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We analyse the asymptotic behaviour of a nonlinear mathematical model of cellular proliferation which describes the production of blood cells in the bone marrow. This model takes the form of a system of two maturity structured partial differential equations, with a retardation of the maturation variable and a time delay depending on this maturity. We show that the stability of this system depends strongly on the behaviour of the immature cells population. We obtain conditions for the global stability and the instability of the trivial solution.

Introduction and motivation

This paper is devoted to the analysis of a maturity structured model which involves descriptions of process of blood production in the bone marrow (hematopoiesis). Cell biologists recognize two main stages in the process of hematopoietic cells: a resting stage and a proliferating stage (see Burns and Tannock [8]).

The resting phase, or G 0 -phase, is a quiescent stage in the cellular development. Resting cells mature but they can not divide. They can enter the proliferating phase, provided that they do not die. The proliferating phase is the active part of the cellular development. As soon as cells enter the proliferating phase, they are committed to divide, during mitosis. After division, each cell gives birth to two daughter cells which enter immediatly the resting phase, and complete the cycle. Proliferating cells can also die without ending the cycle.

The model considered in this paper has been previously studied by Mackey and Rudnicki in 1994 [START_REF] Mackey | Global stability in a delayed partial differential equation describing cellular replication[END_REF] and in 1999 [START_REF] Mackey | A new criterion for the global stability of simultaneous cell replication and maturation processes[END_REF], in the particular case when the proliferating phase duration is constant. That is, when

The maturity is a continuous variable which represents what composes a cell, such as proteins or other elements one can measure experimentally. It is supposed to range, in the two phases, from m = 0 to m = 1. Cells with maturity m = 0 are the most primitive stem cells, also called immature cells, whereas cells with maturity m = 1 are ready to enter the bloodstream, they have reached the end of their development.

In the two phases, cells mature with a velocity V (m), which is assumed to be continuously differentiable on [0, 1], positive on (0, 1] and such that V (0) = 0 and 

Since m2 m1 ds V (s) , with m 1 < m 2 , is the time required for a cell with maturity m 1 to reach the maturity m 2 , then Condition [START_REF] Adimy | Global stability of a partial differential equation with distributed delay due to cellular replication[END_REF] means that a cell with very small maturity needs a long time to become mature. For example, Condition [START_REF] Adimy | Global stability of a partial differential equation with distributed delay due to cellular replication[END_REF] is satisfied if V (m) ∼ m→0 αm p , with α > 0 and p ≥ 1.

In the resting phase, cells can die at a rate δ = δ(m) and can also be introduced in the proliferating phase with a rate β. In the proliferating phase, cells can also die, by apoptosis (a programmed cell death), at a rate γ = γ(m). The functions δ and γ are supposed to be continuous and nonnegative on [0, 1]. The rate β of re-entry in the proliferating phase is supposed to depend on cells maturity and on the resting population density (see Sachs [START_REF] Sachs | The molecular control of hemopoiesis and leukemia[END_REF]), that is, β = β(m, N (t, m)). The mapping β is supposed to be continuous and positive.

Proliferating cells are committed to undergo mitosis a time τ after their entrance in this phase. We assume that τ depends on the maturity of the cell when it enters the proliferating phase, that means, if a cell enters the proliferating phase with a maturity m, then it will divide a time τ = τ (m) later. The function τ is supposed to be positive, continuous on [0, 1], continuously differentiable on (0, 1] and such that

τ ′ (m) + 1 V (m) > 0, for m ∈ (0, 1]. (2) 
One can notice that this condition is always satisfied in a neighborhood of the origin, because V (0) = 0, and is satisfied if we assume, for example, that τ is increasing (which describes the fact that the less mature cells divide faster than more mature cells). Under Condition (2), if m ∈ (0, 1] is given, then the mapping

m → m e m ds V (s) -τ ( m)
is continuous and strictly decreasing from (0, m] into [-τ (m), +∞). Hence, we can define a function Θ :

(0, 1] → (0, 1], by m Θ(m) ds V (s) = τ (Θ(m)), for m ∈ (0, 1].
The quantity Θ(m) represents the maturity of a cell at the point of commitment when this cell divides at a maturity level m. The function Θ is continuously differentiable and strictly increasing on (0, 1] and satisfies lim m→0

Θ(m) = 0 and 0 < Θ(m) < m, for m ∈ (0, 1]. If we consider the characteristic curves χ : (-∞, 0] × [0, 1] → [0, 1], solutions of the ordinary differential equation dχ ds (s, m) = V (χ(s, m)), s ≤ 0 and m ∈ [0, 1], χ(0, m) = m,
then, it is easy to check that, for m ∈ [0, 1], Θ(m) is the unique solution of the equation

x = χ(-τ (x), m). (3) 
The characteristic curves χ(s, m) represent the evolution of the cell maturity to reach a maturity m at time 0 from a time s ≤ 0. They satisfy χ(s, 0) = 0 and χ(s, m) ∈ (0, 1] for s ≤ 0 and m ∈ (0, 1]. Moreover, we can verify that the characteristic curves are given by

χ(s, m) = h -1 (h(m)e s ), for s ≤ 0 and m ∈ [0, 1], (4) 
where the continuous function h

: [0, 1] → [0, 1] is defined by h(m) =    exp - 1 m ds V (s) , for m ∈ (0, 1], 0, for m = 0.
Since h is increasing, the two functions s → χ(s, m) and m → χ(s, m) are also increasing. At the end of the proliferating phase, a cell with a maturity m divides into two daughter cells with maturity g(m). We assume that g : [0, 1] → [0, 1] is a continuous and strictly increasing function, continuously differentiable on [0, 1) and such that g(m) ≤ m for m ∈ [0, 1]. We also assume, for technical reason and without loss of generality, that lim

m→1 g ′ (m) = +∞.
Then we can set

g -1 (m) = 1, for m > g(1)
.

This means that the function g -1 : [0, 1] → [0, 1] is continuously differentiable and satisfies (g -1 ) ′ (m) = 0, for m > g [START_REF] Adimy | Global stability of a partial differential equation with distributed delay due to cellular replication[END_REF]. We set

∆(m) = Θ(g -1 (m)), for m ∈ [0, 1].
The quantity ∆(m) is the maturity of a mother cell at the point of commitment, when the daughter cells have a maturity m at birth. The function ∆ : [0, 1] → [0, 1] is continuous and continuously differentiable on (0, 1]. It satisfies ∆(0) = 0, ∆ is strictly increasing on (0, g(1)), with Θ(m) ≤ ∆(m), and ∆(m) = Θ(1) for m ∈ [g(1), 1]. At time t = 0, the resting and proliferating populations are given by

N (0, m) = µ(m), (5) 
and

P (0, m) = Γ(m) := τ (Θ(m)) 0 Γ(m, a)da, (6) 
where Γ(m, a) is the density of cells with maturity m, at time t = 0, which have spent a time a in the proliferating phase, or, equivalently, with age a. The functions µ and Γ are supposed to be continuous on their domains. We define the sets

Ω := [0, 1] × [0, τ max ],
where

τ max := max m∈[0,1] τ (m) > 0, Ω ∆ := (m, t) ∈ Ω ; 0 ≤ t ≤ τ (∆(m)) ,
and

Ω Θ := (m, t) ∈ Ω ; 0 ≤ t ≤ τ (Θ(m)) .
Then, the population densities N (t, m) and P (t, m) satisfy, for m ∈ [0, 1] and t ≥ 0, the following equations,

∂ ∂t N (t, m) + ∂ ∂m (V (m)N (t, m)) = -δ(m) + β m, N (t, m) N (t, m) +                2ξ(t, m)Γ χ -t, g -1 (m) , τ (∆(m)) -t , if (m, t) ∈ Ω ∆ , 2ξ τ (∆(m)), m β ∆(m), N t -τ (∆(m)), ∆(m) × N t -τ (∆(m)), ∆(m) , if (m, t) / ∈ Ω ∆ , (7) 
and

∂ ∂t P (t, m) + ∂ ∂m (V (m)P (t, m)) = -γ(m)P (t, m) + β m, N (t, m) N (t, m) -                π(t, m)Γ χ -t, m , τ (Θ(m)) -t , if (m, t) ∈ Ω Θ , π τ (Θ(m)), m β Θ(m), N t -τ (Θ(m)), Θ(m) × N t -τ (Θ(m)), Θ(m) , if (m, t) / ∈ Ω Θ , (8) 
where the mappings ξ : Ω ∆ → [0, +∞) and π : Ω Θ → [0, +∞) are continuous and satisfy

ξ(•, m) = 0 if m > g(1)
, because, from the definition of g, a daughter cell can not have a maturity greater than g [START_REF] Adimy | Global stability of a partial differential equation with distributed delay due to cellular replication[END_REF].

In Equation [START_REF] Bradford | Quiescence, cycling, and turnover in the primitive haematopoietic stem cell compartment[END_REF], the first term in the right hand side accounts for cellular loss, through cells death (δ) and introduction in the proliferating phase (β). The second term describes the contribution of proliferating cells, one generation time ago. In a first time, cells can only proceed from cells initially in the proliferating phase (Γ). Then, after one generation time, all cells have divided and the contribution can only comes from resting cells which have been introduced in the proliferating phase one generation time ago. The factor 2 always accounts for mitosis. The quantity ξ(t, m) is for the rate of surviving cells. In Equation [START_REF] Burns | On the existence of a G 0 phase in the cell cycle[END_REF], the first term in the right hand side also accounts for cellular loss, whereas the second term is for the contribution of the resting phase. The third term describes the same situation as in Equation ( 7), however, in this case, cells leave the proliferating phase to the resting one. The quantity π(t, m) is also for the rate of surviving cells. We can observe two different behaviours of the rates of surviving cells, in the two phases. In a first time, they depend on time and maturity, and after a certain time, they only depend on the maturity variable. When the process of production of blood cells has just begun, the only cells which divide come from the initial proliferating phase population. But after one cellular cycle, that means when t > τ (∆(m)) (respectively, t > τ (Θ(m))), the amount of cells only comes from resting cells (respectively, proliferating cells) which have been introduced in the proliferating phase (respectively, resting phase) one generation time ago. Consequently, we take into account the duration of the cell cycle, and not the present time. Equations ( 7) and ( 8) are derived, after integration, from an age-maturity structured model, presented by the authors in [START_REF] Adimy | Existence, positivity and stability for a model of cellular proliferation[END_REF]. In fact, the rates ξ and π are explicitly given (see [START_REF] Adimy | Existence, positivity and stability for a model of cellular proliferation[END_REF]) by

ξ(t, m) = (g -1 ) ′ (m) exp - t 0 γ χ(-s, g -1 (m)) + V ′ χ(-s, g -1 (m)) ds , and 
π(t, m) = α(m) exp - t 0 γ χ(-s, m) + V ′ χ(-s, m) ds ,
with α : [0, 1] → [0, +∞) a positive and continuous function, such that α(0) = 1. In the following, to simplify the notations, we will denote by ξ and π the quantities

ξ(m) = ξ τ (∆(m)), m , and π(m) = π τ (Θ(m)), m .
One can remark that the solutions of Equation ( 7) do not depend on the solutions of Equation ( 8), whereas the converse is not true. Before we study the asymptotic behaviour of the solutions of Problem ( 5)-( 8), we establish an integrated formulation of this problem. We first extend N by setting

N (t, m) = µ(m), for t ∈ [-τ max , 0] and m ∈ [0, 1]. (9) 
One can remark that this extension does not influence the system. We also define two mappings,

F : [0, +∞) × [0, 1] × R → R and G : [0, +∞) × [0, 1] × R → R, by F (t, m, x) =      2ξ(t, m)Γ χ -t, g -1 (m) , τ (∆(m)) -t , if (m, t) ∈ Ω ∆ , 2ξ(m)β ∆(m), x x, if (m, t) / ∈ Ω ∆ , (10) 
and

G(t, m, x) =      π(t, m)Γ χ -t, m , τ (Θ(m)) -t , if (m, t) ∈ Ω Θ , π(m)β Θ(m), x x, if (m, t) / ∈ Ω Θ . (11) 
We denote by C[0, 1] the space of continuous functions on [0, 1], endowed with the supremum norm ||.||, defined by

||v|| = sup m∈[0,1] |v(m)|, for v ∈ C[0, 1],
and we consider the unbounded closed linear operator A :

D(A) ⊂ C[0, 1] → C[0, 1] defined by D(A) = u ∈ C[0, 1] ; u differentiable on (0, 1], u ′ ∈ C(0, 1], lim x→0 V (x)u ′ (x) = 0 and Au(x) = -(δ(x) + V ′ (x))u(x) -V (x)u ′ (x), if x ∈ (0, 1], -(δ(0) + V ′ (0))u(0), if x = 0.
Proposition 2.1. The operator A is the infinitesimal generator of the strongly continuous semigroup

(T (t)) t≥0 defined on C[0, 1] by (T (t)ψ)(x) = K(t, x)ψ(χ(-t, x)), for ψ ∈ C[0, 1], t ≥ 0 and x ∈ [0, 1],
where

K(t, x) = exp - t 0 δ χ(-s, x) + V ′ χ(-s, x) ds .
Proof. The proof is similar to the proof of Proposition 2.4 in Dyson et al. [START_REF] Dyson | A singular transport equation modelling a proliferating maturity structured cell population[END_REF]. Now, by using the variation of constants formula associated to the C 0 -semigroup (T (t)) t≥0 , we can write an integrated formulation of Problem ( 5)- [START_REF] Burns | On the existence of a G 0 phase in the cell cycle[END_REF].

Let C(Ω) be the space of continuous functions on Ω, endowed with the norm

Υ Ω := sup (m,a)∈Ω |Υ(m, a)|, for Υ ∈ C(Ω).
Let µ ∈ C[0, 1] and Γ ∈ C(Ω). An integrated solution of Problem ( 5)-( 8) is a continuous solution of the system

N (t, m) = K(t, m)µ χ(-t, m) - t 0 K(t -s, m)β χ(-(t -s), m), N s, χ(-(t -s), m) N s, χ(-(t -s), m) ds + t 0 K(t -s, m)F s, χ(-(t -s), m), N s -τ (∆(χ(-(t -s), m))), ∆(χ(-(t -s), m)) ds, (12) 
and

P (t, m) = H(t, m)Γ χ(-t, m) + t 0 H(t -s, m)β χ(-(t -s), m), N s, χ(-(t -s), m) N s, χ(-(t -s), m) ds - t 0 H(t -s, m)G s, χ(-(t -s), m), N s -τ (Θ(χ(-(t -s), m))), Θ(χ(-(t -s), m)) ds, (13) 
for t ≥ 0 and m ∈ [0, 1], where F and G are given by ( 10) and [START_REF] Dyson | A singular transport equation modelling a proliferating maturity structured cell population[END_REF], Γ is given by ( 6) and

H(t, m) := exp - t 0 γ χ(-s, m) + V ′ χ(-s, m) ds , for t ≥ 0 and m ∈ [0, 1].
We can easily prove (see [START_REF] Adimy | Existence, positivity and stability for a model of cellular proliferation[END_REF]), under the assumptions that the function x → β(m, x) is uniformly bounded and the function x → xβ(m, x) is locally Lipschitz continuous for all m ∈ [0, 1], that Problem ( 12)-( 13) has a unique continuous global solution (N µ,Γ , P µ,Γ ), for initial conditions (µ, Γ) ∈ C[0, 1] × C(Ω).

A uniqueness result

In this section, we establish more than uniqueness. Indeed, we show a result which stresses, for a finite time, the dependence of the entire population with the small maturity cells population. It has been shown for the first time by Dyson et al. [START_REF] Dyson | A singular transport equation modelling a proliferating maturity structured cell population[END_REF], for a model with a constant delay. We will see that this result is important in order to obtain the asymptotic behaviour of the solutions of ( 12)-( 13).

We first assume that

∆(m) < m, for all m ∈ (0, 1]. ( 14 
)
This condition is equivalent to

τ (∆(m)) > g -1 (m) m ds V (s) , for m ∈ (0, 1]. ( 15 
)
This equivalence is immediate when one notices that, from (3),

∆(m) = χ -τ (∆(m)), g -1 (m) = h -1 h(g -1 (m))e -τ (∆(m)) .
Since the quantity g -1 (m) m ds V (s) represents the time required for a cell with maturity m, at birth, to reach the maturity of its mother at the cytokinesis point (the point of division), Condition [START_REF] John | The cell cycle[END_REF] means that, in the proliferating phase, cells have enough time to reach the maturity of their mother. Condition [START_REF] Hale | Introduction to functional differential equations[END_REF] implies in particular that Θ(1) := ∆(g(1)) < g [START_REF] Adimy | Global stability of a partial differential equation with distributed delay due to cellular replication[END_REF].

From now on, and throughout this section, we assume that the function x → β(m, x) is uniformly bounded, the function x → xβ(m, x) is locally Lipschitz continuous for all m ∈ [0, 1], and that Condition ( 14) holds. For b ∈ (0, 1] and ψ ∈ C[0, 1], we define . b as follows

ψ b := sup m∈[0,b] |ψ(m)|.
We first show the following proposition.

Proposition 3.1. Let µ 1 , µ 2 ∈ C[0, 1] and Γ 1 , Γ 2 ∈ C(Ω). If there exists 0 < b < 1 such that µ 1 (m) = µ 2 (m) and Γ 1 (m, a) = Γ 2 (m, a), ( 16 
)
for m ∈ [0, b] and a ∈ [0, τ max ], then, N µ 1 ,Γ1 (t, m) = N µ 2 ,Γ2 (t, m), for t ≥ 0 and m ∈ [0, g(b)]. (17) 
Proof. We suppose that there exists b ∈ (0, 1) such that ( 16) holds. Let T > 0 be given, and let t ∈ (0, T ] and m ∈ [0, g(b)] be fixed. Since h is increasing, it follows from (4) that

χ(-t, m) ≤ m ≤ g(b) ≤ b. Then µ 1 (χ(-t, m)) = µ 2 (χ(-t, m)). Let s ∈ [0, t]. Since g -1 is increasing, then χ -s, g -1 χ(-(t -s), m) ≤ g -1 χ(-(t -s), m) ≤ g -1 (m) ≤ b. Moreover, if 0 ≤ s ≤ τ ∆(χ(-(t -s), m)) , then τ ∆(χ(-(t -s), m)) -s ∈ [0, τ max ].
Thus, we have

Γ 1 χ -s, g -1 χ(-(t -s), m) , τ ∆(χ(-(t -s), m)) -s = Γ 2 χ -s, g -1 χ(-(t -s), m) , τ ∆(χ(-(t -s), m)) -s .
Since the solutions N µ 1 ,Γ1 (t, m) and N µ 2 ,Γ2 (t, m) of Equation ( 12) are continuous and satisfy

N µ 1 ,Γ1 (0, m) = N µ 2 ,Γ2 (0, m), for m ∈ [0, b],
then, by using the locally Lipshitz continuous property of the function x → xβ(m, x), we can write

|N µ 1 ,Γ1 (t, m) -N µ 2 ,Γ2 (t, m)| ≤ KL t 0 |N µ 1 ,Γ1 (s, χ(-(t -s), m)) -N µ 2 ,Γ2 (s, χ(-(t -s), m))|ds +2 KL ξ t 0 |N µ 1 ,Γ1 (s -τ (∆(χ(-(t -s), m))), ∆(χ(-(t -s), m))) -N µ 2 ,Γ2 (s -τ (∆(χ(-(t -s), m))), ∆(χ(-(t -s), m)))|ds, ≤ KL t 0 N µ 1 ,Γ1 (s, .) -N µ 2 ,Γ2 (s, .) g(b) ds +2 KL ξ t 0 N µ 1 ,Γ1 (s -τ (∆(χ(-(t -s), m))), .) -N µ 2 ,Γ2 (s -τ (∆(χ(-(t -s), m))), .) g(b) ds,
for T > 0 small enough, where L is a Lipschitz constant of the function x → xβ(m, x) and K is defined by

K(s, m) ≤ K, for s ∈ [0, T ] and m ∈ [0, 1].
The extension given by ( 9) allows to give sense to the integral terms in the above inequality.

Let θ ∈ [-τ max , 0] be given. If t + θ < 0, then N µ 1 ,Γ1 (t + θ, m) = N µ 2 ,Γ2 (t + θ, m). If t + θ ≥ 0, then |N µ 1 ,Γ1 (t + θ, m) -N µ 2 ,Γ2 (t + θ, m)| ≤ KL t+θ 0 N µ 1 ,Γ1 (s, .) -N µ 2 ,Γ2 (s, .) g(b) ds +2 KL ξ t+θ 0 N µ 1 ,Γ1 (s -τ (∆(χ(-(t + θ -s), m))), .) -N µ 2 ,Γ2 (s -τ (∆(χ(-(t + θ -s), m))), .) g(b) ds, ≤ KL(1 + 2 ξ ) t 0 sup θ∈[-τmax,0]
N µ 1 ,Γ1 (s + θ, .) -N µ 2 ,Γ2 (s + θ, .) g(b) ds.

It follows that

sup

θ∈[-τmax,0] N µ 1 ,Γ1 (t + θ, .) -N µ 2 ,Γ2 (t + θ, .) g(b) ≤ KL(1 + 2 ξ ) t 0 sup θ∈[-τmax,0] N µ 1 ,Γ1 (s + θ, .) -N µ 2 ,Γ2 (s + θ, .) g(b) ds.
By using the Gronwall's Inequality, we obtain

sup θ∈[-τmax,0] N µ 1 ,Γ1 (t + θ, .) -N µ 2 ,Γ2 (t + θ, .) g(b) = 0.
In particular, N µ 1 ,Γ1 (t, .) -N µ 2 ,Γ2 (t, .) g(b) = 0, for t ∈ (0, T ].

By steps, this result holds for all T > 0, therefore ( 17) is satisfied and the proof is complete. Now, let 0 < b < g(1) be fixed and consider the sequence (b n ) n∈N defined by

b 0 = b and b n+1 =    ∆ -1 (b n ), if b n ∈ [0, Θ(1)), g(1), if b n ∈ [Θ(1), g(1)]. (18) 
The sequence (b n ) n∈N represents the transmission of the maturity between two successive generations, n and n + 1. The following result is immediate.

Lemma 3.1. If 0 < b < Θ(1) := ∆(g(1)), then there exists N ∈ N such that b N < Θ(1) ≤ b N +1 ≤ g(1)
.

We give now a first result, which emphasizes the strong link between the process of production of cells and the population of stem cells. A similar result has been proved by Adimy and Pujo-Menjouet [START_REF] Adimy | A mathematical model describing cellular division with a proliferating phase duration depending on the maturity of cells[END_REF] in the linear case.

Theorem 3.1. Let µ 1 , µ 2 ∈ C[0, 1] and Γ 1 , Γ 2 ∈ C(Ω).
If there exists 0 < b < 1 such that ( 16) holds, then, there exists t > 0 such that

N µ 1 ,Γ1 (t, m) = N µ 2 ,Γ2 (t, m), for m ∈ [0, g (1) 
] and t ≥ t, where t can be chosen to be

t = ln h(g(1)) h(g(b)) + (N + 2)τ max , (19) 
and N ∈ N is given by Lemma 3.1, for b = g(b). Furthermore, ), 1] and t ≥ t + τ maxln h(g(1)) = (N + 3)τ maxln h(g(b)) .

N µ 1 ,Γ1 (t, m) = N µ 2 ,Γ2 (t, m), for m ∈ [g(1
Proof. Let b = g(b). Since g is increasing, then b < g(1). Proposition 3.1 implies that

N µ 1 ,Γ1 (t, m) = N µ 2 ,Γ2 (t, m), for t ≥ 0 and m ∈ [0, b].
Let us reconsider the sequence (b n ) n∈N , given by [START_REF] Mackey | Transitions and kinematics of reaction-convection fronts in a cell population model[END_REF], and let us consider the sequence (t n ) n∈N defined by

     t n+1 = t n + ln h(b n+1 ) h(b n ) + τ max , t 0 = 0. (20) 
Then,

t n = ln h(b n ) h(g(b)) + nτ max .
The sequence (b n ) n∈N is increasing. Then, the sequence (t n ) n∈N is also increasing. We are going to prove, by induction, the following result

(H n ) : N µ 1 ,Γ1 (t, m) = N µ 2 ,Γ2 (t, m), for t ≥ t n and m ∈ [0, b n ]. First, (H 0 ) is true, from Proposition 3.1. Let suppose that (H n ) is true for n ∈ N. Let t ≥ t n+1 and m ∈ [0, b n+1 ]. Then, from (20) 
,

t n+1 ≥ t n + τ max ≥ τ max .
Since Equation ( 12) is autonomous, its solutions can be reformulated, for t ≥ t n+1 , as follows

N µ i ,Γi (t, m) = K(t -t n -τ max , m)N µ i ,Γi t n + τ max , χ -(t -t n -τ max ), m - t tn+τmax K(t -s, m)β χ -(t -s), m , N µ i ,Γi s, χ -(t -s), m N µ i ,Γi s, χ -(t -s), m ds +2 t tn+τmax K(t -s, m)ξ χ -(t -s), m N µ i ,Γi s -τ ∆(χ(-(t -s), m)) , ∆(χ(-(t -s), m)) × β ∆(χ(-(t -s), m)), N µ i ,Γi s -τ ∆(χ(-(t -s), m)) , ∆(χ(-(t -s), m)) ds, for i = 1, 2. Remark that, from (4), χ -(t -t n -τ max ), m = h -1 h(m)e -(t-tn-τmax) ,
and from ( 20),

e -(t-tn-τmax) = h(b n ) h(b n+1 ) e -(t-tn+1) , ≤ h(b n ) h(b n+1 )
.

Then, we deduce that

χ -(t -t n -τ max ), m ≤ h -1 h(m) h(b n ) h(b n+1 ) , ≤ h -1 h(b n+1 ) h(b n ) h(b n+1 ) = b n .
Hence, (H n ) implies

N µ 1 ,Γ1 t n + τ max , χ -(t -t n -τ max ), m = N µ 2 ,Γ2 t n + τ max , χ -(t -t n -τ max ), m .
Furthermore, for t n + τ max ≤ s ≤ t, we have

s -τ ∆(χ(-(t -s), m)) ≥ (t n + τ max ) -τ ∆(χ(-(t -s), m) ≥ t n , and ∆ χ(-(t -s), m) ≤ ∆(m) ≤ ∆(b n+1 ) = b n .
Consequently,

N µ 1 ,Γ1 s-τ ∆(χ(-(t-s), m) , ∆(χ(-(t-s), m)) = N µ 2 ,Γ2 s-τ ∆(χ(-(t-s), m)), ∆(χ(-(t-s), m)) .
Then, we obtain that

|N µ 1 ,Γ1 (t, m) -N µ 2 ,Γ2 (t, m)| ≤ t tn+τmax K(t -s, m) β χ(-(t -s), m), N µ 1 ,Γ1 s, χ(-(t -s), m) N µ 1 ,Γ1 s, χ(-(t -s), m) -β χ(-(t -s), m), N µ 2 ,Γ2 s, χ(-(t -s), m) N µ 2 ,Γ2 s, χ(-(t -s), m) ds,
and, by using the Gronwall's inequality, we deduce that (H n+1 ) is true. Consequently, (H n ) is true for n ∈ N.

In particular, (H n ) holds for n = N + 2, where N is given by Lemma 3.1, with b = g(b). Since b N +1 ∈ [Θ(1), g(1)], then b N +2 = g [START_REF] Adimy | Global stability of a partial differential equation with distributed delay due to cellular replication[END_REF]. We deduce that

N µ 1 ,Γ1 (t, m) = N µ 2 ,Γ2 (t, m) for m ∈ [0, g(1)] and t ≥ t, (21) 
where t = t N +2 is given by [START_REF] Mackey | Propagation of population pulses and fronts in a cell replication problem: non-locality and dependence on the initial function[END_REF]. Finally, take m ∈ [g [START_REF] Adimy | Global stability of a partial differential equation with distributed delay due to cellular replication[END_REF], 1] and t ≥ t + τ max . We can write, for i = 1, 2,

N µ i ,Γi (t, m) = K(t -t -τ max , m)N µ i ,Γi (t + τ max , χ(-(t -t -τ max ), m)) - t t+τmax K(t -s, m)β χ -(t -s), m , N µ i ,Γi s, χ -(t -s), m N µ i ,Γi s, χ -(t -s), m ds +2 t t+τmax K(t -s, m)ξ χ -(t -s), m N µ i ,Γi s -τ ∆(χ(-(t -s), m)) , ∆(χ(-(t -s), m)) × β ∆(χ(-(t -s), m)), N µ i ,Γi s -τ ∆(χ(-(t -s), m)) , ∆(χ(-(t -s), m)) ds. Let t + τ max ≤ s ≤ t. Then, s -τ ∆(χ(-(t -s), m)) ≥ (t + τ max ) -τ ∆(χ(-(t -s), m) ≥ t. Consequently, if χ(-(t -s), m) ≤ g(1), then, ∆(χ(-(t -s), m)) ≤ ∆(g(1)) < g(1)
, and ( 21) implies that

N µ 1 ,Γ1 s-τ ∆(χ(-(t-s), m)) , ∆(χ(-(t-s), m)) = N µ 2 ,Γ2 s-τ ∆(χ(-(t-s), m)) , ∆(χ(-(t-s), m)) .
On the other hand, if χ -(t -s), m > g(1), then, from the definition of ξ, we have

ξ χ -(t -s), m = 0.
Furthermore, by remarking that ln(h(m)) ≤ 0, for all m ∈ (0, 1], then we deduce, for m ∈ [g(1), 1] and

t ≥ t + τ max -ln(h(g(1))), that χ -(t -t -τ max ), m = h -1 h(m)e -(t-t-τmax) , ≤ h -1 h(m)h(g(1)) , ≤ h -1 h(g(1)) = g(1)
.

Hence,

N µ 1 ,Γ1 t + τ max , χ -(t -t -τ max ), m = N µ 2 ,Γ2 t + τ max , χ -(t -t -τ max ), m .
Using once again the Gronwall's inequality, we conclude that ), 1] and t ≥ t + τ maxln(h(g(1))).

N µ 1 ,Γ1 (t, m) = N µ 2 ,Γ2 (t, m), for m ∈ [g(1
This completes the proof. then,

N µ,Γ (t, m) = 0, for m ∈ [0, 1] and t ≥ (N + 3)τ max -ln h(g(b)) ,
where N ∈ N is given by Lemma 3.1, for b = g(b).

This result stresses the dependence of the production of cells with the population of stem cells. In particular, if the stem cells population is defective in the initial stage, then the entire population is doomed to extinction in a finite time. This situation describes what usually happens with the aplastic anemia, a disease which yields to injury or destruction of pluripotential stem cells.

In the next corollary, we show that the proliferating population depends also strongly on the stem cells population.

Corollary 3.2. Let µ 1 , µ 2 ∈ C[0, 1] and Γ 1 , Γ 2 ∈ C(Ω). If there exists 0 < b < 1 such that (16) holds, then P µ 1 ,Γ1 (t, m) = P µ 2 ,Γ2 (t, m), for m ∈ [0, 1] and t ≥ (N + 3)τ max -ln h(g(b)) ,
where N ∈ N is given by Lemma 3.1, for b = g(b).

Proof. The proof is immediate by using Theorem 3.1, Equation ( 13) and a method of steps.

Behaviour of the immature cells population

In this section, we investigate the behaviour of the immature cells population, that means, the population of cells with maturity m = 0. Let µ ∈ C[0, 1] and Γ ∈ C(Ω) be fixed. Let us consider the continuous solutions N µ,Γ (t, m) and P µ,Γ (t, m) of Problem ( 12)- [START_REF] Dyson | A nonlinear age and maturity structured model of population dynamics. II : Chaos[END_REF]. We set x(t) = N µ,Γ (t, 0) and y(t) = P µ,Γ (t, 0), for all t ≥ 0. Then, x(t), y(t) is solution of the system

x(t) = e -ρt µ(0) - t 0 e -ρ(t-s) β(0, x(s))x(s)ds +        2 t 0 e -ρ(t-s) ξ(s, 0)Γ(0, r -s)ds, for t ∈ [0, r], 2 r 0 e -ρ(t-s) ξ(s, 0)Γ(0, r -s)ds + 2ξ(0) t r e -ρ(t-s) β(0, x(s -r))x(s -r)ds, for r ≤ t, (22) and y 
(t) = e -ηt Γ(0) + t 0 e -η(t-s) β(0, x(s))x(s)ds -        t 0 e -η(t-s) π(s, 0)Γ(0, r -s)ds, for t ∈ [0, r], r 0 e -η(t-s) π(s, 0)Γ(0, r -s)ds + π(0) t r e -η(t-s) β(0, x(s -r))x(s -r)ds, for r ≤ t, (23) 
where ρ := δ(0) + V ′ (0), η := γ(0) + V ′ (0) and r := τ (0) > 0.

Let us recall that ξ(0) = ξ(r, 0), π(0) = π(r, 0) and

Γ(0) = r 0 Γ(0, a)da.
Then, we easily deduce that System ( 22)-( 23) is equivalent to the system

   dx dt (t) = -ρ + β(0, x(t)) x(t) + 2ξ(t, 0)Γ(0, r -t), for 0 ≤ t ≤ r, 2ξ(0)β(0, x(t -r))x(t -r), for r ≤ t, x(0) = µ(0), (24) 
   dy dt (t) = -ηy(t) + β(0, x(t))x(t) - π(t, 0)Γ(0, r -t), for 0 ≤ t ≤ r, π(0)β(0, x(t -r))x(t -r), for r ≤ t, y(0) = Γ(0). ( 25 
)
Of course, at t = r, the derivatives in ( 24) and (25) represent the right-hand side and the left-hand side derivatives. First, consider the system, for t ∈ [0, r], 

     dφ dt (t) = -ρ + β(0, φ(t)) φ(t) + 2ξ(t, 0)Γ(0, r -t), dψ dt (t) = -ηψ(t) + β(0, φ(t))φ(t) -π(t, 0)Γ(0, r -t), (26) 
Moreover, if µ(0) ≥ 0 and Γ(0, •) ≥ 0, then φ(t) and ψ(t) are nonnegative. Hence, for t ≥ r, Problem (24)-(25) reduces to the delay differential system 

dx dt (t) = -ρ + β(0, x(t)) x(t) + 2ξ(0)β(0, x(t -r))x(t -r), (29) 
dy dt (t) = -ηy(t) + β(0, x(t))x(t) -π(0)β(0, x(t -r))x(t -r), (30) 
Γ(0, 0) = β 0, µ(0) µ(0). ( 33 
)
Furthermore, if µ(0) ≥ 0 and Γ(0, •) ≥ 0, then x φ (t) and y ψ (t) are nonnegative.

Proof. Existence, uniqueness and regularity of solutions of Problem ( 29)-(31) come from Hale and Verduyn Lunel [START_REF] Hale | Introduction to functional differential equations[END_REF]. The positivity of x φ (t) is easily obtained by steps. Moreover, by using (32), we deduce immediatly the positivity of y ψ (t).

In the sequel, we will consider, for a biological reason, only nonnegative solutions of Problem ( 29)-(30).

Lemma 4.1. If lim t→+∞ x φ (t) = C exists, then lim t→+∞ y ψ (t) exists and is equal to

   1 η (1 -e -ηr )β(0, C)C, if η > 0, rβ(0, C)C, if η = 0.
Proof. We assume that lim

t→+∞ x φ (t) = C.
By using (32), we obtain that

y ψ (t) = r 0 e -ηs β(0, x φ (t -s))x φ (t -s)ds, for t ≥ r.
Then, we easily conclude that This ends the proof.

Lemma 4.1 implies that, in order to study the stability of the solutions of Problem (29)-(30), we only need to concentrate on the stability of the solutions of the delay differential equation (29).

In [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF], Mackey has proposed that the function β(0, •) is a Hill function, defined by

β(0, x) = β 0 θ n θ n + x n , (34) 
where β 0 and θ are two positive constants and n ≥ 1. This function is used to describe, from a reasonable biological point of view, the fact that the rate of re-entry in the proliferating compartment is a decreasing function of the total number of resting cells. We recall that the function x → β(0, x) is supposed to be continuous and positive. From now on, we also suppose that x → β(0, x) is decreasing on [0, +∞) and satisfies

lim x→+∞ β(0, x) = 0. ( 35 
)
These assumptions have been done, for the first time, by Mackey [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF] in 1978 and have been used by Mackey and Rudnicki [START_REF] Mackey | Global stability in a delayed partial differential equation describing cellular replication[END_REF] in 1994. Before studying the stability of Problem ( 29)-(30), we recall a non-trivial property of the solutions of (29). The result in Proposition 4.2 has been proved for a similar equation by Mackey and Rudnicki [START_REF] Mackey | Global stability in a delayed partial differential equation describing cellular replication[END_REF], in 1994.

Proposition 4.2. Assume that ρ > 0. Then, every solution of Equation ( 29) is bounded.

One can notice that, if ρ = 0, then Equation (29) may have unbounded solutions. A counter example is given in the next proposition. Proposition 4.3. Assume that ρ = 0 and that there exists x > 0 such that the function x → xβ(0, x) is decreasing on [x, +∞). Let µ ∈ C[0, 1] and Γ ∈ C(Ω) be such that (33) holds, µ(0) > x and

2ξ(t, 0)Γ(0, r -t) > Γ(0, 0), for t ∈ [0, r]. (36) 
Then, the solution of Equation ( 29) is unbounded.

Proof. Let consider the solution x(t) of the problem

x ′ (t) = 2ξ(0)β(0, x(t -r))x(t -r) -β(0, x(t))x(t), for t ≥ r, x(t) = φ(t), for 0 ≤ t ≤ r.
First, one can notice that, if lim t→+∞ x(t) exists and is equal to C, then C = 0. By contradiction, if we suppose that C > 0, then we obtain that

lim t→+∞ x ′ (t) = 2ξ(0) -1 β(0, C)C > 0,
because Condition (36) implies that 2ξ(0) > 1. This contradicts the fact that x(t) converges. Then C = 0. Secondly, let µ ∈ C[0, 1] and Γ ∈ C(Ω) be such that (33) and (36) hold, and µ(0) > x. The solution φ(t) of the problem φ ′ (t) = 2ξ(t, 0)Γ(0, r -t) -β(0, φ(t))φ(t), for t ≥ r, φ(0) = µ(0), satisfies φ ′ (0) = 2ξ(0, 0)Γ(0, r) -Γ(0, 0) > 0.

Consequently, there exists ǫ ∈ (0, r] such that φ ′ (t) > 0, for t ∈ [0, ǫ). Hence, φ(0) < φ(ǫ). Then, φ ′ (ǫ) > Γ(0, 0) -β(0, φ(ǫ))φ(ǫ), ≥ β(0, µ(0))µ(0) -β(0, φ(ǫ))φ(ǫ), ≥ 0.

By steps, we conclude that φ ′ (t) > 0, for t ∈ [0, r].

By the same way, we obtain that

x ′ (r) > β(0, φ(0))φ(0) -β(0, φ(r))φ(r) ≥ 0.

By using the same reasonning, we show that x ′ (t) > 0, for t ≥ r. Hence, x is unbounded and the proof is complete.

Remark 1. Even if the trivial solution of ( 29) is unstable, the trivial solution of (30) may be stable. For example, if lim t→+∞ x φ (t) = +∞, then, by using ( 32) and ( 35), we easily obtain that lim t→+∞ y ψ (t) = 0.

The assumption on the function x → xβ(0, x), in Proposition 4.3, holds, for example, if β is given by (34) with n > 1. In this case, the function x → xβ(0, x) is decreasing for x ≥ x = θ/(n -1) 1/n . We determine, in the next theorem, the global stability area of the trivial solution of Equation (29).

Theorem 4.1. The trivial solution of Equation ( 29) is globally stable if and only if (2ξ(0) -1)β(0, 0) < ρ.

Corollary 5.1. Assume that Condition [START_REF] Hale | Introduction to functional differential equations[END_REF] and Inequality (39) hold. Then the trivial solution of System ( 12)-( 13) is globally exponentially stable.

Proof. From Inequality (39), we obtain the local exponential stability of the trivial solution of ( 12)- [START_REF] Dyson | A nonlinear age and maturity structured model of population dynamics. II : Chaos[END_REF].

From the definition of ρ, we get inf β(m, 0).

Hence, we obtain (2ξ(0) -1)β(0, 0) < ρ.

Then, Theorem 4.1 yields to the global stability of the trivial solution of ( 29)-(30) By using Theorem 5.1 and Remark 2, we conclude.

As an example, let us suppose that δ ≥ 0 and γ ≥ 0 are constant, V and g are linear functions of the maturity m, given, for m ∈ [0, 1], by

V (m) = m, and 
g(m) = 1 κ m, with κ > 1,
and the function β is a Hill function (see Mackey [START_REF] Mackey | Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis[END_REF]), defined by β(m, x) = β 0 (m) θ n (m) θ n (m) + x n , with β 0 and θ two continuous and positive functions on [0, 1], and n > 1. One can remark that, in this case, the function V satisfies Condition [START_REF] Adimy | Global stability of a partial differential equation with distributed delay due to cellular replication[END_REF]. Furthermore, we assume that the function τ is given, for m ∈ [0, 1], by τ (m) = ln(m + α), with α > 1.

In this case, τ is increasing. Therefore, Condition (2) is satisfied. We obtain that ∆(m) = 1 2 4κm + α 2 -α , for m ∈ [0, 1],

and the characteristic curves are given by χ(s, m) = me s , for s ≤ 0 and m ∈ [0, 1].

By remarking that ∆(m) < m for m ∈ (0, 1] if and only if α > κ, then we obtain that the trivial solution of ( 12)-( 13) is globally exponentially stable if

(1 + 2κ) sup m∈[0,1]
β 0 (m) < min{δ, γ} and α > κ.

In the next section, we conclude our asymptotic study by giving a result of instability, based on the results of Section 4.

Corollary 3 . 1 .

 31 Let µ ∈ C[0, 1] and Γ ∈ C(Ω). If there exists 0 < b < 1 such that µ(m) = 0 and Γ(m, a) = 0, for m ∈ [0, b] and a ∈ [0, τ max ],

  that, under the assumptions that the function x → β(0, x) is bounded and the function x → xβ(0, x) is locally Lipschitz continuous, Problem (26)-(27) has a unique solution φ(t), ψ(t) , for t ∈ [0, r]. Remark that ψ(t) is explicitly given by ψ(t) = e -ηt r-t 0 Γ(0, a)da + t 0 e -η(t-s) β(0, φ(s))φ(s)ds, for t ∈ [0, r].

lim t→+∞ y ψ (t) = r 0 e

 0 -ηs ds β(0, C)C.

m∈[0, 1 ]

 1 δ(m) + V ′ (m) ≤ ρ. Moreover, ξ(0) ≤ sup (m,t)∈Ω∆ ξ(t, m) and β(0, 0) ≤ sup m∈[0,1]

  Assume that the function x → β(0, x) is bounded and the function x → xβ(0, x) is locally Lipshitz continuous. Let µ ∈ C[0, 1] and Γ ∈ C(Ω) be given. Then, Problem (29)-(31) has a unique solution x φ (t), y ψ (t) , defined for t ≥ 0, where φ(t), ψ(t) is the unique solution of (26)-(27). Moreover, x φ (t), y ψ (t) has a continuous derivative at t = r if and only if

	Proposition 4.1.		
	with, for t ∈ [0, r],		
		x(t) = φ(t), y(t) = ψ(t).	(31)
	As ψ(t), for t ∈ [0, r], y(t) is explicitly given, for t ≥ r, by	
	t		
	y(t) =	e -η(t-s) β(0, x(s))x(s)ds.	(32)
	t-r		

Proof. First, we assume that (2ξ(0) -1)β(0, 0) < ρ. We are going to show the global stability by using a Lyapunov functional. We denote by C + the subset of C[0, r] containing nonnegative functions. We set f (x) = xβ(0, x) and F (x) =

x 0 f (s)ds, for x ≥ 0.

We define the mapping J : C + → R by

Since dφ dt (r) = -ρφ(r) -f φ(r) + 2ξ(0)f φ(0) ,

Hence,

• J(φ) ≤ -ρ -2ξ(0) -1 β(0, φ(r)) β(0, φ(r))φ 2 (r).

Since (2ξ(0) -1)β(0, 0) < ρ and the function x → β(0, x) is decreasing and positive on R + , then the function

is nonnegative on R + and λ(u) = 0 if and only if u = 0. Consequently, every solution of Equation (29) with φ ∈ C + tends to zero as t tends to +∞. Now, if we assume that ρ ≤ (2ξ(0) -1)β(0, 0), then, immediatly,

Hence, by using Bellman and Cooke ([6], Theorem 13.8), we obtain that the trivial solution of (29) is unstable.

Remark that, by using Lemma 4.1, if (2ξ(0) -1)β(0, 0) < ρ, then the trivial solution of (30) is also globally stable.

We are going to use the results of Theorem 4.1 in the next sections to obtain global stability and instability for the solutions of Problem ( 12)-(13).

Global stability for the maturity structured model

In this section, we establish a result of global stability for Problem (12)-( 13) which stresses the influence of immature cells on the total population. First, we recall some definitions.

Definition 5.1. The trivial solution of Problem ( 12)-( 13) is locally stable if, for all ε > 0, there exist ν > 0 and

The trivial solution of Problem ( 12)-( 13) is globally stable if, for all ε > 0, there exists T > 0 such that (37) holds.

Throughout this section, we assume that the function x → β(m, x) is uniformly bounded and that the function x → xβ(m, x) is locally Lipschitz continuous for all m ∈ [0, 1]. In the next theorem, we show our main result, which makes the link between the global stability of the trivial solution of Problem ( 12)-( 13) and the stability of the immature cells population.

Theorem 5.1. Assume that Condition [START_REF] Hale | Introduction to functional differential equations[END_REF] holds. Let us suppose that the trivial solution of Problem ( 12)-( 13) is locally stable. Then this solution is globally stable on the set

Proof. We first show that, if the trivial solution of Equation ( 12) is locally stable, then it is globally stable on the set

Let us suppose that the trivial solution of ( 12) is locally stable. Then, for all µ ∈ C[0, 1], Γ ∈ C(Ω) and ε > 0, there exist ν > 0 and T > 0, such that, if

Let ε > 0 be given and let (µ, Γ) ∈ Ω N . Then lim t→+∞ N µ,Γ (t, 0) = 0, so there exists t 0 > 0 such that 

Then, for m ∈ [0, 1] and a ∈ [0, τ max ], we get

) is a solution of Equation ( 12) and since this equation is autonomous for t large enough, then N µ b ,Γ b (t, m) becomes an initial condition of ( 12) on [t 0 , t 0 + τ max ] × [0, 1]. We deduce, from (38), that there exists T ≥ t 0 + τ max such that

From Theorem 3.1, there exists t > 0 such that

Hence, N µ,Γ (t, .) < ε, for t ≥ max T , t + τ maxln h(g(1)) .

Then, the trivial solution of Equation ( 12) is globally stable. By the same way and using Corollary 3.2, we show that, if µ and Γ are such that lim t→+∞ P µ,Γ (t, 0) = 0, then, the trivial solution of Equation ( 13) is globally stable. This completes the proof.

Remark 2. One has to notice that the result in Theorem 5.1 allows us to obtain the global exponential stability of the trivial solution of Problem ( 12)-( 13) on the set Ω GS , when this solution is locally exponentially stable. The proof, in this case, is identical to the previous one.

The behaviour of the immature cells population has been studied in Section 4. The local stability of System ( 12)-( 13) has been studied by Adimy and Crauste [START_REF] Adimy | Existence, positivity and stability for a model of cellular proliferation[END_REF]. The author proved that, under the assumptions that the function x → β(m, x) is uniformly bounded and the function x → xβ(m, x) is locally Lipschitz continuous for all m ∈ [0, 1], then the trivial solution of ( 12)-( 13) is locally exponentially stable if 1+2 sup

The proof is based on an induction reasonning. Then, we can deduce the following corollary, which deals with the global stability of the system.

Instability

The trivial solution of ( 12) is unstable if it is not stable, this means, if there exists ε > 0 such that, for all ν > 0, there exists (µ, Γ) ∈ C[0, 1] × C(Ω) which satisfies µ < ν and Γ Ω < ν, and N µ,Γ (t, .) > ε, for t ≥ 0.

In the next theorem, we show that the instability of the immature cells population leads to the instability of the entire population.

Theorem 6.1. Assume that ρ ≤ (2ξ(0) -1)β(0, 0). ( 40)

Then, the trivial solution of Problem ( 12) is unstable.

Proof. From Theorem 4.1 and (40), we obtain that the trivial solution of Equation ( 29) is unstable. That is there exist ε > 0, µ ∈ C[0, 1] and Γ ∈ C(Ω) such that N µ,Γ (t, 0) does not tend to zero when t goes to infinity. Then, there exist ε > 0 and (t n ) n∈N , with t n → +∞, such that N µ,Γ (t n , 0) > ε, for n ∈ N.

Let us suppose, by contradiction, that the trivial solution of ( 12) is stable. Then, in particular, there exist ν > 0 and T > 0 such that, if µ < ν and Γ Ω < ν, then N µ,Γ (t, .) < ε, for t ≥ T.

Consequently, |N µ,Γ (t n , 0)| < ε, for n ∈ N such that t n ≥ T.

Since we can choose µ and Γ as small as necessary, this yields a contradiction. We deduce the instability of the trivial solution of [START_REF] Dyson | A nonlinear age and maturity structured model of population dynamics. I : Basic theory[END_REF].

One can remark that, even if the trivial solution of ( 12) is unstable, the trivial solution of (13) may be stable.