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THE CANONICAL STRIP PHENOMENON FOR COMPLETE INTERSECTIONS IN HOMOGENEOUS SPACES

We show that a refined version of Golyshev's canonical strip hypothesis does hold for the Hilbert polynomials of complete intersections in rational homogeneous spaces.

Introduction

Golyshev [Go] recently made some intriguing observations about Hilbert polynomials of canonically or anti-canonically polarized complex projective varieties. For a Fano variety X, the polynomial defined by H -K X (k) = χ(X, -kK X ) for k ∈ Z has the symmetry

H K X (z) = (-1) dim X H K X (-z -1).
In particular its zeroes are symmetric with respect to the vertical line Re(z) = -1 2 . Golyshev suggested to consider the following series of hypothesis:

(CS)

The roots of H -K X (z) belong to the canonical strip -1 < Re(z) < 0. (NCS) The roots of H -K X (z) belong to the narrow canonical strip. (CL) The roots of H -K X (z) belong to the canonical line Re(z) = -1 2 . The above-mentionned narrow canonical strip is defined by the conditions that -1 + 1 dim X + 1 < Re(z) < -1 dim X + 1 .

We introduce the following variant for a Fano variety X of index ι X . We define the tight canonical strip by the conditions

-1 + 1 i X < Re(z) < - 1 i X ,
and the corresponding hypothesis (TCS) The roots of H -K X (z) belong to the tight canonical strip.

Golyshev noticed that (NCS) holds for Fano threefolds and that (CS) holds for minimal threefolds of general type, as a consequence of well-known estimates of their characteristic numbers. Shramov checked that (CL) holds for smooth Fano toric manifolds up to dimension four [Sh].

Note that we can express H -K X (z) as follows. Consider the entire function

ϕ(t) = t/2 sh(t/2) = ∞ t=0 B n ( 1 2 ) t n n! ,
where B n (u) denotes the n-th Bernouilli polynomial. This function defines a caracteristic class ϕ(X) ∈ H * (X, Q), and we can let

ψ k (X) = X ϕ k (X) ∪ c 1 (X) dim X-k . Date: March 31, 2009. 1 Note that this is zero if k is odd. It is then a direct consequence of the Grothendieck- Riemann-Roch theorem that H -K X (z - 1 2 ) = dim X k=0 ψ dim X-k (X) z k k! . Write dim X = 2m+ǫ, with ǫ ∈ {0, 1}. Then H -K X (z-1 2 ) = z ǫ P X (z 2
) for some polynomial of degree m, and the canonical line hypothesis (CL) can be translated into the hypothesis that the polynomial P X has only real and non-positive roots.

In this note we prove that:

(1) (TCS) holds for rational homogeneous spaces of Picard number one;

(2) (TCS) holds for all Fano complete intersections in rational homogeneous spaces of Picard number one;

(3) (CL) holds for all general type complete intersections in rational homogeneous spaces of Picard number one. The first statement is a relatively straightforward application of the Weyl dimension formula and of the combinatorics of root systems. The next two statements can be deduced from the first one by induction.

The tight canonical strip for rational homogeneous spaces

Let X = G/P be a complex rational homogeneous space with Picard number one. Here G denotes a simple affine algebraic group and P a maximal parabolic subgroup. Once we choose a maximal torus T in P , we get a root system Φ and its decomposition into positive and negative roots, Φ = Φ + ∪ (-Φ + ). Our (slightly unusual) convention will be that negative roots are roots of P . Recall that the choice of P (up to conjugation) is equivalent to the choice of a fundamental weight ω 0 , or equivalently, of a simple root α 0 .

Let L be the ample line bundle generating P ic(X). It can be defined as the line bundle L ω 0 associated to the fundamental weight ω 0 , considered as a character of P . The index ι X of X is defined by the identity -K X = ι X L.

By the Bott-Borel-Weil theorem, we know that Γ(X, L k ) = V kω 0 is the irreducible Gmodule of highest weight kω 0 , and that the higher cohomology groups vanish. We can then use Weyl's dimension formula (see e.g. [Se]) to express the Hilbert polynomial of L as

H L (z) = α∈Φ + (zω 0 + ρ, α) (ρ, α) .
Here we have used an invariant pairing ( , ) on the weight lattice. We will use the normalization defined by the condition that (ω 0 , α 0 ) = 1, or equivalently, that (α 0 , α 0 ) = 2. We can decompose H L as the product of the polynomials H ℓ L defined as

H ℓ L (z) = α∈Φ + , (ω 0 ,α)=ℓ ℓz + (ρ, α) (ρ, α) = j ℓz + j j h ℓ,j ,
where h ℓ,j denotes the number of positive roots α ∈ Φ + such that (ω 0 , α) = ℓ and (ρ, α) = j.

Remark. It is usually more natural to write down Weyl's dimension formula in terms of the coroots α ∨ attached to the roots α. Then (ρ, α ∨ ) is an integer called the height of α and sometimes denoted ht(α). Since ρ is equal to the sum of the fundamental weights, whose dual basis is that of the simple coroots, ht(α) can be computed as the sum of the coefficients of α over the basis of simple coroots. See for example [GW].

For our purposes, it seems necessary to work with roots rather than coroots. In the simply laced case this makes no difference, but in the non simply laced case we need to be careful with the fact that (ρ, α) can take non integer values. To avoid notational complications, we will suppose in the sequel that g is simply laced, but our results also hold in the non simply laced case, with essentially the same proofs.

Proposition 1. For each ℓ, the sequence h ℓ,j is symmetric and unimodal. That is

(S) h ℓ,j = h ℓ,ℓι X -j , (U ) h ℓ,j ≤ h ℓ,j+1 if 2j + 1 ≤ ℓι X .
To prove this statement, we observe that there is a close connection between the decomposition of H L into the product of the H ℓ L 's, and the Z-grading on g = Lie(G) induced by ω 0 :

g = g -ℓmax ⊕ • • • ⊕ g -i ⊕ • • • ⊕ g 0 ⊕ • • • ⊕ g i ⊕ • • • ⊕ g ℓmax .
Here g i denotes the sum of the root spaces associated to the roots having coefficient i on α 0 (plus the Cartan subalgebra for i = 0). So the roots that contribute to H ℓ L are precisely those appearing in g ℓ , for ℓ ≥ 1. Now, we know (see e.g. [Ru]) that

• g 0 is a reductive subalgebra of g of maximal rank, with rank one center;

• the Dynkin diagram encoding the semi-simple part of g 0 can be deduced from the Dynkin diagram of g by erasing the node corresponding to the fundamental weight ω 0 , and the edges attached to this node; • each g ℓ is a simple g 0 -module. This implies that for each ℓ such that g ℓ is non zero, there is a unique root γ ℓ of g which is a highest weight of g ℓ considered as a g 0 -module. Symmetrically, there is also a unique root β ℓ of g which is a lowest weight of g ℓ . Moreover,

β ℓ = w 00 (γ ℓ ),
where w 00 denotes the longest element in the Weyl group of g 0 (not to be confused with the longest element in the Weyl group of g, usually denoted w 0 ), which is the subgroup of the Weyl group of g generated by the simple reflections other than s α 0 . Note in particular that (ρ, β ℓ + γ ℓ ) = (ρ + w 00 (ρ), γ ℓ ). Note also that ℓ max is the coefficient of the highest root ψ of g on α 0 .

Lemma 1. We have ρ + w 00 (ρ) = ι X ω 0 .

Proof. Recall that 2ρ is the sum of the positive roots. The tangent bundle of X = G/P is the homogeneous bundle defined by the P -module g/p, where p = Lie(P ). But

g/p ≃ g 1 ⊕ • • • ⊕ g ℓmax .
This implies that the anticanonical bundle of X, being the determinant of the tangent bundle, is defined by the weight 2ρ X equal to the sum of the roots α such that (ω 0 , α) > 0.

We can conclude that 2ρ -2ρ X is the sum of the positive roots in g 0 . In particular the action of w 00 takes it to its opposite. On the contrary, 2ρ X = ι X ω 0 is not affected by the action of w 00 . Therefore

w 00 (2ρ -2ρ X ) = w 00 (2ρ) -2ρ X = 2ρ X -2ρ,
and our claim follows.

Remark. Recall that 2ρ is also the sum of the fundamental weights. For the root system of g 0 , which is the set of roots of g with zero coefficient on α 0 , the fundamental weights are of the form ω 0 i = ω i -a i ω 0 . Having coefficient zero on α 0 is equivalent to being orthogonal to ω 0 , so a i = (ω i , ω 0 )/(ω 0 , ω 0 ) and therefore 2ρ 0 = i ω 0 i = 2ρ -(2ρ,ω 0 ) (ω 0 ,ω 0 ) ω 0 . Applying w 00 , which maps ρ 0 to -ρ 0 , we deduce that ι X is also given by the simple formula

ι X = (2ρ, ω 0 ) (ω 0 , ω 0 ) .
Observe that (2ρ, ω 0 ) = ℓ≥1 ℓ dim g ℓ .

We deduce from the previous lemma, and for each ℓ, the identity

(ρ, β ℓ + γ ℓ ) = (ι X ω 0 , γ ℓ ) = ι X ℓ.
Now, w 00 acts on the roots in g ℓ , sending β ℓ to γ ℓ , and more generally a root of height k to a root of height ht(β ℓ ) + ht(γ ℓ ) -k = ι X ℓ -k. This implies the symmetry property (S).

Finally, the unimodality property (U) is a special case of a general property of weights of g-modules. Indeed, if V λ is the irreducible g-module of highest weight λ, then any weight of V λ is of the form λ -θ for some θ in the weight lattice, and the numbers of weights (counted with multiplicities) λ -θ such that (ρ, θ) is a given integer ℓ, form a unimodular sequence. This general property gives (U) when applied to the irreducible and multiplicity-free g 0 -module g ℓ (see e.g. [St]).

We can summarize our discussion by the following statement. Let b ℓ denote the height of β ℓ , the unique smallest root such that (ω 0 , β ℓ ) = ℓ.

Proposition 2. The Hilbert polynomial of the ample generator L of the Picard group of X = G/P can be expressed as

H L (z) = ℓmax ℓ=1 ℓι X -b ℓ k=b ℓ ℓz + k k h ℓ,k ,
where for each ℓ the sequence h ℓ,k is symmetric and unimodal.

This implies that the (TCS) hypothesis holds for X. More precisely:

Corollary 1. The zeroes of H -K X (z) are contained in the real segment

[-1 + 1 ι X , - 1 ι X ].
Example. Consider X = E 6 /P 4 where, according to the notations of Bourbaki [Bou], P 4 is the maximal parabolic subgroup associated with the simple root α 4 . This simple root corresponds to the triple node of the Dynkin diagram of type E 6 . In this case we have ℓ max = 3 and the contributions of the three levels ℓ = 1, 2, 3 can be analyzed as follows. ℓ = 1: the extremal roots are

β 1 = 0 0 1 0 0 0 , γ 1 = 1 1 1 1 1 1 .
In particular b 1 = ht(β 1 ) = 1, and ht(β 1 ) + ht(γ 1 ) = 7 = ι X . There are eighteen roots contributing to H 1 X , and

H 1 X (z) = z + 1 1 z + 2 2 3 z + 3 3 5 z + 4 4 5 z + 5 5 3 z + 6 6 .
ℓ = 2: the extremal roots are

β 2 = 0 1 2 1 0 1 , γ 1 = 1 2 2 2 1 1 .
In particular b 2 = ht(β 2 ) = 5, and ht(β 2 ) + ht(γ 2 ) = 14 = 2ι X . There are nine roots contributing to H 2 X , and

H 2 X (z) =
2z + 5 5 2z + 6 6

2 2z + 7 7

3 2z + 8 8 2 2z + 9 9 . ℓ = 3: the extremal roots are

β 3 = 1 2 3 2 1 1 , γ 3 = 1 2 3 2 1 2 .
In particular b 3 = ht(β 3 ) = 10, and ht(β 2 ) + ht(γ 2 ) = 21 = 3ι X . These are the only two roots contributing to H 3 X , and

H 3 X (z) =
3z + 10 10 3z + 11 11 .

We conclude in particular that X has dimension 29 and degree 996584151214080.

Remarks.

1. The simplest situation is when ℓ max = 1, which occurs when X is cominuscule. Then β 1 = α 0 , and γ 1 = ψ is the highest root. In particular we recover the known fact that ι X = h + 1, where h denotes the Coxeter number. Moreover we get the relation

dim X = (ω 0 , ω 0 )ι X .
The zeroes of the Hilbert polynomial in that case are just the -j/ι X , with 0 < j < ι X .

2. The Hilbert polynomials of the adjoint varieties (this is the special case where X = G/P ⊂ P(g) is the projectivization of a minimal nilpotent orbit) have been investigated in [START_REF] Landsberg | Triality, exceptional Lie algebras and Deligne dimension formulas[END_REF][START_REF] Landsberg | A universal dimension formula for complex simple Lie algebras[END_REF] from the perspective of Vogel and Deligne works on the universal Lie algebra. The related work [START_REF] Landsberg | Series of Lie groups[END_REF] explores some other cases related to certain series generalizing the lines of Freudenthal's magic square.

Complete intersections

In this section we prove that the (TCS) hypothesis holds for any complete intersection Y in the rational homogeneous space X = G/P . More precisely, we will show that the Hilbert polynomial of L Y on Y can be expressed as

H L Y (z) = H 0 L Y (z) ℓ Y max ℓ=1 ℓι Y -b ℓ (Y ) k=b ℓ (Y ) ℓz + k k h ℓ,k (Y )
, with the additional properties that:

(1) for each ℓ, the sequence hℓ, k(Y ) is symmetric and unimodal;

(2) the zeroes of the polynomial H 0 L Y (z) all belong to the line Re(z) = -1 2 . Note that when ι Y ≤ 0, the product in the right hand side of the previous identity is empty, since the integers b ℓ (Y ) will always be positive.

We proceed by induction. Let Z = Y ∩ H d be the transverse intersection of Y with a hypersurface of degree d. Then ι Z = ι Y -d and the Hilbert polynomial of L Z is simply

H L Z (z) = H L Y (z) -H L Y (z -d).
For a given ℓ, consider the polynomial

H ℓ L Y (z) = ℓι Y -b ℓ (Y ) k=b ℓ (Y ) ℓz + k k h ℓ,k (Y )
.

Then we can write

P ℓ L Z (z) = H ℓ L Y (z) -H ℓ L Y (z -d) as a product A ℓ (z)(B ℓ + (z) -B ℓ -(z))
, where

A ℓ (z) = ℓι Y -b ℓ (Y )-ℓd k=b ℓ (Y ) ℓz + k k min(h ℓ,k (Y ),h ℓ,k+ℓd (Y )) , B ℓ + (z) = ℓι Y -b ℓ (Y ) k=b ℓ (Y ) ℓz + k k h ℓ,k (Y )-min(h ℓ,k (Y ),h ℓ,k+ℓd (Y )) , B ℓ -(z) = ℓι Y -b ℓ (Y ) k=b ℓ (Y ) ℓz + k k h ℓ,k+ℓd (Y )-min(h ℓ,k (Y ),h ℓ,k+ℓd (Y ))
.

Let h ℓ,k (Z) = min(h ℓ,k (Y ), h ℓ,k+ℓd (Y ))
. First observe that the symmetry of the sequence

h ℓ,k (Y ) relative to the substitution k → ℓι Y -k implies that of the sequence h ℓ,k (Z) relative to k → ℓι Z -k. Moreover, the sequence h ℓ,k (Z) is again unimodal. Indeed, for k ≤ ι Y ℓ/2 -dℓ/2 = ι Z ℓ/2, h ℓ,k (Z) = h ℓ,k (Y ). (1) This is clear for k ≤ ι Y ℓ/2 -dℓ since then h ℓ,k (Y ) ≤ h ℓ,k+dℓ (Y ) by the unimodality for Y . For ι Y ℓ/2 -dℓ ≤ k ≤ ι Y ℓ/2 -dℓ/2, we observe that by symmetry, h ℓ,k+dℓ (Y ) = h ℓ,ι Y ℓ-k-dℓ (Y ) ≥ h ℓ,k (Y ) since k ≤ ι Y ℓ -k -dℓ ≤ ι Y ℓ/2. We can therefore write A ℓ (z) = ℓι Z -b ℓ (Z) k=b ℓ (Z) ℓz + k k h ℓ,k (Z)
, where b ℓ (Z) = b ℓ (Y ) and the sequence h ℓ,k (Z) is symmetric and unimodal. Beware that we can have b ℓ (Z) > ℓι Z -b ℓ (Z), in which case A ℓ (z) = 1 by convention. Now, using (1) we can rewrite B ℓ + and B ℓ -as

B ℓ + (z) = 2k>ℓι Z ℓz + k k h ℓ,k (Y )-h ℓ,k+ℓd (Y ) , B ℓ -(z) = 2k<ℓι Z ℓz + k k h ℓ,k+ℓd (Y )-h ℓ,k (Y )
.

Oberve that by symmetry

B ℓ -(z) = ±B ℓ + (-ι Z -z). Moreover the zeroes of B ℓ + (z) (resp. B ℓ -(z)
) are located to the left (resp. to the right) of the line Re [Go]).

(z) = -ι Z /2. This implies that |B ℓ + (z)| > |B ℓ -(z)| if Re(z) > -ι Z /2, and |B ℓ + (z)| < |B ℓ -(z)| if Re(z) < -ι Z /2 (see the proof of Lemma 2.2 in
The same conclusion holds for the polynomial

Q(z) = H 0 L Y (z) -H 0 L Y (z -d).
Since the zeroes of H 0 L Y (z) are all supposed to lie on the line Re

(z) = -ι Y /2, we have |H 0 L Y (z)| > |H 0 L Y (z -d)| if Re(z) > -ι Z /2, and |H 0 L Y (z)| < |H 0 L Y (z -d)| if Re(z) < -ι Z /2
. Now we can conclude our analysis as follows: we can write

H L Z (z) = H 0 L Z (z) ℓ Z max ℓ=1 ℓι Z -b ℓ (Z) k=b ℓ (Z) ℓz + k k h ℓ,k (Z)
,

where the polynomial H

0 L Z (z) is equal to H 0 L Y (z) ℓ B ℓ + (z) -H 0 L Y (z -d) ℓ B ℓ -(z).
As we have seen, these two products can have the same moduli only if Re(z) = -ι Z /2, so the zeroes of H 0 L Z (z) have to lie on that line. Note that this analysis is still correct if ι Z is negative, in which case we simply have H L Z (z) = H 0 L Z (z). We have proved: Theorem 1. Let Y be a smooth complete intersection in a rational homogeneous space X = G/P with Picard number one. Then:

(1) If Y has general type, all the zeroes of H K Y (z) lie on the line Re(z) = -1 2 , so that the (CL) hypothesis holds;

(2) If Y is Fano, the zeroes of H -K Y (z) lie either on the line Re(z) = -1 2 or on the real segment

[-1 + 1 ι Y , -1 ι Y ].
In particular, the (TCS) hypothesis holds.

(3) If Y is Calabi-Yau, and L Y denotes the restriction to Y of the ample generator of P ic(G/P ), then the zeroes of the Hilbert polynomial H L Y (z) are purely imaginary.

In the Fano case we can be more precise and describe explicitely the real zeros H -K Y (z), which are all rational. Note that the (CL) hypothesis does hold when the index ι Y equals one or two.

Miscellanii

4.1. Branched coverings. A variant of the previous remarks allows to draw similar conclusions for double coverings of rational homogeneous spaces, as we did for their hypersurfaces. Let X = G/P be as above, L the ample generator of its Picard group, H ⊂ X a general hypersurface in the linear system |2dL|. Let π : Y → X be a double-cover branched over H. Then K Y = π * (K X + dL), so that Y is Fano of index ι Y = ι X -d if d < ι X . Since π * O Y = O X ⊕ L -d , we can easily compute the Hilbert polynomial of -K Y :

H -K Y (z) = H -K X (z) + H -K X (z - d ι Y ).
Up to the sign, this is the same formula as that giving the Hilbert polynomial of the hypersurface H. Since that sign did not matter in our proof of Theorem 1 for hypersurfaces, we can conclude:

Proposition 3. The zeroes of the Hilbert polynomial of Y lie either on the line Re(z) = -1 2 or on the real segment

[-1 + 1 ι Y , -1 ι Y ].
In particular the (TCS) hypothesis holds for Y .

This extends to Calabi-Yau double covers (that is, d = ι X ): the (CL) hypothesis does hold for the Hilbert polynomial of the polarization π * L of Y . 4.2. Complete intersections in abelian varieties. We conclude this note by observing that the (CL) hypothesis is easily seen to hold for varieties of general type which are complete intersections in abelian varieties.

Let A be an abelian variety of dimension n + c, and L 1 , . . . , L c be ample line bundles. Consider 

  X = H 1 ∩ • • • ∩ H c ⊂ A, a transverse intersection of hypersurfaces H 1 ∈ |L 1 |, . . . , H c ∈ |L c |.Proposition 4. The canonical line hypothesis (CL) holds for X.

Proof. The canonical bundle of X is K X = (L 1 + • • • + L c )|X. Using the Koszul complex of X, we can compute its Hilbert polynomial as

In these sums ǫ = (ǫ 1 , . . . , ǫ c ) belongs to {0, 1} c , |ǫ| = ǫ 1 + • • • + ǫ c , and ℓ 1 , . . . , ℓ c are non-negative integers of sum n + c. The polynomial P ℓ 1 ,...,ℓc (z) defined by the previous sum over ǫ factors as P ℓ 1 ,...,ℓc (z

where P ℓ (z) = z ℓ -(z -1) ℓ . There remains to observe that P ℓ (z + 1 2 ) is a polynomial with non-negative coefficients, of the same parity as ℓ. Since the intersection coefficients

) are all positive, H -K X (z) is therefore a polynomial in z 2 with positive coefficients, multiplied by z if n is odd. As we noticed in the introduction, this is enough to imply (CL).