motivation

This paper is devoted to the analysis of a maturity structured model which involves descriptions of process
of blood production in the bone marrow (hematopoiesis). Cell biologists recognize two main stages in the
process of hematopoietic cells: a resting stage and a proliferating stage (see Burns and Tannock [8]).

The resting phase, or G0-phase, is a quiescent stage in the cellular development. Resting cells mature
but they can not divide. They can enter the proliferating phase, provided that they do not die. The
proliferating phase is the active part of the cellular development. As soon as cells enter the proliferating
phase, they are committed to divide, during mitosis. After division, each cell gives birth to two daughter
cells which enter immediatly the resting phase, and complete the cycle. Proliferating cells can also die
without ending the cycle.

The model considered in this paper has been previously studied by Mackey and Rudnicki in 1994 [20]
and in 1999 [21], in the particular case when the proliferating phase duration is constant. That is, when
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it is supposed that all cells divide exactly at the same age. Numerically, Mackey and Rey [18, 19], in
1995, and Crabb et al. [9, 10], in 1996, obtained similar results as in [20]. The model in [20] has also been
studied by Dyson et al [11] in 1996 and Adimy and Pujo-Menjouet [3, 4] in 2001 and 2003, but only in
the above-mentioned case. These authors showed that the uniqueness of the entire population depends,
for a finite time, only on the population of small maturity cells.

However, it is believed that, in the most general situation in hematopoiesis, all cells do not divide at
the same age (see Bradford et al. [7]). For example, pluripotent stem cells (the less mature cells) divide
faster than committed stem cells (the more mature cells).

Mackey and Rey [17], in 1993, considered a model in which the time required for a cell to divide is
not identical between cells, and, in fact, is distributed according to a density. However, the authors made
only a numerical analysis of their model. Dyson et al. [12, 13], in 2000, also considered an equation in
which all cells do not divide at the same age. But they considered only one phase (the proliferating one)
which does not take into account the intermediary flux between the two phases. Adimy and Crauste [1],
in 2003, studied a model in which the proliferating phase duration is distributed according to a density
with compact support. The authors proved local and global stability results.

In [2], Adimy and Crauste developed a mathematical model of hematopoietic cells population in which
the time spent by each cell in the proliferating phase, before mitosis, depends on its maturity at the point
of commitment. More exactly, a cell entering the proliferating phase with a maturity m is supposed to
divide a time τ = τ(m) later. This hypothesis can be found, for example, in Mitchison [22] (1971) and
John [15] (1981), and, to our knowledge, it has never been used, except by Adimy and Pujo-Menjouet in
[5], where the authors considered only a linear case. The model obtained in [2] is a system of nonlinear
first order partial differential equations, with a time delay depending on the maturity and a retardation
of the maturation variable. The basic theory of existence, uniqueness, positivity and local stability of this
model was investigated.

Many cell biologists assert that the behaviour of immature cells population is an important consider-
ation in the description of the behaviour of full cells population. The purpose of the present work is to
analyse mathematically this phenomenon in our model. We show that, under the assumption that cells,
in the proliferating phase, have enough time to divide, that is, τ(m) is large enough, then the uniqueness
of the entire population depends strongly, for a finite time, on the population with small maturity. This
result allows us, for example, to describe the destruction of the cells population when the population of
small maturity cells is affected (see Corollary 3.1).

In [21], Mackey and Rudnicki provided a criterion for global stability of their model. However, these
authors considered only the case when the mortality rates and the rate of returning in the proliferating
cycle are independent of the maturity variable. Thus, their criterion can not be applied directly to our
situation.

This paper extends some local analysis of Adimy and Crauste [2] to global results. It proves the
connection between the global behaviour of our model and the behaviour of immature cells (m = 0).

The paper is organised as follows. In the next section, we present the equations of our model and
we give an integrated formulation of the problem, by using the semigroup theory. In section 3, we show
an uniqueness result which stresses the dependence of the entire population with small maturity cells
population. In Section 4, we focus on the behaviour of the immature cells population, which satisfies
a system of delay differential equations. We study the stability of this system by using a Lyapunov
functionnal. In Section 5, we prove that the global stability of our model depends on its local stability
and on the stability of the immature cells population. Finally, in Section 6, we give an instability result.

2 Equations of the model and integrated formulation

Let N(t,m) and P (t,m) denote, respectively, the population densities of resting and proliferating cells,
at time t and with a maturity level m.
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The maturity is a continuous variable which represents what composes a cell, such as proteins or other
elements one can measure experimentally. It is supposed to range, in the two phases, fromm = 0 to m = 1.
Cells with maturity m = 0 are the most primitive stem cells, also called immature cells, whereas cells with
maturity m = 1 are ready to enter the bloodstream, they have reached the end of their development.

In the two phases, cells mature with a velocity V (m), which is assumed to be continuously differentiable
on [0, 1], positive on (0, 1] and such that V (0) = 0 and

∫ m

0

ds

V (s)
= +∞, for m ∈ (0, 1] . (1)

Since
∫m2

m1

ds
V (s) , with m1 < m2, is the time required for a cell with maturity m1 to reach the maturity m2,

then Condition (1) means that a cell with very small maturity needs a long time to become mature.
For example, Condition (1) is satisfied if

V (m) ∼
m→0

αmp, with α > 0 and p ≥ 1.

In the resting phase, cells can die at a rate δ = δ(m) and can also be introduced in the proliferating
phase with a rate β. In the proliferating phase, cells can also die, by apoptosis (a programmed cell death),
at a rate γ = γ(m). The functions δ and γ are supposed to be continuous and nonnegative on [0, 1].
The rate β of re-entry in the proliferating phase is supposed to depend on cells maturity and on the
resting population density (see Sachs [23]), that is, β = β(m,N(t,m)). The mapping β is supposed to be
continuous and positive.

Proliferating cells are committed to undergo mitosis a time τ after their entrance in this phase. We
assume that τ depends on the maturity of the cell when it enters the proliferating phase, that means, if a
cell enters the proliferating phase with a maturity m, then it will divide a time τ = τ(m) later.
The function τ is supposed to be positive, continuous on [0, 1], continuously differentiable on (0, 1] and
such that

τ ′(m) +
1

V (m)
> 0, for m ∈ (0, 1]. (2)

One can notice that this condition is always satisfied in a neighborhood of the origin, because V (0) = 0,
and is satisfied if we assume, for example, that τ is increasing (which describes the fact that the less
mature cells divide faster than more mature cells).
Under Condition (2), if m ∈ (0, 1] is given, then the mapping

m̃ 7→

∫ m

em

ds

V (s)
− τ(m̃)

is continuous and strictly decreasing from (0,m] into [−τ(m),+∞). Hence, we can define a function
Θ : (0, 1] → (0, 1], by ∫ m

Θ(m)

ds

V (s)
= τ(Θ(m)), for m ∈ (0, 1].

The quantity Θ(m) represents the maturity of a cell at the point of commitment when this cell divides
at a maturity level m. The function Θ is continuously differentiable and strictly increasing on (0, 1] and
satisfies

lim
m→0

Θ(m) = 0 and 0 < Θ(m) < m, for m ∈ (0, 1].

If we consider the characteristic curves χ : (−∞, 0] × [0, 1] → [0, 1], solutions of the ordinary differential
equation {

dχ

ds
(s,m) = V (χ(s,m)), s ≤ 0 and m ∈ [0, 1],

χ(0,m) = m,
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then, it is easy to check that, for m ∈ [0, 1], Θ(m) is the unique solution of the equation

x = χ(−τ(x),m). (3)

The characteristic curves χ(s,m) represent the evolution of the cell maturity to reach a maturity m at
time 0 from a time s ≤ 0. They satisfy χ(s, 0) = 0 and χ(s,m) ∈ (0, 1] for s ≤ 0 and m ∈ (0, 1]. Moreover,
we can verify that the characteristic curves are given by

χ(s,m) = h−1(h(m)es), for s ≤ 0 and m ∈ [0, 1], (4)

where the continuous function h : [0, 1] → [0, 1] is defined by

h(m) =





exp

(
−

∫ 1

m

ds

V (s)

)
, for m ∈ (0, 1],

0, for m = 0.

Since h is increasing, the two functions s 7→ χ(s,m) and m 7→ χ(s,m) are also increasing.
At the end of the proliferating phase, a cell with a maturity m divides into two daughter cells with

maturity g(m). We assume that g : [0, 1] → [0, 1] is a continuous and strictly increasing function, continu-
ously differentiable on [0, 1) and such that g(m) ≤ m for m ∈ [0, 1]. We also assume, for technical reason
and without loss of generality, that

lim
m→1

g′(m) = +∞.

Then we can set
g−1(m) = 1, for m > g(1).

This means that the function g−1 : [0, 1] → [0, 1] is continuously differentiable and satisfies (g−1)′(m) = 0,
for m > g(1). We set

∆(m) = Θ(g−1(m)), for m ∈ [0, 1].

The quantity ∆(m) is the maturity of a mother cell at the point of commitment, when the daughter cells
have a maturity m at birth. The function ∆ : [0, 1] → [0, 1] is continuous and continuously differentiable
on (0, 1]. It satisfies ∆(0) = 0, ∆ is strictly increasing on (0, g(1)), with Θ(m) ≤ ∆(m), and ∆(m) = Θ(1)
for m ∈ [g(1), 1].

At time t = 0, the resting and proliferating populations are given by

N(0,m) = µ(m), (5)

and

P (0,m) = Γ(m) :=

∫ τ(Θ(m))

0

Γ(m, a)da, (6)

where Γ(m, a) is the density of cells with maturity m, at time t = 0, which have spent a time a in the
proliferating phase, or, equivalently, with age a. The functions µ and Γ are supposed to be continuous on
their domains.

We define the sets
Ω := [0, 1]× [0, τmax],

where τmax := maxm∈[0,1] τ(m) > 0,

Ω∆ :=
{
(m, t) ∈ Ω ; 0 ≤ t ≤ τ(∆(m))

}
,

and
ΩΘ :=

{
(m, t) ∈ Ω ; 0 ≤ t ≤ τ(Θ(m))

}
.
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Then, the population densities N(t,m) and P (t,m) satisfy, for m ∈ [0, 1] and t ≥ 0, the following
equations,

∂

∂t
N(t,m) +

∂

∂m
(V (m)N(t,m)) = −

(
δ(m) + β

(
m,N(t,m)

))
N(t,m)

+






2ξ(t,m)Γ
(
χ
(
− t, g−1(m)

)
, τ(∆(m)) − t

)
, if (m, t) ∈ Ω∆,

2ξ
(
τ(∆(m)),m

)
β
(
∆(m), N

(
t− τ(∆(m)),∆(m)

))
×

N
(
t− τ(∆(m)),∆(m)

)
, if (m, t) /∈ Ω∆,

(7)

and
∂

∂t
P (t,m) +

∂

∂m
(V (m)P (t,m)) = −γ(m)P (t,m) + β

(
m,N(t,m)

)
N(t,m)

−





π(t,m)Γ
(
χ
(
− t,m

)
, τ(Θ(m)) − t

)
, if (m, t) ∈ ΩΘ,

π
(
τ(Θ(m)),m

)
β
(
Θ(m), N

(
t− τ(Θ(m)),Θ(m)

))
×

N
(
t− τ(Θ(m)),Θ(m)

)
, if (m, t) /∈ ΩΘ,

(8)

where the mappings ξ : Ω∆ → [0,+∞) and π : ΩΘ → [0,+∞) are continuous and satisfy

ξ(·,m) = 0 if m > g(1),

because, from the definition of g, a daughter cell can not have a maturity greater than g(1).
In Equation (7), the first term in the right hand side accounts for cellular loss, through cells death (δ)

and introduction in the proliferating phase (β). The second term describes the contribution of proliferating
cells, one generation time ago. In a first time, cells can only proceed from cells initially in the proliferating
phase (Γ). Then, after one generation time, all cells have divided and the contribution can only comes
from resting cells which have been introduced in the proliferating phase one generation time ago.
The factor 2 always accounts for mitosis. The quantity ξ(t,m) is for the rate of surviving cells.
In Equation (8), the first term in the right hand side also accounts for cellular loss, whereas the second
term is for the contribution of the resting phase. The third term describes the same situation as in
Equation (7), however, in this case, cells leave the proliferating phase to the resting one. The quantity
π(t,m) is also for the rate of surviving cells.
We can observe two different behaviours of the rates of surviving cells, in the two phases. In a first time,
they depend on time and maturity, and after a certain time, they only depend on the maturity variable.
When the process of production of blood cells has just begun, the only cells which divide come from
the initial proliferating phase population. But after one cellular cycle, that means when t > τ(∆(m))
(respectively, t > τ(Θ(m))), the amount of cells only comes from resting cells (respectively, proliferating
cells) which have been introduced in the proliferating phase (respectively, resting phase) one generation
time ago. Consequently, we take into account the duration of the cell cycle, and not the present time.
Equations (7) and (8) are derived, after integration, from an age-maturity structured model, presented by
the authors in [2]. In fact, the rates ξ and π are explicitly given (see [2]) by

ξ(t,m) = (g−1)′(m) exp

{
−

∫ t

0

(
γ
(
χ(−s, g−1(m))

)
+ V ′

(
χ(−s, g−1(m))

))
ds

}
,
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and

π(t,m) = α(m) exp

{
−

∫ t

0

(
γ
(
χ(−s,m)

)
+ V ′

(
χ(−s,m)

))
ds

}
,

with α : [0, 1] → [0,+∞) a positive and continuous function, such that α(0) = 1.
In the following, to simplify the notations, we will denote by ξ and π the quantities

ξ(m) = ξ
(
τ(∆(m)),m

)
,

and
π(m) = π

(
τ(Θ(m)),m

)
.

One can remark that the solutions of Equation (7) do not depend on the solutions of Equation (8), whereas
the converse is not true.

Before we study the asymptotic behaviour of the solutions of Problem (5)-(8), we establish an integrated
formulation of this problem. We first extend N by setting

N(t,m) = µ(m), for t ∈ [−τmax, 0] and m ∈ [0, 1]. (9)

One can remark that this extension does not influence the system.
We also define two mappings, F : [0,+∞) × [0, 1]× R → R and G : [0,+∞) × [0, 1]× R → R, by

F (t,m, x) =





2ξ(t,m)Γ
(
χ
(
− t, g−1(m)

)
, τ(∆(m)) − t

)
, if (m, t) ∈ Ω∆,

2ξ(m)β
(
∆(m), x

)
x, if (m, t) /∈ Ω∆,

(10)

and

G(t,m, x) =






π(t,m)Γ
(
χ
(
− t,m

)
, τ(Θ(m)) − t

)
, if (m, t) ∈ ΩΘ,

π(m)β
(
Θ(m), x

)
x, if (m, t) /∈ ΩΘ.

(11)

We denote by C[0, 1] the space of continuous functions on [0, 1], endowed with the supremum norm ||.||,
defined by

||v|| = sup
m∈[0,1]

|v(m)|, for v ∈ C[0, 1],

and we consider the unbounded closed linear operator A : D(A) ⊂ C[0, 1] → C[0, 1] defined by

D(A) =
{
u ∈ C[0, 1] ;u differentiable on (0, 1], u′ ∈ C(0, 1], lim

x→0
V (x)u′(x) = 0

}

and

Au(x) =

{
−(δ(x) + V ′(x))u(x) − V (x)u′(x), if x ∈ (0, 1],
−(δ(0) + V ′(0))u(0), if x = 0.

Proposition 2.1. The operator A is the infinitesimal generator of the strongly continuous semigroup
(T (t))t≥0 defined on C[0, 1] by

(T (t)ψ)(x) = K(t, x)ψ(χ(−t, x)), for ψ ∈ C[0, 1], t ≥ 0 and x ∈ [0, 1],

where

K(t, x) = exp

{
−

∫ t

0

(
δ
(
χ(−s, x)

)
+ V ′

(
χ(−s, x)

))
ds

}
.

Proof. The proof is similar to the proof of Proposition 2.4 in Dyson et al. [11].
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Now, by using the variation of constants formula associated to the C0-semigroup (T (t))t≥0, we can write
an integrated formulation of Problem (5)-(8).
Let C(Ω) be the space of continuous functions on Ω, endowed with the norm

‖Υ‖Ω := sup
(m,a)∈Ω

|Υ(m, a)|, for Υ ∈ C(Ω).

Let µ ∈ C[0, 1] and Γ ∈ C(Ω). An integrated solution of Problem (5)-(8) is a continuous solution of the
system

N(t,m) = K(t,m)µ
(
χ(−t,m)

)

−

∫ t

0

K(t− s,m)β
(
χ(−(t− s),m), N

(
s, χ(−(t− s),m)

))
N

(
s, χ(−(t− s),m)

)
ds

+

∫ t

0

K(t− s,m)F
(
s, χ(−(t− s),m), N

(
s− τ(∆(χ(−(t − s),m))),∆(χ(−(t − s),m))

))
ds,

(12)

and

P (t,m) = H(t,m)Γ
(
χ(−t,m)

)

+

∫ t

0

H(t− s,m)β
(
χ(−(t− s),m), N

(
s, χ(−(t− s),m)

))
N

(
s, χ(−(t− s),m)

)
ds

−

∫ t

0

H(t− s,m)G
(
s, χ(−(t− s),m), N

(
s− τ(Θ(χ(−(t− s),m))),Θ(χ(−(t− s),m))

))
ds,

(13)

for t ≥ 0 and m ∈ [0, 1], where F and G are given by (10) and (11), Γ is given by (6) and

H(t,m) := exp

{
−

∫ t

0

(
γ
(
χ(−s,m)

)
+ V ′

(
χ(−s,m)

))
ds

}
, for t ≥ 0 and m ∈ [0, 1].

We can easily prove (see [2]), under the assumptions that the function x 7→ β(m,x) is uniformly bounded
and the function x 7→ xβ(m,x) is locally Lipschitz continuous for all m ∈ [0, 1], that Problem (12)-(13)
has a unique continuous global solution (Nµ,Γ, Pµ,Γ), for initial conditions (µ,Γ) ∈ C[0, 1] × C(Ω).

3 A uniqueness result

In this section, we establish more than uniqueness. Indeed, we show a result which stresses, for a finite
time, the dependence of the entire population with the small maturity cells population. It has been shown
for the first time by Dyson et al. [11], for a model with a constant delay. We will see that this result is
important in order to obtain the asymptotic behaviour of the solutions of (12)-(13).
We first assume that

∆(m) < m, for all m ∈ (0, 1]. (14)

This condition is equivalent to

τ(∆(m)) >

∫ g−1(m)

m

ds

V (s)
, for m ∈ (0, 1]. (15)

This equivalence is immediate when one notices that, from (3),

∆(m) = χ
(
− τ(∆(m)), g−1(m)

)
= h−1

(
h(g−1(m))e−τ(∆(m))

)
.

7
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Since the quantity
∫ g−1(m)

m
ds
V (s) represents the time required for a cell with maturity m, at birth, to reach

the maturity of its mother at the cytokinesis point (the point of division), Condition (15) means that, in
the proliferating phase, cells have enough time to reach the maturity of their mother.
Condition (14) implies in particular that

Θ(1) := ∆(g(1)) < g(1).

From now on, and throughout this section, we assume that the function x 7→ β(m,x) is uniformly bounded,
the function x 7→ xβ(m,x) is locally Lipschitz continuous for all m ∈ [0, 1], and that Condition (14) holds.
For b ∈ (0, 1] and ψ ∈ C[0, 1], we define ‖.‖b as follows

‖ψ‖b := sup
m∈[0,b]

|ψ(m)|.

We first show the following proposition.

Proposition 3.1. Let µ1, µ2 ∈ C[0, 1] and Γ1,Γ2 ∈ C(Ω). If there exists 0 < b < 1 such that

µ1(m) = µ2(m) and Γ1(m, a) = Γ2(m, a), (16)

for m ∈ [0, b] and a ∈ [0, τmax], then,

Nµ1,Γ1(t,m) = Nµ2,Γ2(t,m), for t ≥ 0 and m ∈ [0, g(b)]. (17)

Proof. We suppose that there exists b ∈ (0, 1) such that (16) holds. Let T > 0 be given, and let t ∈ (0, T ]
and m ∈ [0, g(b)] be fixed. Since h is increasing, it follows from (4) that

χ(−t,m) ≤ m ≤ g(b) ≤ b.

Then
µ1(χ(−t,m)) = µ2(χ(−t,m)).

Let s ∈ [0, t]. Since g−1 is increasing, then

χ
(
− s, g−1

(
χ(−(t− s),m)

))
≤ g−1

(
χ(−(t− s),m)

)
≤ g−1(m) ≤ b.

Moreover, if 0 ≤ s ≤ τ
(
∆(χ(−(t− s),m))

)
, then

τ
(
∆(χ(−(t− s),m))

)
− s ∈ [0, τmax].

Thus, we have

Γ1

(
χ
(
− s, g−1

(
χ(−(t− s),m)

))
, τ

(
∆(χ(−(t− s),m))

)
− s

)

= Γ2

(
χ
(
− s, g−1

(
χ(−(t− s),m)

))
, τ

(
∆(χ(−(t− s),m))

)
− s

)
.

Since the solutions Nµ1,Γ1(t,m) and Nµ2,Γ2(t,m) of Equation (12) are continuous and satisfy

Nµ1,Γ1(0,m) = Nµ2,Γ2(0,m), for m ∈ [0, b],

8
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then, by using the locally Lipshitz continuous property of the function x 7→ xβ(m,x), we can write

|Nµ1,Γ1(t,m) −Nµ2,Γ2(t,m)|

≤ K̃L

∫ t

0

|Nµ1,Γ1(s, χ(−(t− s),m)) −Nµ2,Γ2(s, χ(−(t− s),m))|ds

+2K̃L‖ξ‖

∫ t

0

|Nµ1,Γ1(s− τ(∆(χ(−(t − s),m))),∆(χ(−(t − s),m)))

−Nµ2,Γ2(s− τ(∆(χ(−(t − s),m))),∆(χ(−(t − s),m)))|ds,

≤ K̃L

∫ t

0

‖Nµ1,Γ1(s, .) −Nµ2,Γ2(s, .)‖g(b)ds

+2K̃L‖ξ‖

∫ t

0

‖Nµ1,Γ1(s− τ(∆(χ(−(t − s),m))), .) −Nµ2,Γ2(s− τ(∆(χ(−(t − s),m))), .)‖g(b)ds,

for T > 0 small enough, where L is a Lipschitz constant of the function x 7→ xβ(m,x) and K̃ is defined
by

K(s,m) ≤ K̃, for s ∈ [0, T ] and m ∈ [0, 1].

The extension given by (9) allows to give sense to the integral terms in the above inequality.
Let θ ∈ [−τmax, 0] be given. If t+ θ < 0, then Nµ1,Γ1(t+ θ,m) = Nµ2,Γ2(t+ θ,m). If t+ θ ≥ 0, then

|Nµ1,Γ1(t+ θ,m) −Nµ2,Γ2(t+ θ,m)|

≤ K̃L

∫ t+θ

0

‖Nµ1,Γ1(s, .) −Nµ2,Γ2(s, .)‖g(b)ds

+2K̃L‖ξ‖

∫ t+θ

0

‖Nµ1,Γ1(s− τ(∆(χ(−(t + θ − s),m))), .) −Nµ2,Γ2(s− τ(∆(χ(−(t + θ − s),m))), .)‖g(b)ds,

≤ K̃L(1 + 2‖ξ‖)

∫ t

0

sup
θ∈[−τmax,0]

‖Nµ1,Γ1(s+ θ, .) −Nµ2,Γ2(s+ θ, .)‖g(b)ds.

It follows that

sup
θ∈[−τmax,0]

‖Nµ1,Γ1(t+ θ, .) −Nµ2,Γ2(t+ θ, .)‖g(b)

≤ K̃L(1 + 2‖ξ‖)

∫ t

0

sup
θ∈[−τmax,0]

‖Nµ1,Γ1(s+ θ, .) −Nµ2,Γ2(s+ θ, .)‖g(b)ds.

By using the Gronwall’s Inequality, we obtain

sup
θ∈[−τmax,0]

‖Nµ1,Γ1(t+ θ, .) −Nµ2,Γ2(t+ θ, .)‖g(b) = 0.

In particular,
‖Nµ1,Γ1(t, .) −Nµ2,Γ2(t, .)‖g(b) = 0, for t ∈ (0, T ].

By steps, this result holds for all T > 0, therefore (17) is satisfied and the proof is complete.

9
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Now, let 0 < b < g(1) be fixed and consider the sequence (bn)n∈N defined by

b0 = b and bn+1 =






∆−1(bn), if bn ∈ [0,Θ(1)),

g(1), if bn ∈ [Θ(1), g(1)].
(18)

The sequence (bn)n∈N represents the transmission of the maturity between two successive generations, n
and n+ 1. The following result is immediate.

Lemma 3.1. If 0 < b < Θ(1) := ∆(g(1)), then there exists N ∈ N such that bN < Θ(1) ≤ bN+1 ≤ g(1).

We give now a first result, which emphasizes the strong link between the process of production of cells
and the population of stem cells. A similar result has been proved by Adimy and Pujo-Menjouet [5] in
the linear case.

Theorem 3.1. Let µ1, µ2 ∈ C[0, 1] and Γ1,Γ2 ∈ C(Ω). If there exists 0 < b < 1 such that (16) holds,
then, there exists t > 0 such that

Nµ1,Γ1(t,m) = Nµ2,Γ2(t,m),

for m ∈ [0, g(1)] and t ≥ t, where t can be chosen to be

t = ln

[
h(g(1))

h(g(b))

]
+ (N + 2)τmax, (19)

and N ∈ N is given by Lemma 3.1, for b = g(b). Furthermore,

Nµ1,Γ1(t,m) = Nµ2,Γ2(t,m),

for m ∈ [g(1), 1] and t ≥ t+ τmax − ln
(
h(g(1))

)
= (N + 3)τmax − ln

(
h(g(b))

)
.

Proof. Let b = g(b). Since g is increasing, then b < g(1). Proposition 3.1 implies that

Nµ1,Γ1(t,m) = Nµ2,Γ2(t,m), for t ≥ 0 and m ∈ [0, b].

Let us reconsider the sequence (bn)n∈N, given by (18), and let us consider the sequence (tn)n∈N defined by





tn+1 = tn + ln

[
h(bn+1)

h(bn)

]
+ τmax,

t0 = 0.

(20)

Then,

tn = ln

[
h(bn)

h(g(b))

]
+ nτmax.

The sequence (bn)n∈N is increasing. Then, the sequence (tn)n∈N is also increasing. We are going to prove,
by induction, the following result

(Hn) : Nµ1,Γ1(t,m) = Nµ2,Γ2(t,m), for t ≥ tn and m ∈ [0, bn].

First, (H0) is true, from Proposition 3.1.
Let suppose that (Hn) is true for n ∈ N. Let t ≥ tn+1 and m ∈ [0, bn+1]. Then, from (20),

tn+1 ≥ tn + τmax ≥ τmax.

10
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Since Equation (12) is autonomous, its solutions can be reformulated, for t ≥ tn+1, as follows

Nµ
i
,Γi(t,m) = K(t− tn − τmax,m)Nµ

i
,Γi

(
tn + τmax, χ

(
− (t− tn − τmax),m

))

−

∫ t

tn+τmax

K(t− s,m)β

(
χ
(
− (t− s),m

)
, Nµ

i
,Γi

(
s, χ

(
− (t− s),m

)))
Nµ

i
,Γi

(
s, χ

(
− (t− s),m

))
ds

+2

∫ t

tn+τmax

K(t− s,m)ξ
(
χ
(
− (t− s),m

))
Nµ

i
,Γi

(
s− τ

(
∆(χ(−(t− s),m))

)
,∆(χ(−(t− s),m))

)
×

β

(
∆(χ(−(t− s),m)), Nµ

i
,Γi

(
s− τ

(
∆(χ(−(t− s),m))

)
,∆(χ(−(t− s),m))

))
ds,

for i = 1, 2. Remark that, from (4),

χ
(
− (t− tn − τmax),m

)
= h−1

(
h(m)e−(t−tn−τmax)

)
,

and from (20),

e−(t−tn−τmax) =
h(bn)

h(bn+1)
e−(t−tn+1),

≤
h(bn)

h(bn+1)
.

Then, we deduce that

χ
(
− (t− tn − τmax),m

)
≤ h−1

(
h(m)

h(bn)

h(bn+1)

)
,

≤ h−1

(
h(bn+1)

h(bn)

h(bn+1)

)
= bn.

Hence, (Hn) implies

Nµ1,Γ1

(
tn + τmax, χ

(
− (t− tn − τmax),m

))
= Nµ2,Γ2

(
tn + τmax, χ

(
− (t− tn − τmax),m

))
.

Furthermore, for tn + τmax ≤ s ≤ t, we have

s− τ
(
∆(χ(−(t− s),m))

)
≥ (tn + τmax) − τ

(
∆(χ(−(t− s),m)

)
≥ tn,

and
∆

(
χ(−(t− s),m)

)
≤ ∆(m) ≤ ∆(bn+1) = bn.

Consequently,

Nµ1,Γ1

(
s−τ

(
∆(χ(−(t−s),m)

)
,∆(χ(−(t−s),m))

)
= Nµ2,Γ2

(
s−τ

(
∆(χ(−(t−s),m)),∆(χ(−(t−s),m))

))
.

Then, we obtain that

|Nµ1,Γ1(t,m) −Nµ2,Γ2(t,m)| ≤

∫ t

tn+τmax

K(t− s,m)

∣∣∣∣β
(
χ(−(t− s),m), Nµ1,Γ1

(
s, χ(−(t− s),m)

))
Nµ1,Γ1

(
s, χ(−(t− s),m)

)

−β
(
χ(−(t− s),m), Nµ2,Γ2

(
s, χ(−(t− s),m)

))
Nµ2,Γ2

(
s, χ(−(t− s),m)

)∣∣∣∣ds,

11
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and, by using the Gronwall’s inequality, we deduce that (Hn+1) is true. Consequently, (Hn) is true for
n ∈ N.
In particular, (Hn) holds for n = N + 2, where N is given by Lemma 3.1, with b = g(b). Since bN+1 ∈
[Θ(1), g(1)], then bN+2 = g(1). We deduce that

Nµ1,Γ1(t,m) = Nµ2,Γ2(t,m) for m ∈ [0, g(1)] and t ≥ t, (21)

where t = tN+2 is given by (19).
Finally, take m ∈ [g(1), 1] and t ≥ t+ τmax. We can write, for i = 1, 2,

Nµ
i
,Γi(t,m) = K(t− t− τmax,m)Nµ

i
,Γi(t+ τmax, χ(−(t− t− τmax),m))

−

∫ t

t+τmax

K(t− s,m)β

(
χ
(
− (t− s),m

)
, Nµ

i
,Γi

(
s, χ

(
− (t− s),m

)))
Nµ

i
,Γi

(
s, χ

(
− (t− s),m

))
ds

+2

∫ t

t+τmax

K(t− s,m)ξ
(
χ
(
− (t− s),m

))
Nµ

i
,Γi

(
s− τ

(
∆(χ(−(t− s),m))

)
,∆(χ(−(t− s),m))

)
×

β

(
∆(χ(−(t− s),m)), Nµ

i
,Γi

(
s− τ

(
∆(χ(−(t− s),m))

)
,∆(χ(−(t− s),m))

))
ds.

Let t+ τmax ≤ s ≤ t. Then,

s− τ
(
∆(χ(−(t− s),m))

)
≥ (t+ τmax) − τ

(
∆(χ(−(t− s),m)

)
≥ t.

Consequently, if
χ(−(t− s),m) ≤ g(1),

then,
∆(χ(−(t− s),m)) ≤ ∆(g(1)) < g(1),

and (21) implies that

Nµ1,Γ1

(
s−τ

(
∆(χ(−(t−s),m))

)
,∆(χ(−(t−s),m))

)
= Nµ2,Γ2

(
s−τ

(
∆(χ(−(t−s),m))

)
,∆(χ(−(t−s),m))

)
.

On the other hand, if
χ
(
− (t− s),m

)
> g(1),

then, from the definition of ξ, we have

ξ
(
χ
(
− (t− s),m

))
= 0.

Furthermore, by remarking that ln(h(m)) ≤ 0, for all m ∈ (0, 1], then we deduce, for m ∈ [g(1), 1] and
t ≥ t+ τmax − ln(h(g(1))), that

χ
(
− (t− t− τmax),m

)
= h−1

(
h(m)e−(t−t−τmax)

)
,

≤ h−1
(
h(m)h(g(1))

)
,

≤ h−1
(
h(g(1))

)
= g(1).

Hence,

Nµ1,Γ1

(
t+ τmax, χ

(
− (t− t− τmax),m

))
= Nµ2,Γ2

(
t+ τmax, χ

(
− (t− t− τmax),m

))
.

12
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Using once again the Gronwall’s inequality, we conclude that

Nµ1,Γ1(t,m) = Nµ2,Γ2(t,m), for m ∈ [g(1), 1] and t ≥ t+ τmax − ln(h(g(1))).

This completes the proof.

Corollary 3.1. Let µ ∈ C[0, 1] and Γ ∈ C(Ω). If there exists 0 < b < 1 such that

µ(m) = 0 and Γ(m, a) = 0, for m ∈ [0, b] and a ∈ [0, τmax],

then,
Nµ,Γ(t,m) = 0, for m ∈ [0, 1] and t ≥ (N + 3)τmax − ln

(
h(g(b))

)
,

where N ∈ N is given by Lemma 3.1, for b = g(b).

This result stresses the dependence of the production of cells with the population of stem cells. In
particular, if the stem cells population is defective in the initial stage, then the entire population is doomed
to extinction in a finite time. This situation describes what usually happens with the aplastic anemia, a
disease which yields to injury or destruction of pluripotential stem cells.

In the next corollary, we show that the proliferating population depends also strongly on the stem cells
population.

Corollary 3.2. Let µ1, µ2 ∈ C[0, 1] and Γ1,Γ2 ∈ C(Ω). If there exists 0 < b < 1 such that (16) holds,
then

Pµ1,Γ1(t,m) = Pµ2,Γ2(t,m), for m ∈ [0, 1] and t ≥ (N + 3)τmax − ln
(
h(g(b))

)
,

where N ∈ N is given by Lemma 3.1, for b = g(b).

Proof. The proof is immediate by using Theorem 3.1, Equation (13) and a method of steps.

4 Behaviour of the immature cells population

In this section, we investigate the behaviour of the immature cells population, that means, the population
of cells with maturity m = 0.

Let µ ∈ C[0, 1] and Γ ∈ C(Ω) be fixed. Let us consider the continuous solutions Nµ,Γ(t,m) and
Pµ,Γ(t,m) of Problem (12)-(13). We set x(t) = Nµ,Γ(t, 0) and y(t) = Pµ,Γ(t, 0), for all t ≥ 0. Then,(
x(t), y(t)

)
is solution of the system

x(t) = e−ρtµ(0) −

∫ t

0

e−ρ(t−s)β(0, x(s))x(s)ds

+






2

∫ t

0

e−ρ(t−s)ξ(s, 0)Γ(0, r − s)ds, for t ∈ [0, r],

2

∫ r

0

e−ρ(t−s)ξ(s, 0)Γ(0, r − s)ds+ 2ξ(0)

∫ t

r

e−ρ(t−s)β(0, x(s− r))x(s − r)ds, for r ≤ t,

(22)
and

y(t) = e−ηtΓ(0) +

∫ t

0

e−η(t−s)β(0, x(s))x(s)ds

−





∫ t

0

e−η(t−s)π(s, 0)Γ(0, r − s)ds, for t ∈ [0, r],
∫ r

0

e−η(t−s)π(s, 0)Γ(0, r − s)ds+ π(0)

∫ t

r

e−η(t−s)β(0, x(s− r))x(s − r)ds, for r ≤ t,

(23)

13
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where ρ := δ(0) + V ′(0), η := γ(0) + V ′(0) and r := τ(0) > 0.
Let us recall that ξ(0) = ξ(r, 0), π(0) = π(r, 0) and

Γ(0) =

∫ r

0

Γ(0, a)da.

Then, we easily deduce that System (22)-(23) is equivalent to the system





dx

dt
(t) = −

(
ρ+ β(0, x(t))

)
x(t) +

{
2ξ(t, 0)Γ(0, r − t), for 0 ≤ t ≤ r,

2ξ(0)β(0, x(t− r))x(t − r), for r ≤ t,
x(0) = µ(0),

(24)






dy

dt
(t) = −ηy(t) + β(0, x(t))x(t) −

{
π(t, 0)Γ(0, r − t), for 0 ≤ t ≤ r,
π(0)β(0, x(t − r))x(t − r), for r ≤ t,

y(0) = Γ(0).
(25)

Of course, at t = r, the derivatives in (24) and (25) represent the right-hand side and the left-hand side
derivatives.
First, consider the system, for t ∈ [0, r],





dφ

dt
(t) = −

(
ρ+ β(0, φ(t))

)
φ(t) + 2ξ(t, 0)Γ(0, r − t),

dψ

dt
(t) = −ηψ(t) + β(0, φ(t))φ(t) − π(t, 0)Γ(0, r − t),

(26)

with {
φ(0) = µ(0),
ψ(0) = Γ(0).

(27)

It is obvious that, under the assumptions that the function x 7→ β(0, x) is bounded and the function
x 7→ xβ(0, x) is locally Lipschitz continuous, Problem (26)-(27) has a unique solution

(
φ(t), ψ(t)

)
, for

t ∈ [0, r]. Remark that ψ(t) is explicitly given by

ψ(t) = e−ηt
∫ r−t

0

Γ(0, a)da+

∫ t

0

e−η(t−s)β(0, φ(s))φ(s)ds, for t ∈ [0, r]. (28)

Moreover, if µ(0) ≥ 0 and Γ(0, ·) ≥ 0, then φ(t) and ψ(t) are nonnegative.
Hence, for t ≥ r, Problem (24)-(25) reduces to the delay differential system

dx

dt
(t) = −

(
ρ+ β(0, x(t))

)
x(t) + 2ξ(0)β(0, x(t − r))x(t − r), (29)

dy

dt
(t) = −ηy(t) + β(0, x(t))x(t) − π(0)β(0, x(t− r))x(t − r), (30)

with, for t ∈ [0, r], {
x(t) = φ(t),
y(t) = ψ(t).

(31)

As ψ(t), for t ∈ [0, r], y(t) is explicitly given, for t ≥ r, by

y(t) =

∫ t

t−r

e−η(t−s)β(0, x(s))x(s)ds. (32)

14
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Proposition 4.1. Assume that the function x 7→ β(0, x) is bounded and the function x 7→ xβ(0, x) is
locally Lipshitz continuous. Let µ ∈ C[0, 1] and Γ ∈ C(Ω) be given. Then, Problem (29)-(31) has a unique
solution

(
xφ(t), yψ(t)

)
, defined for t ≥ 0, where

(
φ(t), ψ(t)

)
is the unique solution of (26)-(27). Moreover,(

xφ(t), yψ(t)
)

has a continuous derivative at t = r if and only if

Γ(0, 0) = β
(
0, µ(0)

)
µ(0). (33)

Furthermore, if µ(0) ≥ 0 and Γ(0, ·) ≥ 0, then xφ(t) and yψ(t) are nonnegative.

Proof. Existence, uniqueness and regularity of solutions of Problem (29)-(31) come from Hale and Verduyn
Lunel [14]. The positivity of xφ(t) is easily obtained by steps. Moreover, by using (32), we deduce
immediatly the positivity of yψ(t).

In the sequel, we will consider, for a biological reason, only nonnegative solutions of Problem (29)-(30).

Lemma 4.1. If limt→+∞ xφ(t) = C exists, then limt→+∞ yψ(t) exists and is equal to




1

η
(1 − e−ηr)β(0, C)C, if η > 0,

rβ(0, C)C, if η = 0.

Proof. We assume that
lim

t→+∞
xφ(t) = C.

By using (32), we obtain that

yψ(t) =

∫ r

0

e−ηsβ(0, xφ(t− s))xφ(t− s)ds, for t ≥ r.

Then, we easily conclude that

lim
t→+∞

yψ(t) =

( ∫ r

0

e−ηsds

)
β(0, C)C.

This ends the proof.

Lemma 4.1 implies that, in order to study the stability of the solutions of Problem (29)-(30), we only
need to concentrate on the stability of the solutions of the delay differential equation (29).

In [16], Mackey has proposed that the function β(0, ·) is a Hill function, defined by

β(0, x) = β0
θn

θn + xn
, (34)

where β0 and θ are two positive constants and n ≥ 1. This function is used to describe, from a reasonable
biological point of view, the fact that the rate of re-entry in the proliferating compartment is a decreasing
function of the total number of resting cells.
We recall that the function x 7→ β(0, x) is supposed to be continuous and positive. From now on, we also
suppose that x 7→ β(0, x) is decreasing on [0,+∞) and satisfies

lim
x→+∞

β(0, x) = 0. (35)

These assumptions have been done, for the first time, by Mackey [16] in 1978 and have been used by
Mackey and Rudnicki [20] in 1994.
Before studying the stability of Problem (29)-(30), we recall a non-trivial property of the solutions of (29).
The result in Proposition 4.2 has been proved for a similar equation by Mackey and Rudnicki [20], in 1994.

15
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Proposition 4.2. Assume that ρ > 0. Then, every solution of Equation (29) is bounded.

One can notice that, if ρ = 0, then Equation (29) may have unbounded solutions. A counter example
is given in the next proposition.

Proposition 4.3. Assume that ρ = 0 and that there exists x > 0 such that the function x 7→ xβ(0, x) is
decreasing on [x,+∞). Let µ ∈ C[0, 1] and Γ ∈ C(Ω) be such that (33) holds, µ(0) > x and

2ξ(t, 0)Γ(0, r − t) > Γ(0, 0), for t ∈ [0, r]. (36)

Then, the solution of Equation (29) is unbounded.

Proof. Let consider the solution x(t) of the problem

{
x′(t) = 2ξ(0)β(0, x(t− r))x(t − r) − β(0, x(t))x(t), for t ≥ r,
x(t) = φ(t), for 0 ≤ t ≤ r.

First, one can notice that, if limt→+∞ x(t) exists and is equal to C, then C = 0.
By contradiction, if we suppose that C > 0, then we obtain that

lim
t→+∞

x′(t) =
(
2ξ(0) − 1

)
β(0, C)C > 0,

because Condition (36) implies that 2ξ(0) > 1. This contradicts the fact that x(t) converges. Then C = 0.
Secondly, let µ ∈ C[0, 1] and Γ ∈ C(Ω) be such that (33) and (36) hold, and µ(0) > x. The solution φ(t)
of the problem {

φ′(t) = 2ξ(t, 0)Γ(0, r − t) − β(0, φ(t))φ(t), for t ≥ r,
φ(0) = µ(0),

satisfies
φ′(0) = 2ξ(0, 0)Γ(0, r) − Γ(0, 0) > 0.

Consequently, there exists ǫ ∈ (0, r] such that φ′(t) > 0, for t ∈ [0, ǫ).
Hence, φ(0) < φ(ǫ). Then,

φ′(ǫ) > Γ(0, 0)− β(0, φ(ǫ))φ(ǫ),
≥ β(0, µ(0))µ(0) − β(0, φ(ǫ))φ(ǫ),
≥ 0.

By steps, we conclude that φ′(t) > 0, for t ∈ [0, r].
By the same way, we obtain that

x′(r) > β(0, φ(0))φ(0) − β(0, φ(r))φ(r) ≥ 0.

By using the same reasonning, we show that x′(t) > 0, for t ≥ r. Hence, x is unbounded and the proof is
complete.

Remark 1. Even if the trivial solution of (29) is unstable, the trivial solution of (30) may be stable. For
example, if limt→+∞ xφ(t) = +∞, then, by using (32) and (35), we easily obtain that limt→+∞ yψ(t) = 0.

The assumption on the function x 7→ xβ(0, x), in Proposition 4.3, holds, for example, if β is given by (34)
with n > 1. In this case, the function x 7→ xβ(0, x) is decreasing for x ≥ x = θ/(n− 1)1/n.
We determine, in the next theorem, the global stability area of the trivial solution of Equation (29).

Theorem 4.1. The trivial solution of Equation (29) is globally stable if and only if

(2ξ(0) − 1)β(0, 0) < ρ.
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Proof. First, we assume that (2ξ(0) − 1)β(0, 0) < ρ. We are going to show the global stability by using a
Lyapunov functional.
We denote by C+ the subset of C[0, r] containing nonnegative functions. We set

f(x) = xβ(0, x)

and

F(x) =

∫ x

0

f(s)ds, for x ≥ 0.

We define the mapping J : C+ → R by

J(φ) = F(φ(r)) + ξ(0)

∫ r

0

f2(φ(σ))dσ, for φ ∈ C+.

Then
•

J(φ) =
dφ

dt
(r)f(φ(r)) + ξ(0)

(
f2(φ(r)) − f2(φ(0))

)
.

Since
dφ

dt
(r) = −ρφ(r) − f

(
φ(r)

)
+ 2ξ(0)f

(
φ(0)

)
,

then

•

J(φ) = −ρβ(0, φ(r))φ2(r) − f2(φ(r)) + ξ(0)
(
f2(φ(r)) + 2f(φ(r))f(φ(0)) − f2(φ(0))

)
,

= −
(
ρ+ β(0, φ(r))

)
β(0, φ(r))φ2(r) + 2ξ(0)f2(φ(r)) − ξ(0)

(
f(φ(r)) − f(φ(0))

)2

.

Hence,
•

J(φ) ≤ −
(
ρ−

(
2ξ(0) − 1

)
β(0, φ(r))

)
β(0, φ(r))φ2(r).

Since (2ξ(0) − 1)β(0, 0) < ρ and the function x 7→ β(0, x) is decreasing and positive on R
+, then the

function
λ(u) =

(
ρ−

(
2ξ(0) − 1

)
β(0, u)

)
β(0, u)u2

is nonnegative on R
+ and λ(u) = 0 if and only if u = 0. Consequently, every solution of Equation (29)

with φ ∈ C+ tends to zero as t tends to +∞.
Now, if we assume that ρ ≤ (2ξ(0) − 1)β(0, 0), then, immediatly,

−(ρ+ β(0, 0)) ≥ −2ξ(0)β(0, 0).

Hence, by using Bellman and Cooke ([6], Theorem 13.8), we obtain that the trivial solution of (29) is
unstable.

Remark that, by using Lemma 4.1, if (2ξ(0) − 1)β(0, 0) < ρ, then the trivial solution of (30) is also
globally stable.

We are going to use the results of Theorem 4.1 in the next sections to obtain global stability and
instability for the solutions of Problem (12)-(13).
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5 Global stability for the maturity structured model

In this section, we establish a result of global stability for Problem (12)-(13) which stresses the influence
of immature cells on the total population. First, we recall some definitions.

Definition 5.1. The trivial solution of Problem (12)-(13) is locally stable if, for all ε > 0, there exist
ν > 0 and T > 0 such that, if µ ∈ C[0, 1] and Γ ∈ C(Ω) satisfy

‖µ‖ < ν and ‖Γ‖Ω < ν,

then
‖Nµ,Γ(t, .)‖ < ε and ‖Pµ,Γ(t, .)‖ < ε, for t ≥ T. (37)

The trivial solution of Problem (12)-(13) is globally stable if, for all ε > 0, there exists T > 0 such that
(37) holds.

Throughout this section, we assume that the function x 7→ β(m,x) is uniformly bounded and that the
function x 7→ xβ(m,x) is locally Lipschitz continuous for all m ∈ [0, 1]. In the next theorem, we show our
main result, which makes the link between the global stability of the trivial solution of Problem (12)-(13)
and the stability of the immature cells population.

Theorem 5.1. Assume that Condition (14) holds. Let us suppose that the trivial solution of Problem
(12)-(13) is locally stable. Then this solution is globally stable on the set

ΩGS =
{
(µ,Γ) ∈ C[0, 1]× C(Ω) : lim

t→+∞
Nµ,Γ(t, 0) = lim

t→+∞
Pµ,Γ(t, 0) = 0

}
.

Proof. We first show that, if the trivial solution of Equation (12) is locally stable, then it is globally stable
on the set

ΩN =
{

(µ,Γ) ∈ C[0, 1] × C(Ω) : lim
t→+∞

Nµ,Γ(t, 0) = 0
}
.

Let us suppose that the trivial solution of (12) is locally stable. Then, for all µ ∈ C[0, 1], Γ ∈ C(Ω) and
ε > 0, there exist ν > 0 and T > 0, such that, if

‖µ‖ < ν and ‖Γ‖Ω < ν,

then,
|Nµ,Γ(t,m)| < ε, for t ≥ T and m ∈ [0, 1]. (38)

Let ε > 0 be given and let (µ,Γ) ∈ ΩN . Then limt→+∞Nµ,Γ(t, 0) = 0, so there exists t0 > 0 such that

|Nµ,Γ(t, 0)| <
ν

2
, for t ≥ t0.

Let ζ ∈ C[0, 1] and Υ ∈ C(Ω) be given. Since the solutions of Equation (12) are continuous, then there
exists δ > 0 such that, if

|ζ(m) − µ(0)| < δ and |Υ(m, a) − Γ(0, a)| < δ,

for m ∈ [0, 1] and a ∈ [0, τmax], then

|N ζ,Υ(t,m) −Nµ,Γ(t, 0)| <
ν

2
,

for t ∈ [t0, t0 + τmax] and m ∈ [0, 1].
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Now, since µ and Γ are continuous, then there exists b ∈ (0, 1) such that

|µ(m) − µ(0)| < δ and |Γ(m, a) − Γ(0, a)| < δ,

for m ∈ [0, b] and a ∈ [0, τmax]. We define the following functions,

µb(m) =

{
µ(m), if m ∈ [0, b],
µ(b), if m ∈ [b, 1],

and Γb(m, .) =

{
Γ(m, .), if m ∈ [0, b],
Γ(b, .), if m ∈ [b, 1].

Then, for m ∈ [0, 1] and a ∈ [0, τmax], we get

|µb(m) − µ(0)| < δ and |Γb(m, a) − Γ(0, a)| < δ.

Consequently,

|Nµ
b
,Γb(t,m) −Nµ,Γ(t, 0)| <

ν

2
,

for t ∈ [t0, t0 + τmax] and m ∈ [0, 1]. It follows that

|Nµ
b
,Γb(t,m)| < ν, for t ∈ [t0, t0 + τmax] and m ∈ [0, 1].

Since Nµ
b
,Γb(t,m) is a solution of Equation (12) and since this equation is autonomous for t large enough,

then Nµ
b
,Γb(t,m) becomes an initial condition of (12) on [t0, t0 + τmax] × [0, 1]. We deduce, from (38),

that there exists T̃ ≥ t0 + τmax such that

|Nµ
b
,Γb(t,m)| < ε, for t ≥ T̃ and m ∈ [0, 1].

From Theorem 3.1, there exists t > 0 such that

Nµ
b
,Γb(t,m) = Nµ,Γ(t,m), for t ≥ t+ τmax − ln

(
h(g(1))

)
and m ∈ [0, 1].

Hence,
‖Nµ,Γ(t, .)‖ < ε, for t ≥ max

{
T̃ , t+ τmax − ln

(
h(g(1))

)}
.

Then, the trivial solution of Equation (12) is globally stable.
By the same way and using Corollary 3.2, we show that, if µ and Γ are such that

lim
t→+∞

Pµ,Γ(t, 0) = 0,

then, the trivial solution of Equation (13) is globally stable. This completes the proof.

Remark 2. One has to notice that the result in Theorem 5.1 allows us to obtain the global exponential sta-
bility of the trivial solution of Problem (12)-(13) on the set ΩGS, when this solution is locally exponentially
stable. The proof, in this case, is identical to the previous one.

The behaviour of the immature cells population has been studied in Section 4. The local stability
of System (12)-(13) has been studied by Adimy and Crauste [2]. The author proved that, under the
assumptions that the function x 7→ β(m,x) is uniformly bounded and the function x 7→ xβ(m,x) is
locally Lipschitz continuous for all m ∈ [0, 1], then the trivial solution of (12)-(13) is locally exponentially
stable if
(

1+2 sup
(m,t)∈Ω∆

ξ(t,m)

)
sup

m∈[0,1]

(
β(m, 0)

)
< min

{
inf

m∈[0,1]

(
δ(m)+V ′(m)

)
, inf
m∈[0,1]

(
γ(m)+V ′(m)

)}
. (39)

The proof is based on an induction reasonning.
Then, we can deduce the following corollary, which deals with the global stability of the system.
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Corollary 5.1. Assume that Condition (14) and Inequality (39) hold. Then the trivial solution of System
(12)-(13) is globally exponentially stable.

Proof. From Inequality (39), we obtain the local exponential stability of the trivial solution of (12)-(13).
From the definition of ρ, we get

inf
m∈[0,1]

(
δ(m) + V ′(m)

)
≤ ρ.

Moreover,
ξ(0) ≤ sup

(m,t)∈Ω∆

ξ(t,m) and β(0, 0) ≤ sup
m∈[0,1]

β(m, 0).

Hence, we obtain
(2ξ(0) − 1)β(0, 0) < ρ.

Then, Theorem 4.1 yields to the global stability of the trivial solution of (29)-(30)
By using Theorem 5.1 and Remark 2, we conclude.

As an example, let us suppose that δ ≥ 0 and γ ≥ 0 are constant, V and g are linear functions of the
maturity m, given, for m ∈ [0, 1], by

V (m) = m, and g(m) =
1

κ
m, with κ > 1,

and the function β is a Hill function (see Mackey [16]), defined by

β(m,x) = β0(m)
θn(m)

θn(m) + xn
,

with β0 and θ two continuous and positive functions on [0, 1], and n > 1. One can remark that, in this
case, the function V satisfies Condition (1).
Furthermore, we assume that the function τ is given, for m ∈ [0, 1], by

τ(m) = ln(m+ α), with α > 1.

In this case, τ is increasing. Therefore, Condition (2) is satisfied. We obtain that

∆(m) =
1

2

(√
4κm+ α2 − α

)
, for m ∈ [0, 1],

and the characteristic curves are given by

χ(s,m) = mes, for s ≤ 0 and m ∈ [0, 1].

By remarking that ∆(m) < m for m ∈ (0, 1] if and only if α > κ, then we obtain that the trivial solution
of (12)-(13) is globally exponentially stable if

(1 + 2κ) sup
m∈[0,1]

β0(m) < min{δ, γ} and α > κ.

In the next section, we conclude our asymptotic study by giving a result of instability, based on the
results of Section 4.
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6 Instability

The trivial solution of (12) is unstable if it is not stable, this means, if there exists ε > 0 such that, for all
ν > 0, there exists (µ,Γ) ∈ C[0, 1] × C(Ω) which satisfies

‖µ‖ < ν and ‖Γ‖Ω < ν,

and
‖Nµ,Γ(t, .)‖ > ε, for t ≥ 0.

In the next theorem, we show that the instability of the immature cells population leads to the instability
of the entire population.

Theorem 6.1. Assume that
ρ ≤ (2ξ(0) − 1)β(0, 0). (40)

Then, the trivial solution of Problem (12) is unstable.

Proof. From Theorem 4.1 and (40), we obtain that the trivial solution of Equation (29) is unstable. That
is there exist ε > 0, µ ∈ C[0, 1] and Γ ∈ C(Ω) such that Nµ,Γ(t, 0) does not tend to zero when t goes to
infinity. Then, there exist ε > 0 and (tn)n∈N, with tn → +∞, such that

Nµ,Γ(tn, 0) > ε, for n ∈ N.

Let us suppose, by contradiction, that the trivial solution of (12) is stable. Then, in particular, there exist
ν > 0 and T > 0 such that, if

‖µ‖ < ν and ‖Γ‖Ω < ν,

then
‖Nµ,Γ(t, .)‖ < ε, for t ≥ T.

Consequently,
|Nµ,Γ(tn, 0)| < ε, for n ∈ N such that tn ≥ T.

Since we can choose µ and Γ as small as necessary, this yields a contradiction. We deduce the instability
of the trivial solution of (12).

One can remark that, even if the trivial solution of (12) is unstable, the trivial solution of (13) may be
stable.
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