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Lévy flights of photons in hot atomic vapours
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Properties of random and fluctuating systems are often studied through the use of Gaussian
distributions. However, in a number of situations, rare events have drastic consequences, which
can not be explained by Gaussian statistics. Considerable efforts have thus been devoted to the
study of non Gaussian fluctuations such as Lévy statistics, generalizing the standard description of
random walks. Unfortunately only macroscopic signatures, obtained by averaging over many random
steps, are usually observed in physical systems. We present experimental results investigating the
elementary process of anomalous diffusion of photons in hot atomic vapours. We measure the step
size distribution of the random walk and show that it follows a power law characteristic of Lévy

flights.

Random walk of particles in a disordered or fluctuating
medium is often well described by a diffusion equation,
characterized by a linear increase in time of the mean
square displacement of the particles: < r? >= Dt, with
D the diffusion coefficient. One assumption for the dif-
fusion equation to hold is that the size x of each step of
the random walk is given by a distribution P(x) with a
finite second moment < x? >, allowing to apply the cen-
tral limit theorem. When the step size distribution P(z)
follows an asymptotic power law P(z) ~ 1/x%, the mo-
ments of the distributions can however become infinite.
It has been long established that for a < 3, the aver-
age square displacement is governed by rare but large
steps [[ll. Such a class of random walk is called Lévy
flights, corresponding to a superdiffusive behaviour where
< r? >= Dt7, with v > 1. The broad range of applica-
tions of Lévy flights includes biology, economics, finance,
catastrophe management and resonance fluorescence in
astrophysical systems and atomic vapours [E, E, , @
Large (non Gaussian) fluctuations also play a fundamen-
tal role in many physical situations, in particular around
phase transitions, having triggered considerable efforts to
understand universal features of such phenomena [ﬁ, E]

Anomalous transport of photons has been reported re-
cently in engineered optical material [E] Superdiffusive
behavior of light has also been known in the context of ra-
diation trapping in hot atomic vapors. Because this phe-
nomenon occurs in many different systems, ranging from
stars [E] to dense atomic vapours [@] such as gas lasers,
discharges and hot plasmas, this field has been subject
to intense studies for many decades, including seminal
work by Holstein [@] It has been realized very early
[@] that frequency redistribution has a profound impact
on the multiple scattering features of light. Whereas elas-
tic scattering, which occurs in laser-cooled dilute atomic
vapours , @, E], leads to normal diffusion with well
defined scattering mean free path and diffusion coeffi-
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cient, inelastic scattering as in hot vapours can lead to
situations where the central limit theorem no longer ap-
plies and photon trajectories are expected to be Lévy
flights. Unfortunately, in most systems where multiple
scattering of light occurs, it is difficult to have direct ex-
perimental access to the single step size distribution at
the origin of the random walk and anomalous diffusion is
usually inferred from macroscopic observations [E, IE]
In this Article we present experimental results inves-
tigating the microscopic ingredient leading to a regime
of superdiffusion in the multiple scattering of light in
hot vapours of rubidium atoms. We have used a spe-
cific geometrical arrangement to isolate a single step in
the multiple scattering sequence. We measure the single
step size distribution P(x), which follows a power law
P(z) x 1/z%, with o < 3. Therefore the photon trajec-
tories are Lévy flights, with an infinite variance of P(z).
The random walk of light in atomic vapours is usu-
ally characterized by the various moments of the step
size distribution P(z). Omne can define a mean free
path by ¢ = (z) = [[* xP(z)dz and a diffusion coeffi-
cient from the variance o2 of the distribution. For pho-
tons at frequency w, this step size distribution P(z,w)
is deduced from P(z,w) = —W, where T is the
forward transmission given by the Beer-Lambert’s law
T(z,w) = e~ %/t with the frequency dependant mean
free path £(w). This results in an exponential distribution

_ L e
P(z,w) = é(w)e . (1)

While these considerations give a good description for
atoms close to zero temperature [, E, E], most sam-
ples in and outside laboratories present a Doppler broad-
ening Awp much larger than the natural linewidth T" of
the optical transition. The normalized spectrum O (w) of
the light in the multiple scattering regime then influences
the properties of its random walk [@% For instance pho-
tons with a frequency in the wings of the absorption line
will travel over a much larger distance than photons at
the center of the absorption line. The step size distribu-
tion P(z) is obtained by a frequency average of P(z,w)
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[Eq. ([l)] weighted by the spectrum ©(w):
+oo 6( ) y 1
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The subsequent single step size distribution of light in an
atomic vapour can be numerically computed given the
knowledge of the emission spectrum O (w) and of the ab-
sorption spectrum 1/¢(w) (see the Methods section). An
analytical expression can be obtained in some limiting
cases. For instance, assuming that the emission and ab-
sorption spectra are purely Gaussian (as given by pure
Doppler broadening and neglecting the atomic natural
Lorentzian absorption line), then the single step size dis-
tribution asymptotically follows [EI, m]

P(x) ~ 1

22/In(x/lo)

where £ = Nnatoo with n,e the atomic density and og
the scattering cross section at the atomic resonance. This
heavy tail distribution leads to Lévy flights of light. As
explained above, the underlying mechanism of this power
law is a frequency average of the Beer-Lambert transmis-
sion, as different frequency components are not scattered
after the same distance.

To measure this step size distribution, we have used
a specific multicell arrangement as shown in Fig. 1. We
image on a cooled charge coupled camera (CCD) the fluo-
rescence of a natural isotopic mixture of rubidium atoms
in a long cylindrical observation cell, illuminated along
its axis. We thus measure the probability of a photon
to be scattered after a distance x along the cell axis, i.e.
the step size distribution P(x).

As a reference, we first measure P(x) in the case when
the observation cell is illuminated by a monochromatic
incident laser, locked to the F' = 3 — F’ = 4 transition
of the D2 line of rubidium 85. From the corresponding
image [Fig. 2(a)] we extract an exponential step size dis-
tribution as expected from Beer-Lambert’s law [Eq. ([l)
& Fig. 3]. This preliminary measurement allows the cal-
ibration of the mean free path for resonant light and thus
the atomic density, which can be varied by adjusting the
temperature of the observation cell from 20°C to about
47°C. The atomic density thus varies from 9 x 10'° to
2 x 10" m~3, and the mean free path changes accord-
ingly from 50 mm to 5 mm.

To measure Lévy flights of light we use a double cell
configuration [Fig. 1]. Our 11 mW, 2 mm-waist laser
beam is incident on a first, small cylindrical cell of ru-
bidium of optical thickness 0.2, where photons undergo
at most one scattering event with a well defined position.
A 2 mm-diameter pencil of diffused light propagating in
a direction orthogonal to the initial laser beam is then
selected by two 12 cm-spaced diaphragms. This scheme
produces photons with a frequency spectrum ©(w) given
by the Doppler broadening. If we neglect the finite but
small width of the atomic transition, the absorption spec-
trum is also purely Doppler, and Eq. (E) holds. The scat-
tered light then goes through the 7 cm-long observation

P(z) = e/ MWy (2)

(3)

Source cell Observation cell
r ° : °
Laser beam cch

FIG. 1: The experimental setup. A laser beam is in-
cident on a so-called source cell filled with rubidium vapour.
Scattered light propagating at orthogonal direction is selected
with two diaphragms and illuminates a second, observation
cell. The light scattered in this second cell is imaged on a
cooled CCD camera. This fluorescence signal is proportional
to the step size distribution function.

cell, with an angle of about 10° from the cell axis to avoid
stray reflections at the center of the image. Raw images
of the fluorescence signal are obtained after a 30 minutes
exposure. Reproducible noise is then eliminated by sub-
tracting a dark frame. The resulting image is shown in
Fig. 2(b). We extract the corresponding step size dis-
tribution P(z) (shown on a log-log scale in Fig. 3) by
taking longitudinal slices along the incident direction of
propagation. This signal is integrated over 30 lines of
the CCD matrix (corresponding to 1.6 mm in the cell),
then smoothened over 30 pixels along the z direction to
increase the signal to noise ratio. In order to obtain the
correct P(z) distribution, we need to correct the effect
of multiple scattering on the signal. We thus subtract
the intensity measured along a slice slightly off the line
of sight of the diaphragms, which is due only to multiple
scattering, from the intensity measured on the central
slice (see the Methods section). We clearly identify a

FIG. 2: Fluorescence images Data are obtained after an
exposure time of 30 minutes and dark frame subtraction, for
(a) an incident laser beam at the atomic resonance frequency
and (b) incident light provided by a first scattering cell. The
temperature of the observation cell is 41°C. The step size
distribution is extracted from the intensity along the axis.
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FIG. 3: Single step size distributions P(z) plotted in
log-log scale. For an incident monochromatic laser beam of
frequency w (crosses), P(z) shows an exponential decrease, as
shown by the green continuous fitting line. For an incident
Doppler-broadened field originated from a first scattering cell
(dots), P(z) has a power law decrease, well fitted by P(x) ~
1/z% with o = 2.41 + 0.12 (red dashed line), characteristic
of Lévy flights. A microscopic model, taking into account
all hyperfine levels and Raman transitions, is shown as the
blue continuous line. Without any free parameter except the
vertical intensity scale, the agreement with the experimental
data is very satisfactory.

power law, which can be fitted by:

P(z) ~ Iia, with o =2.41+0.12. (4)
This decay is in clear contrast to the exponential decay
for the monochromatic incident field. Note that within
our range of parameters a fit with 1/(z*/In(z/4p)) is not
noticeably different from the pure power law fit of Eq.
(). We have also checked that varying the atomic den-
sity in the observation cell from 7 x 106 to 2 x 107 m~3
has no impact on the measured value of a.

This result calls for two important comments. First,
the exponent « is smaller than 3. We can thus not ig-
nore the heavy tails of the step size distribution. The
variance of P(x) is infinite, making this distribution char-
acteristic of Lévy flights. Second, we measure an impor-
tant difference compared to the prediction @ = 2 ex-
pected when the natural width I" of the atomic tran-
sition is neglected [Eq. (ff)]. Even though this width
I'/27 = 6 MHz is much smaller than the Doppler broad-
ening Awp /27 ~ 220 MHz, one cannot neglect the ef-
fect of the natural Lorentzian line shape on the atomic
absorption profile. In the opposite limit of negligible
Doppler broadening (Awp < T') one expects to recover
the cold-atom limit, where all momenta of the step size
distribution are finite. It is thus not surprising that the
actual case of a finite natural width does increase the ab-
solute value of the exponent from the ideal Doppler limit,
where o = 2. A power law fit to the step size distribution

P(z) obtained by including this finite natural width in
the numerical integration of Eq. (f) yields an exponent
of 2.3, close to the experimental value. We have also im-
plemented a more refined model, taking into account all
hyperfine levels of rubidium atoms including the hyper-
fine Raman transitions (see the Methods section). The
result of this numerical calculation is in excellent agree-
ment with the experimental data as shown in Fig. 3.
Although the finite natural line width is only a few per-
cents of the Doppler width, it surprisingly changes the
power law exponent by 15%. The measured difference to
« = 2 has a particular significance, as for a < 2, even the
mean free path is no longer defined, in contrast to a > 2
where (z) is still finite.

The knowledge of the single step size distribution for
photons which have been scattered only once by hot
atoms is however not sufficient to describe the multiple
scattering regime. Indeed, the spectral characteristics of
the photons depend on their previous history. For in-
stance, at angles close to forward scattering, the Doppler
broadening is very small and the scattering can be con-
sidered to be almost elastic. This feature is described by
a partial frequency redistribution of the photons during
their multiple scattering process [@] and can be under-
stood as a memory effect in the random walk sequence.
In order to have experimental access to the step size dis-
tribution (and therefore to its exponent in case of power
laws) in a multiple scattering regime, it is important to
extract the single step size distribution of a photon that
has been scattered several times by hot atoms.

To determine numerically the shape of the step size
distribution P,, for photons after n scattering events, we
compute the evolution of the spectrum ©,, of scattered
light, taking into account Doppler broadening and aver-
aging over the scattering angles []E] P, is then obtained
by using Eq. (B) with ©,, (see the Methods section).
The numerics show that P, quickly converges towards a
power law, which is independent of the initial frequency,
and hence, that the step size distribution of light in the
multiple scattering regime is well defined. The corre-
sponding power law exponent «(n) is reported on Fig.

In order to approach experimentally the situation of
multiple scattering, we have implemented a triple cell
geometry. In a first cell, with an on-resonance optical
thickness on the order of 2, we prepare photons that have
been scattered several times (n ~ 4) when they leave the
cell. Those photons have thus no memory of their ini-
tial direction and their properties are well described by
an angular average of the fluorescence spectrum. These
photons are then sent towards the “source cell” of Fig.
1, which still has a low optical thickness. Photons thus
undergo one more scattering event with a well defined
position before they can arrive onto the observation cell.
This experimental protocol allows us to produce photons
which have done multiple scattering and forgotten their
initial direction and frequency, as required for a steady
state situation. We then record the image of the fluores-
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FIG. 4: Evolution of the power law exponent. The
double cell configuration (n = 1) [Fig. 1] yields at 90° a
pure Doppler-broadened spectrum and the measured o (red
triangle) is @ = 2.41 4 0.12. For the triple cell configuration,
photons are scattered about 5 times before entering the obser-
vation cell. The measured exponent is then a« = 2.09 + 0.15
(blue triangle). The data and fit for this last configuration
are shown in the inset. Vertical error bars represent the un-
certainty of the power law fit. The blue dots are numerically
computed with the real atomic structure and an angular aver-
age of the Doppler-broadened frequency spectrum. For com-
parison with the experiment, the open red circle is computed
without angular average.

cence on the CCD. The signal in this geometry is much
weaker than in the previous double cell geometry and is
limited by photon shot noise and cosmic rays. From the
median averaging of 6 images corresponding to an ex-
posure time of 5 hours each, we are still able to extract
the step size distribution P(z) after multiple scattering
and obtain a value a = 2.09 & 0.15 [Fig. 4]. This value,
clearly below 3, excludes a diffusion approach to be used
for multiple scattering of light in hot atomic vapours.
This experimental result is in good agreement with our
numerical estimation of the power law, taking into ac-
count all details of the atomic transition [Fig. 4].

To conclude, we have directly measured the step size
distribution of photons undergoing a random walk in hot
atomic vapours. Despite a memory effect due to par-
tial frequency redistribution, the step size distribution
of photons in hot atomic vapours converges after a few
steps to a power law with a diverging second moment.
Therefore photon trajectories in such a system are Lévy
flights. The experiments described in this article show
how it is possible to obtain direct information on the mi-
croscopic ingredient leading to superdiffusion of light in
hot atomic vapours and open the path to study the role
of other broadening mechanisms, such as pressure broad-
ening or inelastic scattering at large intensities, where
the absorption cross sections still have Lorentzian wings,
as for natural broadening. However, in these cases, the
emission spectra are very different as one no longer has
coherent emission processes, and one expects in that case

that P(z) follows a power law with an exponent 1.5 lead-
ing to an infinite mean free path } Finally, truncated
Lévy flights [E] could be considered to deal with finite-
size samples or, on the other hand, with very large sys-
tems, if the step size distribution exhibits a cutoff at long
distance [[L7].

Methods

Correction of multiply scattered light. The required
dynamic to determine the asymptotic behavior of P(x) needs
a fine trade-off between the amount of single scattering and
the need to avoid multiple scattering in the observation
cell. This is adjusted by the cell temperature and the
subsequent atomic density. At 41°C, the temperature used
for our measurements, this density is about 7 x 106 m~=3,
as deduced from the laser beam attenuation. The mean
free path for resonant photons is then ~ 9 mm, and the
effect of multiple scattering cannot be totally neglected. It
can however be corrected. The intensity measured along
the axis of the incident light beam can indeed be written
I(x,0) = Ii(z,0) + I,>2(z,0), where I; is the intensity due
to single scattering of ballistic photons, I,>2 the one due
to multiple scattering. Slightly off the axis, however, only
I,>2 remains. Assuming a smooth variation of I,>2(z,d)
at distances d much smaller than the mean free path of
resonant light we use Io(z,d) ~ I2(z,0) to subtract higher
order scattering along the center of the cell. Hence, we get
P(z) x Ii(z,0) < I(x,0) — I(x,d). Step size distribution
measurements are thus obtained by subtracting intensity
signals observed on and off the ballistic beam axis. A Monte
Carlo simulation, which can track the position of a photon
emerging from the observation cell and register the number
of scattering it has performed, confirmed that this procedure
efficiently filters single scattering events in the observation
cell.

Numerical calculation of the step size distribution for
real atoms. The step size distribution is computed from Eq.
(E) with the knowledge of the frequency-dependent mean-free
path ¢(w) (the inverse of which is the absorption spectrum)
and the emission spectrum O(w). The mean free path at
frequency w is given by

1 Foo v

— =g owl——z)P Vg )dvyg 5
o= [ (w0 -5) Puate) (5)
where nq¢ is the atomic density, Pu,1 is the Maxwell distribu-
tion of atomic velocities v, along the direction of light prop-
agation = in the observation cell, and ¢ is the atomic cross-
section, taken at the Doppler-shifted frequency w(l — =)
The emission spectrum in the first cell is given by

01 (w) x /0“0 dw’ /j:> dvg /j:) dvy Oo(w') & (w’(l _ U?y))
X P1\/1,2(vz,vy)5(w—w’(1— %y)(l_p%"”)) , (6)

where ©g(w’) is the spectrum of the incident laser propagat-
ing along y, wat = w'(1— 2£) is the incident photon frequency
in the atomic rest frame for atoms at velocity v, along y, and
wat(1 + 2=) is the frequency in the laboratory frame of the
photon emitted along x, towards the second cell. P2 is the
Maxwell distribution of atomic velocities along two directions.



The Dirac distribution inside the integral denotes the energy
conservation during coherent scattering, the only change in
frequency coming from Doppler shifts. We take as the laser
spectrum ©p a Lorentzian of width 0.6 MHz. With two-
level atoms, the cross-section ¢ is Lorentzian-shaped (natural
width I'/2m = 6.07 MHz) and we obtain the first order step
size distribution by reporting Egs. (,ﬂ,ﬂ) into Eq. (E) Tak-
ing into account all the levels of rubidium atoms is done by
writing the scattering cross-section as the sum of all the pos-
sible transitions weighted by their respective strength factors
and with the hypothesis of an equipartition of atomic popu-
lation among all possible states.

The multiple scattering regime is characterized by the n'"
order step size distribution function, which is computed by

using O, (w) instead of O(w) in Eq. (E) The evolution of
the spectrum, taking into account Doppler broadening and
averaging over the scattering angles [@), is then given by

Hee R(w,w")

On(w) = On1(w) g o) do’ (7)

—o0

where ®(w’) o 1/£(w’) is the absorption spectrum and R
is the joint laboratory frame redistribution function of the
scatterers, which gives the probability for a photon at a fre-
quency w’ to be scattered at a frequency w . We take for
the redistribution function R the average over all the possible
transitions of the standard redistribution function of a Voigt
absorption profile ]
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