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We did an experimental study on Taylor-Couette flow in between two coaxial
cylinders of length L = 220 mm and radii ri = 110 and ro = 120, respectively,
the fluid-filled ’Taylor-Couette gap’ or TC-gap being h = 10 mm, thus gap
ratio η = ri/ro = 0.917, and gap aspect ratio L/h = 22). Both cylinders are
rotating independently, with angular frequencies ωi,o, The torque T on the
inner cylinder is measured through the axis driving the inner cylinder with a
co-rotating torque meter.

The system is characterised with parameters as given by Dubrulle et al.

[3]: a shear Reynolds number ReS = 2/(1 + η) |ηReo − Rei| and a Rotation
number Ro = (1 − η) (Rei + Reo)/(ηReo − Rei), where Rei,o = (ri,oωi,oh/ν)
are inner and outer Reynolds number. With this choice, ReS is based on
the laminar shear rate S; ReS = h2S/ν. The Rotation number Ro compares
mean rotation to mean shear; its sign determines cyclonic (Ro > 0, stabilising)
or anti-cyclonic (Ro < 0, destabilising) flow. Two other relevant values are
Roi = η − 1 ' −0.083 and Roo = (1 − η)/η ' 0.091 for the inner and the
outer cylinder rotating alone, respectively.

We have estimated the wall shear stress at the inner wall by τW,i =
T/(2πr2

i L), and from this the friction factor cF , i.e. non-dimensional wall
shear stress, cF = τ/%(Sh)2 is obtained. We have done this for a range of ReS

values far beyond those presented in Andereck’s classical work [1]. Andereck
investigated the occurrence of flow structures in laminar and low turbulent
TC flows up to ReS = 4.103. Our results up to ReS = 5.104 are shown in
Fig. 1. We observe that, for a given Ro, the friction factor cF decreases mono-
tonically with increasing ReS . This torque-scaling is discussed in much detail
in [4], with many references. In [6, 7], we summarise this briefly, and show
that we retrieve in our sysstem up to ReS = 2.105 very similar torque scaling
exponents for Ro = Roi as in [5].

We further observe that for a given constant ReS the friction factor cF

strongly depends on Ro: Friction increases monotonically when Ro decreases
especially at lower Reynolds numbers, which clearly shows the role of rotation
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in the stability of the mean flow. For the highest ReS , cF however gets constant
at some fairly small negative Rotation, (Ro = RoPlat) untill roughly Ro =
η − 1 (inner alone), from which the shear stress further increases.
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Fig. 1. Friction factor (dimensionless wall shear stress) vs Ro for ReS ranging from
4.103 till 50.103 . Axes for ’inner alone’, ’counter rotation’ and ’outer alone’ indicated.

Towards the other end of the curve, increasing Ro, torque gradually dimin-
ishes. A small step attributed to system friction (bearings) is visible at Roo,
where the inner cylinder reverses its sense of rotation. Where flow visualisa-
tions with micro-fibers shows a gradual laminarisation of the flow around Ro
= Roo, the torque does not drop accordingly. This is attributed to a non-
idealness of our system: Besides torque produced in the ’Taylor-Couette gap’,
the system measures as well the torque as exerted on the upper and lower
horizontal ends of the inner cylinder that forms at both ends a ±2 mm high
fluid-filled gap with equally flat ends of the outer cylinder. For laminar flow
with a high-viscosity corn syrup, the deviation was found to be a constant,
as much as some 40% larger than that of the analytical result for the outer
wall alone, which we thus consider as ’end effects’ as common in rheomet-
ric instruments. Under transitional and turbulent conditions, the dynamics of
such torsional shear layers, or ’von Kármán’ layers is complex and still un-
der study, [2], with many references. Unfortunately, measuring with only the
lower vK-gap filled or with a partially-filled TC-gap to estimate the torque by
the vK-gap was not feasible under turbulent flow conditions because of the
entrapment of air; the system can only be run entirely fluid filled. Therefore,
establishing the contribution of the end effect was not reliable. But certainly
at relaminarised flow in the TC-gap, the torque in the vK-gap will dominate;
hence the magnitude of our measured torques is of limited value at high Ro.
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Finally, exact counter rotation Ro = 0 appears to be an inflection point;
though cF and its change with Ro are continuous; the second derivative clearly
changes sign for all ReS investigated. In the following we will briefly discuss
possible mechanisms behind the behaviour of the torque curve.

In [6, 7] we show Stereoscopic-PIV measurements in the radial-axial plane
in the TC-gap. In these measurements, at an intermediate ReS investigated
here, i.e. ReS = 14.103. Though the flow is turbulent, there is as well a pattern
of large-scale azimuthal (Taylor-like) vortices or ’rolls’ of alternating sense of
rotation in the flow when time-averaging. At inner alone, i.e. at Ro = Roi

they contribute around the centre of the gap for at least 50% to the torque,
the remainder of the transport still being by turbulent shear stress (correlated
radial-azimuthal velocity fluctuations).

The magnitude of the rolls is measured by matching an idealised stream
function ΨSec to the ’secondary’, i.e. radial-axial flow field: ΨSec = sin[π(r−
ri)/h] × (A1 sin[π(z− z0)/`] + A3 sin[3π(z− z0)/`]), with A1, A3, z0, and `
as free fit parameters; ` and z0 describing height and origin of a roll; A1

and A3 describing the fundamental mode and the first possible symmetric
harmonic. The (radial) velocity amplitude is given as urad,Max = |∂ΨSec/∂z| =
π(A1/` + 3A3/`).

We verified that the fit parameters are stationary; we also measured with
both increasing and decreasing values for Ro such to check for a possible
hysteresis. We plot in Fig. 2 the velocity amplitudes associated with the simple
model (fundamental mode �), and with the complete model (including the
harmonic, •).
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Fig. 2. velocity magnitude normalised by hS of fundamental mode (�), and both
modes (•) vs. Ro at ReS = 1.4.104 , including a curve fit of form A = a (−Ro)1/2

All data fall on a single curve; the changes being smooth and without hystere-
sis. For positive Ro, the fitted modes have negligible amplitudes, (there are
no secondary flow structures visible in the time-average field [6]). As soon as
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Ro < 0, i.e., the inner cylinder rotates faster than the outer, secondary flow
occurs, and the fundamental mode starts to grow in amplitude, with A3 ' 0;
the secondary mean flow thus being well described by pure sinusoidal struc-
tures. For Ro ≤ −0.04, the vortices start to deform to a more elongated shape,
with wider cores and more narrow regions of large radial velocities in between
the adjacent vortices; the first harmonic is then necessary to adequately de-
scribe the secondary flow. The fundamental mode becomes saturated in its
amplitude in this region of Ro < RoSat. Finally, we give in Fig. 2 a curve fit to
the measured velocity amplitudes of the form: A = a (−Ro)1/2. The velocity
magnitude of the secondary flow behaves like the square root of the distance
to Ro = 0, a situation reminiscent to a classical supercritical bifurcation, with
A as order parameter, and Ro as control parameter.

Now combining the results for flow patterns and torque, it is remarkable
that the similarity is limited: Where Taylor vortices are expected to positively
contribute to the torque, the emergence of the rolls at Ro = 0 rather seems
to suppress the growth of cF , as visble from the inflection point in the torque.
Further, the resemblance of saturations in torque and secondary flow magni-
tude showed to be accidental: Torque saturation, at RoPlat = −0.02, is signifi-
cantly separated from saturation of the fundamental mode at RoSat = −0.035
for the same shear Reynolds number. We thus conclude that the two phe-
nomenons of saturation are at least not as directly related as expected. A
more detailed analysis of the velocity data including the turbulence statistics
is required.

References

1. Andereck, C.D., Liu, S.S. and Swinney, H.L. Flow regimes in a circular Couette
system with independently rotating cylinders. J. Fluid Mech. 164:155 (1986).

2. Ravelet, F, Chiffaudel, A, Daviaud, F. et al. Supercritical transition to turbu-
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