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Abstract

This paper deals with spectral stochastic methods for uncertainty propagation and quantification in nonlin-
ear hyperbolic systems of conservation laws. We consider problems with parametric uncertainty in initial
conditions and model coefficients, whose solutions exhibit discontinuities in physical as well as in stochastic
spaces. The spectral stochastic method relies on multi-resolution schemes with multi-wavelet or local poly-
nomial bases. A Galerkin projection is used to derive a system of deterministic equations for the stochastic
modes of the solution. Hyperbolicity of the resulting Galerkin system is analyzed. A finite volume scheme
with a Roe-type solver is used for discretization in physical space and time. An original technique is intro-
duced for the fast evaluation of approximate upwind matrices, which is particularly well adapted to local
polynomial bases. Efficiency and robustness of the overall method are assessed on the Burgers and Euler
equations with shocks.

Key words: Uncertainty Quantification, hyperbolic systems, conservation laws, spectral stochastic
methods, Multi-Resolution, upwinding

1. Introduction

In numerical simulation, accounting for uncertainties in input quantities (such as model parameters,
initial and boundary conditions, and geometry) is an important issue, especially in risk analysis, safety, and
design. Assuming that these input quantities can be parametrized by random variables with known distri-
bution functions, the question is to quantify the resulting uncertainty in the numerical solution. Uncertainty
Quantification (UQ) provides for instance numerical error bars that make the comparison with experimental
observations easier and therefore facilitate the evaluation of the validity of the physical models. Moreover,
they enable to identify the uncertain parameters that should be measured or controlled with more accuracy
because they have the most signifiant impact on the solution. Furthermore, they allow to assess the level of
reliability that can be attached to computations.

Spectral stochastic methods provide effective tools for UQ. Such methods decompose random quantities
on suitable approximation bases. Their main interest is that they provide a complete probabilistic description
of the uncertain solution. A classical choice for the stochastic basis is the set of generalized Polynomial
Chaos (gPC) spanned by random polynomials, continuous on the stochastic space and truncated to some
degree. Polynomial Chaos (PC) methods were originally introduced by Ghanem and Spanos [11] following
the Wiener Chaos theory [34] in which random processes are expanded in a Hermite polynomial basis of
Gaussian random variables. The theory was then extended to the case of more general random processes
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that can be expanded on a basis of orthogonal polynomials associated with the chosen random variables;
see among others [36]. Then, two types of resolution methods are available. The first ones are called
non-intrusive and are based on the use of the numerical code solving the deterministic model (without
uncertainty) as a black box to construct the spectral expansion of the solution. Two approaches can be
used, either the probabilistic collocation method [25, 35, 2, 9, 29, 8], which consists in approximating the
stochastic solution by a polynomial interpolation, or the non-intrusive projection method [31, 14, 22], which
is based on the evaluation of the stochastic modes of the solution by numerical integration. For the two
cases, the issue is to find the set of interpolation or integration points that provide the most accurate
stochastic approximation. The second type of resolution methods are stochastic Galerkin methods based
on a Galerkin projection of the model equations yielding a reformulated deterministic problem for the
stochastic modes of the solution. Such methods are called intrusive because of the need to rewrite to some
extent the simulation code. Their advantage is to rely on the weak form of the problem and thereby on
a firmer theoretic background. Therefore, they are in our opinion better suited for mathematical analysis
and improvements such as refinement and adaptation. In particular, stochastic Galerkin methods applied to
elliptic and parabolic problems are relatively well understood. Such methods have been successfully applied
in many domains (see [11] and references therein). Regarding viscous flow models, previous works have dealt
with the incompressible Navier-Stokes equations [21, 22], Low Mach number flows [20], and electrochemical
microfluidic applications [5]. Recent reviews on uncertain fluid flows can be found in [15, 27].

The application of spectral stochastic methods to hyperbolic systems of conservation laws (in particular
inviscid flows) poses additional challenges. The main difficulty is that solutions can exhibit discontinuities
(in physical space) in finite time due to the developpement of shock waves and contact discontinuities.
Although these discontinuities are in physical space, their propagation speed can be affected by uncertainty,
thereby leading to discontinuities in stochastic space as well. As a result, bases of continuous polynomials
in the stochastic space become inappropriate, because of aliasing errors [3] and Gibbs-type phenomena [17].
To overcome this issue, Multi-Resolution Analysis (MRA) methods using stochastic finite elements [4],
multi-element gPC (ME-gPC) [33], and multi-wavelet expansions [17, 18, 19] can be used to make the
spectral representation more local by decomposing the stochastic space into different regions or different
scales. Another difficulty originates from the nonlinearities in the physical fluxes of the stochastic hyperbolic
system raising the subtle issue of computing such fluxes in the context of Galerkin projections. Indeed, all
mathematical operations must be applied to the stochastic expansions that represent the variables. One
attractive approach is to use pseudo-spectral techniques [6].

Polynomial collocation methods have already been applied by Mathelin et al. [26] to the Euler equations
but in the continuous case. Other non-intrusive approaches include that of Abgrall [1] based on ENO-
like recontructions for the convection, Burgers, and Euler equations, and that of Lin et al. [24] based on
multi-element probabilistic collocation methods for supersonic flows past a wedge with random roughness.
Concerning intrusive methods, most of the approaches found in the literature are in fact pseudo-intrusive
because the fluxes in the Galerkin system are computed in a non-intrusive way by quadrature methods, as
for instance in Ge et al. [10] for the shallow-water equations and in Poette et al. [30] for the Burgers and
Euler equations. One nice feature of this latter approach is that the polynomial expansion is carried on
suitable entropic variables and not on the original conservative variables, so that it can be proven that the
Galerkin projection leads to a hyperbolic system; however the numerical algorithm requires a minimization
procedure to recover the solution expansion that can be time consuming.

To our knowledge, very few fully intrusive spectral stochastic methods have been investigated for uncer-
tain hyperbolic problems. The scalar wave equation has been treated with gPC methods by Gott et al. [13].
The case of nonlinear hyperbolic systems is obviously more difficult. Supersonic flows past a wedge with
random inflow fluctuations or random wedge oscillations around its apex have been studied using ME-gPC
methods by Lin et al. [23]. In the context of fully intrusive methods, a crucial question is the design of
a suitable scheme to approximate in physical space and time the evolution problem associated with the
Galerkin projection. Typically, one would like to use a Finite Volume (FV) scheme with appropriate up-
winding. For instance, Lin et al. [23] considered upwinding using the mean values (in stochastic space) of
the eigenvectors of the Galerkin Jacobian matrix. As mentionned in [23], this approach is only justified in
the case of relatively small fluctuations of the random quantities. The present paper improves on this point
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both theoretically and numerically, by using full spectral information on the eigenvectors of the Galerkin
Jacobian matrix and by proposing a cost-effective method to approximate the absolute value of this matrix.

The purpose of the present work is to investigate fully intrusive MRA methods for nonlinear stochastic
hyperbolic systems. To this end we choose to decompose the random space dyadically and approximate the
stochastic solution on piecewise polynomial spaces. We consider two types of orthogonal bases for these
spaces: the Multi-Wavelet (MW) basis [18] and the local tensorized (Legendre) polynomial basis, henceforth
referred to as the Stochastic Element (SE) basis. A Stochastic Galerkin projection is then used to derive
the Galerkin system, that is, the set of deterministic equations coupling the stochastic modes of the solution
on the selected basis. The nonlinear fluxes in the Galerkin system are computed in a pseudo-spectral way
with the tools described in [6]. At the theoretical level, our main result is that the Galerkin system is
proven to be hyperbolic in two specific cases, namely when the original stochastic problem has a symmetric
Jacobian and when its eigenvectors are independent of the uncertainty. Moreover, in the general case, the
Galerkin Jacobian matrix is shown to be close to a R-diagonalizable matrix. These results are independent
of the choice of bases (MW or SE). Finally, a FV method with a Roe-type solver is used to approximate
the Galerkin system in physical space and time. One novel feature of the proposed methodology is the fast
computation of approximate upwind matrices. It consists in applying a low-degree polynomial transform
to the Galerkin Jacobian matrix. This polynomial is determined only from the eigenvalues of the original
stochastic problem. This approach is particularly well adapted to the SE basis since the computation of the
polynomial can be localized to each stochastic element.

The paper is organized as follows. In Section 2, the stochastic hyperbolic framework is presented,
including the stochastic subspaces and the stochastic Galerkin projection. The hyperbolicity of the Galerkin
system is investigated in Section 3. Numerical methods are described in Section 4. Finally, simulation results
are presented in Section 5.

We adopt the following notation: lower case symbols represent deterministic quantities, whereas upper
case symbols represent stochastic quantities.

2. Galerkin projection of stochastic hyperbolic systems

2.1. Probabilistic framework and parametric uncertainty
We are interested in uncertainty propagation and quantification in nonlinear hyperbolic problems. The

uncertainty is treated in a probabilistic framework. We rely on an abstract probability space P = (Θ,Σ,dµ),
where Θ is the set of random events, Σ the associated σ-algebra, and dµ the probability measure. For any
random variable H(θ) defined on P, the expectation of H is

E[H] =

∫

Θ

H(θ)dµ(θ). (1)

We denote by L2(Θ, dµ) the space of second-order random variables on P. We assume hereafter that all
random quantities are second-order.

Since P is abstract, one needs to introduce a more convenient space allowing for a stochastic dis-
cretization. This is achieved by introducing a parametrization involving a finite set of N random variables
ξ(θ) ≡ {ξ1(θ), . . . , ξN(θ)} defined on P with known distributions. For simplicity, we consider ξi(θ) as real-
valued independent identically distributed random variables, such that the joined density function of ξ(θ)
factorizes, namely

pξ(y) =

N
∏

i=1

p(yi), (2)

where p(yi) is the probability density function of ξi(θ). We further denote by Ξ the range of ξ and by Pξ

the image probability space, Pξ ≡ (Ξ,BΞ, pξ), where BΞ is the Borel set of Ξ. Similarly, L2(Ξ, pξ) is the
space of second-order random variables defined on the image space. The expectation operator in the image
space is denoted using brackets and is related to the expectation on P through the identity

E[H] =

∫

Θ

H(ξ(θ))dµ(θ) =

∫

Ξ

H(y)pξ(y)dy ≡ 〈H〉 . (3)
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2.2. Stochastic hyperbolic systems

We consider uncertain physical systems modelled by conservative systems of nonlinear hyperbolic PDE’s.
The uncertainty can result from a variability of the initial condition and/or of some coefficients in the model.
For simplicity, we focus on one-dimensional problems in physical space. The extension to higher physical
space dimension is straightforward at least concerning the stochastic aspects. We seek for U(x, t, ξ) solving
almost surely the following conservative system







∂

∂t
U(x, t, ξ) +

∂

∂x
F (U(x, t, ξ); ξ) = 0,

U(t = 0, x, ξ) = U0(x, ξ).
(4)

Let Ω ⊂ R be the physical bounded domain over which the problem is posed and let AU ⊂ Rm, m ≥ 1, be
the set of admissible values for the solutions of the deterministic version of (4). For instance, for the Burgers
equation, we can take AU = R, whereas for the Euler equations AU is the set of states with positive density
and pressure. Then, U : (x, t, ξ) ∈ Ω × [0, T ] × P 7→ U(x, t, ξ) ∈ AU ⊗ L2(Ξ, pξ) denotes the uncertain state
vector of conservative variables parametrized by ξ, U0(x, ξ) is a parametrization by ξ of the uncertain initial
condition, and F : (U, ξ) ∈ AU ⊗ L2(Ξ, pξ) × P 7→ F (U ; ξ) ∈ Rm ⊗ L2(Ξ, pξ) is the uncertain flux function,
involving some random coefficients parametrized again by ξ. Moreover, since the domain Ω is bounded,
appropriate boundary conditions have to be enforced at the boundary ∂Ω; they will be specified in Section
5 when presenting the test cases.

The system (4) can also be written in the non-conservative form







∂

∂t
U(x, t, ξ) + ∇UF (U(x, t, ξ); ξ)

∂

∂x
U(x, t, ξ) = 0,

U(t = 0, x, ξ) = U0(x, ξ).
(5)

This stochastic system is assumed to be hyperbolic in the sense that the stochastic Jacobian matrix ∇UF ∈
Rm,m ⊗ L2(Ξ, pξ) is R-diagonalizable almost surely.

2.3. Stochastic discretization

To approximate the solution in L2(Ξ, pξ), we need a stochastic discretization of the problem. This is
classically obtained by considering an appropriate Hilbertian basis of random functionals in ξ spanning
L2(Ξ, pξ),

L2(Ξ, pξ) = span{Ψ0(ξ),Ψ1(ξ), . . . }, 〈ΨαΨβ〉 = δαβ , (6)

where δαβ denotes the Kronecker symbol. The discrete solution is sought in a finite dimensional subspace
SP constructed by truncating the Hilbertian basis:

SP = span{Ψ0(ξ),Ψ1(ξ), . . . ,ΨP(ξ)} ⊂ L2(Ξ, pξ), dim(SP) = P + 1. (7)

We assume for simplicity that ξ is a uniform random vector in [0, 1]N (an isoprobabilistic transformation can
be used to map the original independent random variables to this random vector). The image probability
space is then Pξ ≡ ([0, 1]N,B[0,1]N , 1), where B[0,1]N is the Borel set of [0, 1]N.

We adopt a multi-resolution approach by decomposing the random domain dyadically and approximating
the stochastic solution by piecewise polynomial functions. In addition to the number N of random variables
ξi in the parametrization, this approximation depends on the resolution level Nr ≥ 0 (controlling the minimal
size of the stochastic elements, that is, the discretization cells in the stochastic space) and on the expansion
order No ≥ 0 (controlling the degree of the piecewise polynomial approximation). Let i = (i1, . . . , iN) ∈
{1, . . . , 2Nr}N be a multi-index and let Ki = {ξ ∈ [0, 1]N, ∀1 ≤ j ≤ N, ξj ∈ ]2−Nr(ij − 1), 2−Nrij [} be the
associated stochastic element. Thus, we define SNo,Nr as the stochastic approximation space of piecewise
polynomial functions

SNo,Nr = {f : [0, 1]N → R,∀i ∈ {1, . . . , 2Nr}N, f |Ki
∈ QN

No[ξ]}, (8)
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where QN
No[ξ] denotes the vector space of real polynomials in RN with degree ≤ No in each variable ξi. The

space SNo,Nr has dimension
dimSNo,Nr = (No + 1)N2NNr = P + 1. (9)

Observe that the spaces SNo,Nr form a hierarchical family of stochastic spaces since SNo,Nr ⊂ SNo′,Nr for
No ≤ No′ and SNo,Nr ⊂ SNo,Nr′ for Nr ≤ Nr′.

Two kinds of basis can be considered. Firstly, SNo,Nr can be spanned by the hierarchical Multi-Wavelet
system of order No and resolution level Nr introduced in [18]. This yields the Multi-Wavelet (MW) basis
{ψMW

α (ξ)}α=0,...,P. Alternatively, SNo,Nr can be spanned by local Legendre polynomial bases, where each
function of SNo,Nr is expanded in each stochastic element of size 2−Nr on a local fully tensorized set with
dimension (No+1)N of Legendre polynomials. For convenience, Legendre polynomials are henceforth defined
with respect to the reference interval [0, 1]. This yields the Stochastic Element (SE) basis {ψSE

α }α=0,...,P.
The case Nr = 0 corresponds to the classical continuous approximation (Wiener-Legendre expansion), while
the choice Nr > 0 and No = 0 leads to the Wiener-Haar expansion (piecewise constant approximation). For
further use, let B ∈ RP+1,P+1 denote the transition matrix between the two bases, such that ΨMW

α (ξ) =
∑P

γ=0 BαγΨSE
γ (ξ), for all α = 0, . . . ,P.

The approximate solution in SP := SNo,Nr is expanded as a series in the form

U(x, t, ξ) ≈ UP(x, t, ξ) =

P
∑

α=0

uα(x, t)Ψα(ξ). (10)

The deterministic Rm-valued fields uα(x, t) are called the stochastic modes of the solution (in SP). If
UP(x, t, ξ) is known, then uα =

〈

ΨαUP
〉

. The basis functions Ψα are either ΨMW
α or ΨSE

α defined above.
Let uMW

α and uSE
α denote the stochastic modes expressed in the two different bases. Then, uMW

α =
∑P

γ=0 BαγuSE
γ , for all α = 0, . . . ,P.

2.4. The Galerkin problem

The computation of the stochastic modes uα(x, t) is based on a weak interpretation, or Galerkin projec-
tion, of (4). Projecting (4) on the basis of SP, we obtain











〈

Ψα

∂UP

∂t

〉

+

〈

Ψα

∂F (UP; ·)
∂x

〉

= 0, ∀α = 0, . . . ,P,

〈

ΨαUP
〉

(t = 0) =
〈

ΨαU0
〉

, ∀α = 0, . . . ,P.

(11)

Accounting for orthonormality, (11) is equivalent to







∂

∂t
uα(x, t) +

∂

∂x

〈

ΨαF
(

UP; ·
)〉

= 0, ∀α = 0, . . . ,P,

uα(x, t = 0) =
〈

ΨαU0
〉

, ∀α = 0, . . . ,P.
(12)

Equation (12) shows that the α-th stochastic mode of the approximate solution is governed by an equation
that generally couples all the stochastic modes in the term

〈

ΨαF (UP; ·)
〉

. It is convenient to define the
vectors of stochastic modes and flux

u(x, t) =







u0(x, t)
...

uP(x, t)






, f(u(x, t)) =







f0(u)
...

fP(u)






, (13)

with

fα(u) ≡
〈

ΨαF
(

UP; ·
)〉

, α = 0, . . . ,P, and UP =

P
∑

β=0

uβΨβ(ξ). (14)
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The component vector u must belong to the admissible set Au ⊂ Rm(P+1) such that u ∈ Au ⇔ UP(x, t, ξ) =
∑P

α=0 uαΨα(ξ) ∈ AU ⊗ L2(Ξ, pξ). With this notation, the deterministic Galerkin system takes the simple
form







∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0,

u(x, t = 0) = u0(x).
(15)

Thus, the problem on u has the same form as the original stochastic problem (4), except that the state
vector is now of size m(P + 1). The similarity of the Galerkin system (15) with (4) is a classical feature of
the Galerkin projection. This similarity does not imply equivalent or comparable complexity.

The knowledge of the stochastic modes of the uncertain solution allows to compute interesting statistic
quantities. For instance, in the case of the MW basis and if the convention ΨMW

0 = 1 is adopted, the
expectation of the solution is approximated by the mode α = 0 of the expansion since

E[U ] ≈ E[UP] =

〈

P
∑

α=0

uMW
α ΨMW

α

〉

=

P
∑

α=0

uMW
α

〈

ΨMW
0 ΨMW

α

〉

= uMW
0 . (16)

Similarly, the variance of the solution is given by

V [U ] = E
[

(U − E[U ])
2
]

≈ V [UP] = E
[

(

UP − E[UP]
)2

]

=

〈(

P
∑

α=1

uMW
α ΨMW

α

)2〉

=

P
∑

α,β=1

uMW
α uMW

β

〈

ΨMW
α ΨMW

β

〉

=

P
∑

α=1

(uMW
α )2, (17)

where the (x, t) dependence of the solution has been dropped for simplicity. Also, once UP(x, t, ξ) is known,
one can estime various properties of the uncertain solution, such as moments, density functions, cross
correlations, etc. . . , relying for instance on a sampling of ξ.

3. Hyperbolicity of the Galerkin system

Before detailing the construction of a numerical method to approximate the Galerkin system (15) in
physical space and time, we address the issue whether this system is hyperbolic. Equation (15) can be
rewritten in the non-conservative form







∂u

∂t
+ ∇uf(u)

∂u

∂x
= 0,

u(x, t = 0) = u0(x),
(18)

where the Galerkin Jacobian matrix of order m(P + 1) has a block structure such that

(∇uf(u))α,β=0,...,P =
〈

∇UF (UP; ·)ΨαΨβ

〉

α,β=0,...,P
. (19)

We aim at understanding whether the Galerkin Jacobian matrix defined by (19) is R-diagonalizable.
An important remark is that the two different representations of ∇uf using the MW basis or the SE

basis for the stochastic discretization are equivalent in this context. Indeed, let ∇ufMW and ∇ufSE ∈
Rm(P+1),m(P+1) be the representations of the Galerkin Jacobian matrix using each respective basis. Then,
for all α, β = 0, . . . ,P,

(∇ufMW )αβ =
〈

∇UF (UP; ·)ΨMW
α ΨMW

β

〉

=
∑

γ,δ

〈

∇UF (UP; ·)BαγΨSE
γ BβδΨ

SE
δ

〉

=
∑

γ,δ

Bαγ(∇ufSE)γδBβδ = (B∇ufSEBT )αβ . (20)
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Moreover, B is orthogonal owing to the orthonormality of the two bases, which implies that ∇ufMW

and ∇ufSE are similar and therefore proves the equivalence of the two representations with respect to
R-diagonalization.

An advantage of using SE bases is that the Galerkin Jacobian matrix ∇uf ≡ ∇ufSE has a diagonal block
structure, provided that the matrix coefficients are ordered according to the 2NNr stochastic elements, since
(∇uf)αβ = 0 whenever Supp(ΨSE

α ) ∩ Supp(ΨSE
β ) has zero measure. Consequently, ∇uf is diagonalizable if

and only if each block in the diagonal is diagonalizable. Suchs blocks are of size m(No + 1)N × m(No + 1)N

and correspond to a given stochastic element. The issue of the hyperbolicity of the Galerkin system can
then be studied for the case Nr = 0.

Consider the stochastic approximation space SNo,0, which corresponds to a Wiener-Legendre expansion
of the solution. Since the stochastic Jacobian matrix ∇UF (·; ξ) ∈ Rm,m⊗L2(Ξ, pξ) is R-diagonalizable for al-
most every ξ ∈ Ξ, there exist m eigenvalues Λ1(ξ), . . . ,Λm(ξ) and m associated eigenvectors W 1(ξ), . . . ,Wm(ξ)
such that

∇UF (·; ξ) = P−1(ξ)D(ξ)P (ξ), (21)

with
D(ξ) = diag(Λk(ξ))k=1,...,m and P (ξ) =

(

W 1(ξ) . . . Wm(ξ)
)

. (22)

The matrices D(ξ) and P (ξ) are in Rm,m ⊗ L2(Ξ, pξ).

3.1. Stochastic symmetric hyperbolic systems

Theorem 1. If the stochastic Jacobian matrix ∇UF (·; ξ) is symmetric, then the Galerkin Jacobian matrix
∇uf is R-diagonalizable. In particular, the Galerkin projection of a scalar conservation law always leads to
a hyperbolic system.

Proof. If ∇UF (·; ξ) is symmetric, then the Galerkin matrix ∇uf defined by (19) is also symmetric and
therefore R-diagonalizable.

3.2. Stochastic eigenvectors independent of the uncertainty

Theorem 2. If the eigenvectors of the stochastic Jacobian matrix ∇UF (·; ξ) are independent of the uncer-
tainty, then the Galerkin Jacobian matrix ∇uf is R-diagonalizable.

Proof. If the eigenvectors of ∇UF (·; ξ) are independent of ξ, then the spectral decomposition (21) becomes

∇UF (·; ξ) = p−1
0 D(ξ)p0, (23)

with
D(ξ) = diag(Λk(ξ))k=1,...,m and p0 =

(

w1
0 . . . wm

0

)

, (24)

where w1
0, . . . , w

m
0 are independent of ξ. A generic element in ∇uf can be identified with the multi-index

(αi, βj) with i, j = 1, . . . , m and α, β = 0, . . . ,P, in such a way that

(∇uf(u))αi,βj =
〈

(

∇UF (UP; ·)
)

ij
ΨαΨβ

〉

=
∑

k

〈

(

p−1
0

)

ik
Λk (p0)kj ΨαΨβ

〉

=
∑

k

(

p−1
0

)

ik

〈

ΛkΨαΨβ

〉

(p0)kj

=
∑

k,k′

∑

γ,γ′

{δαγ

(

p−1
0

)

ik
}{δkk′

〈

ΛkΨγΨγ′

〉

} {δγ′β (p0)k′j}

=
∑

k,k′

∑

γ,γ′

(q)αi,γk (d)γk,γ′k′ (r)γ′k′,βj = (q d r)αi,βj (25)

where d is the block-diagonal matrix of size m(P + 1) × m(P + 1) such that

(d)γk,γ′k′ = δkk′

〈

ΛkΨγΨγ′

〉

, (26)
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and q and r are m(P + 1) × m(P + 1) matrices such that

(q)αi,γk = δαγ

(

p−1
0

)

ik
, (r)γk,βj = δγβ (p0)kj . (27)

Each block of the diagonal of d is symmetric, and therefore R-diagonalizable so that d is R-diagonalizable.
Besides,

(qr)αi,βj =
∑

α,k

(q)αi,γk (r)γk,βj =
∑

α,k

(

P−1
0

)

ik
δαγδγβ (P0)kj = δαβδij , (28)

which means that q = r−1. This concludes the proof.

Remark. Theorem 2 provides another proof of the fact that the Galerkin system derived from a
stochastic scalar conservation law is hyperbolic. Indeed, W (ξ) = 1 is the eigenvector of ∇UF ∈ R. An
application of Theorem 2 is the scalar wave equation with uncertain sound velocity.

3.3. An approximate Galerkin Jacobian matrix

In the most general case we cannot prove that the Galerkin system (15) is hyperbolic. However, we show
that the Galerkin Jacobian matrix ∇uf close to a R-diagonalizable matrix. To show this, we consider the
one-dimensional stochastic case (N = 1) and we first treat the case Nr = 0. Let {ξγ}γ=0,...,No be the set of
P + 1 = No + 1 Gauss points in [0, 1], i.e. the No + 1 zeroes of the Legendre polynomial of degree No + 1,
and let {ωγ}γ=0,...,No be the associated quadrature weights.

Theorem 3. Assume that the stochastic Jacobian matrix ∇UF (·; ξ) is defined on the No + 1 Gauss points
in [0, 1]. Consider the matrix ∇uf obtained by approaching the coefficients of the Galerkin Jacobian matrix
∇uf by the above Gauss quadrature, namely

(

∇uf(u)
)

α,β=0,...,No
=

(

No
∑

γ=0

ωγ∇UF (UP(ξγ); ξγ)Ψα(ξγ)Ψβ(ξγ)

)

α,β=0,...,No

. (29)

Then, ∇uf is R-diagonalizable with eigenvalues {Λk(ξη)}k=1,...,m,η=0,...,No, and eigenvectors {vk
η}k=1,...,m,η=0,...,No

defined by
(

vk
η

)

β=0,...,P
=

〈

V k
η Ψβ

〉

β=0,...,No
, (30)

where V k
η (ξ) ∈ Rm ⊗ SP is the polynomial of degree ≤ No + 1 in ξ such that

V k
η (ξη′) = δηη′W k(ξη), η′ = 0, . . . ,No. (31)

Here, {Λk(ξ)}k=1,...,m and {W k(ξ)}k=1,...,m are the eigenvalues and eigenvectors ot the stochastic Jacobian
matrix ∇UF (·; ξ) defined in (22).

Remark. Observe that
∑No

η=0 V k
η (ξ) is the interpolation polynomial of W k(ξ) at the No + 1 Gauss

points.

Proof. Since the order of the quadrature is 2No + 1, for all V (ξ) ∈ SP, 〈ΨβV 〉 is exact for all β = 0, . . . ,No
if evaluated using the quadrature. Hence, for all β = 0, . . . ,No,

(

vk
η

)

β
=

〈

ΨβV k
η

〉

=

No
∑

γ=0

ωγV k
η (ξγ)Ψβ(ξγ) = ωηW k(ξη)Ψβ(ξη). (32)

Furthermore, observe that for all ξ,
No
∑

β=0

(

vk
η

)

β
Ψβ(ξ) = V k

η (ξ), (33)
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since the basis is orthonormal. As a result,

(

∇uf(u)vk
η

)

α
=

No
∑

β=0

(

No
∑

γ=0

ωγ∇UF (UP(ξγ); ξγ)Ψα(ξγ)Ψβ(ξγ)

)

(

vk
η

)

β

=

No
∑

γ=0

ωγ∇UF (UP(ξγ); ξγ)Ψα(ξγ)





No
∑

β=0

(

vk
η

)

β
Ψβ(ξγ)





=

No
∑

γ=0

ωγ∇UF (UP(ξγ); ξγ)Ψα(ξγ)V k
η (ξγ)

= ωηΨα(ξη)∇UF (UP(ξη); ξη)W k(ξη) = ωηΨα(ξη)Λk(ξη)W k(ξη) = Λk(ξη)
(

vk
η

)

α
. (34)

The proof is complete.

Therefore, in the most general case, ∇uf ≈ ∇uf , the latter matrix being R-diagonalizable. Consequently,
we can expect that provided the stochastic discretization is sufficiently accurate, the spectrum of ∇uf is a
good approximation of the spectrum of ∇uf . This fact will be used for the computation of upwind matrices
in the following section.

Finally, we observe that the extension to N > 1 is straightforward owing to the full tensorization (of
Gauss points and polynomial basis). The extension to Nr ≥ 1 is also straightforward.

4. Numerical method

The Galerkin system (15) is discretized using a FV method [12, 32]. Consider for simplicity a uniform
spatial step ∆x and discrete times tn with time step ∆nt = tn+1 − tn verifying a CFL condition specified
below. The FV scheme takes the form

un+1
i = un

i − ∆nt

∆x

(

ϕ(un
i , un

i+1) − ϕ(un
i−1, u

n
i )

)

, (35)

where un
i is an approximation to the mean value in space of the solution u in the cell of center i∆x with

width ∆x at the time tn and ϕ(·, ·) is the numerical flux function. The numerical flux is chosen in the form

ϕ(un
i , un

i+1) =
f(un

i ) + f(un
i+1)

2
+ a

un
i − un

i+1

2
, (36)

where 1
2 (f(un

i )+f(un
i+1)) is the centered part of the flux and a ∈ Rm(P+1),m(P+1) is a (nonnegative) upwind

matrix whose construction will be discussed in section 4.3.

4.1. Roe matrix and Roe state

We assume that the original stochastic problem (4) possesses a Roe matrix ARoe(UL, UR; ξ) ∈ Rm,m ⊗
L2(Ξ, pξ) almost surely. Recall that ARoe(UL, UR; ξ) verifies the following properties:

• ARoe(UL, UR; ξ) is R-diagonalizable, ∀UL, UR ∈ AU ⊗ L2(Ξ, pξ).

• Consistency with the stochastic Jacobian matrix ∇UF ,

ARoe(U,U ; ξ) = ∇UF (U ; ξ), ∀U ∈ AU ⊗ L2(Ξ, pξ).

• Conservativity through shocks,

F (UR; ξ) − F (UL; ξ) = ARoe(UL, UR; ξ)(UR − UL), ∀UL, UR ∈ AU ⊗ L2(Ξ, pξ).
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Theorem 4. Under the above hypotheses, ∀uL, uR ∈ Au, the matrix a(uL, uR) ∈ Rm(P+1),m(P+1) defined by

a(uL, uR) =
〈

ARoe(UP
L , UP

R ; ·)ΨαΨβ

〉

α,β=0,...,P
(37)

with UP
L (ξ) =

∑P
α=0(uL)αΨα(ξ) and UP

R(ξ) =
∑P

α=0(uR)αΨα(ξ), verifies the following properties:

• Consistency with the Galerkin Jacobian matrix ∇uf ,

a(u, u) = ∇uf(u), ∀u ∈ Au.

• Conservativity through shocks,

f(uR) − f(uL) = a(uL, uR)(uR − uL), ∀uL, uR ∈ Au.

Proof. To prove the consistency with the Galerkin Jacobian matrix, observe that ∀u ∈ Au, letting UP =
∑P

α=0 uαΨα(ξ),

a(u, u) =
(〈

ARoe(UP, UP; ·)ΨαΨβ

〉)

α,β=0,...,P
=

(〈

∇UF (UP; ·)ΨαΨβ

〉)

α,β=0,...,P
= ∇uf(u).

To prove the conservativity through shocks, observe that ∀uL, uR ∈ Au and ∀α = 0, . . . ,P, letting UP
L =

∑P
α=0(uL)αΨα(ξ) and UP

R =
∑P

α=0(uR)αΨα(ξ),

(f(uR) − f(uL))α =
〈(

F (UP
R ; ·) − F (UP

L ; ·)
)

Ψα

〉

=
〈

ARoe(UP
L , UP

R ; ·)(UP
R − UP

L )Ψα

〉

=

〈

ARoe(UP
L , UP

R ; ·)
P

∑

β=0

(〈

ΨβUP
R

〉

−
〈

ΨβUP
L

〉)

ΨαΨβ

〉

=

P
∑

β=0

〈

ARoe(UP
L , UP

R ; ·)ΨαΨβ

〉 (〈

ΨβUP
R

〉

−
〈

ΨβUP
L

〉)

=

P
∑

β=0

(a)α,β

(

(uR)β − (uL)β

)

.

This completes the proof.

Assume furthermore that for all UL, UR ∈ AU ⊗L2(Ξ, pξ), there exists a Roe state URoe
LR ∈ AU ⊗L2(Ξ, pξ)

almost surely such that
ARoe(UL, UR; ξ) = ∇UF (URoe

LR ; ξ), (38)

and for all (UP
L , UP

R) ∈ (AU ⊗ L2(Ξ, pξ))
2, introduce the shorthand notation URoe,P

LR ∈ AU ⊗ L2(Ξ, pξ) such

that ARoe(UP
L , UP

R ; ξ) = ∇UF (URoe,P
LR ; ξ). Then,

a(uL, uR) =
〈

∇UF (URoe,P
LR ; ·)ΨαΨβ

〉

α,β=0,...,P
= ∇uf(uRoe

LR ), (39)

with uRoe
LR = (< ΨαURoe,P

LR >)α=0,...,P, that is, a Roe state can also be defined for the Galerkin system.
Moreover, if the Galerkin Jacobian matrix ∇uf(u) is R-diagonalizable for all u ∈ Au, then ∇uf(uRoe

LR ) is a
Roe linearized matrix.

4.2. An efficient method for approximating the absolute value of a matrix.

Let A be a deterministic R-diagonalizable matrix of size NA. By definition, |A| is the co-diagonalizable
matrix with A whose eigenvalues are the absolute values of those of A,

|A| =

NA
∑

i=1

|λi|li ⊗ ri, (40)
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where {λi}i=1,...,NA
are the real eigenvalues of A, {li}i=1,...,NA

the left eigenvectors, and {ri}i=1,...,NA
the

right eigenvectors. It is possible to diagonalize A and to compute |A| using (40), but in practice this method
is extremely costly. A more interesting method has been proposed in [28], which consists in computing a
sequence of polynomial iterations based on the exact knowledge of the eigenvalues (or at last an explicit
bound), and converging to the matrix sign if all the eigenvalues are real. However, this method also becomes
costly when NA grows. Another method has been proposed in [7], relying on the computation of a polynomial
which interpolates some absolute values of the eigenvalues of A. We derive here a new method based on
a single computation of a low-degree polynomial. Our method is clearly less costly, and it is also better
adapted to the situations where only approximations of the eigenvalues are known. Denote by {λ′

i}i=1,...,NA

the approximate eigenvalues of A. The method consists in finding a polynomial q[d,λ′

i
] with degree d (d

is fixed a priori) which minimizes the least-squares error between |λ′
i| and q(λ′

i), and then applying this
polynomial to the matrix A in order to approximate |A|.

Let q(X) =
∑d

j=0 cjX
j be a polynomial. We seek q[d,λ′

i
] which minimizes the error

∑NA

i=1

(

|λ′
i| − q[d,λ′

i
](λ

′
i)

)2
.

It is well-known that this minimization problem is equivalent to solving a linear system with the polynomial
coefficients (cj)j=0,··· ,d as unknows. This system of size (d + 1) × (d + 1) can be written as







∑NA

i=1 λ′0
i λ

′0
i . . .

∑NA

i=1 λ′0
i λ

′d
i

...
. . .

...
∑NA

i=1 λ′d
i λ

′
i
0

. . .
∑NA

i=1 λ′d
i λ

′d
i













c0

...
cd






=







∑NA

i=1 |λ′
i|λ′0

i

...
∑NA

i=1 |λ′
i|λ′d

i






. (41)

Solving this linear system yields the coefficients (cj)j=0,··· ,d that define the polynomial q[d,λ′

i
]. We then

apply this polynomial to A and obtain an approximation to |A|. For efficiency, Hörner’s method can be
used: q[d,λ′

i
](A) can be rewritten as

q[d,λ′

i
](A) = c0I + (c1I + (c2I + · · · + (cd−1I + cdA) . . . A)A). (42)

The number of matrix-matrix products is thus reduced to d and the computational cost is proportional to
the polynomial degree d. We can further reduce the computational cost in cases where only the product of
|A| times a given vector x is needed. By computing directly |A|x, the cost is reduced to d matrix-vector
products.

4.3. The upwind scheme

We apply the method presented in the previous section to approximate the absolute value of ∇uf(uRoe
LR ) ∈

Rm(P+1),m(P+1) at each interface LR in physical space. To this purpose, we use as approximate eigenval-
ues {λ′

i}i=1,...,m(P+1), the eigenvalues of the stochastic Jacobian matrix ∇UF evaluated at URoe,P
LR (ξ) =

∑P
α=0(u

Roe
LR )αΨα(ξ) and at the Gauss points of each stochastic element. Choosing a degree d then yields

a polynomial q[d,λ′

i
]. An important remark is that the linear system (41) can be singular if the number

of disctinct eigenvalues λ′
i is less than d. In particular, this occurs in the deterministic case. To properly

handle this issue, we use a Singular Value Decomposition method.
We choose to work with the SE basis. In particular, we recall that with this basis, the Galerkin Jacobian

matrix ∇uf has a diagonal block structure. Therefore, the above procedure can be applied separately to
each stochastic element. The key advantage is that the polynomial is different for each stochastic element
and has to fit less points than in the case of the global MW basis. Thus, computations are at the same time
more efficient and more accurate.

The numerical flux in the Finite Volume scheme (35) is chosen in the form

ϕ(un
i , un

i+1) =
f(un

i ) + f(un
i+1)

2
+ q[d,λ′

i
](∇uf(uRoe

i,i+1))
un

i − un
i+1

2
. (43)

We emphasize that this numerical flux is not a projection of the flux of the original stochastic problem (4)
as some methods discussed in the introduction propose, but a numerical flux associated with the Galerkin
system (15).
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Finally, the time-step ∆nt is selected from a CFL-condition based on the highest characteristic velocity
over the spatial and stochastic discretization cells. In practice, ∆nt is computed such that

∆nt

∆x
=

C

max
LR∈I,i=1,...,m(P+1)

|λ′
i(u

Roe
LR )| , (44)

where I denotes the set of interfaces LR and (λ′
i)i=1,...,m(P+1) are the approximate eigenvalues identified

above. In the sequel, we set the CFL constant C to 0.95.
We observe that the matrix q[d,λ′

i
](∇uf(uRoe

i,i+1)) is not guaranteed to control the eigenvalues of ∇uf(uRoe
i,i+1)

and it is not even guaranteed to be nonnegative. Indeed, approximate eigenvalues of ∇uf(uRoe
i,i+1) have been

used to build q[d,λ′

i
], and, in addition, this polynomial only provides a least-square fit to the eigenvalues.

This issue can possibly be handled by lowering the CFL constant C.

5. Results

The methodology presented in the previous sections is assessed on three test cases. The first two deal
with the Burgers equation and the third one with the Euler equations.

5.1. Test case 1: Burgers equation

The goal of this first test case is to assess the proposed methodology for a stochastic scalar conservation
law (the Burgers equation) so that the Galerkin system is guaranteed to be hyperbolic from theorems 1 or 2,
and involving only a positive wave speed so that the computation of |∇uf(uRoe

LR )| is trivial.
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Figure 1: Random initial condition for test case 1: sample set of 20 random realizations, mean, and standard deviation.

5.1.1. Problem definition

We consider a one-dimensional spatial domain Ω = [0, 1] with periodic boundary conditions. The gov-
erning equation, in conservative form, is

∂U

∂t
+

∂F (U)

∂x
= 0, F (U) =

U2

2
, (45)

and we consider an uncertain initial condition U0(x, ξ) consisting of three piecewise constant deterministic
states in x. Specifically, the three states are u1 = 1, u2 = 1/2, and u3 = 1/6, and the position of some jumps
is uncertain: the jump from states u1 to u2 occurs at a random location X1,2 having a uniform distribution in
[0.1, 0.2], while the jump from states u2 to u3 occurs at a random location X2,3 having a uniform distribution
in [0.3, 0.4]. Finally, the jump from states u3 to u1 is at x31 = 0.6. The random locations X1,2 and X2,3 are
independent and parameterized using two independent random variables ξ1 and ξ2 respectively, both with
uniform distribution in [0, 1]:

X1,2 = 0.1 + 0.1ξ1, X2,3 = 0.3 + 0.1ξ2, ξ1, ξ2 ∼ U [0, 1]. (46)
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Therefore, the problem has two stochastic dimensions (N = 2), and the dimension of the approximation
space for expansion order No and resolution level Nr is

dimSNo,Nr = (No + 1)222Nr. (47)

The initial condition is discretized on the mesh by taking cell averaged random states as initial values.
At the stochastic level, the discretization uses piecewise continuous bilinear approximations over the 22Nr

stochastic elements for No ≥ 1, or the stochastic element averaged state for No = 0. The bilinear approxima-
tion is constructed such that initial discrete states are continuous in the stochastic domain. This procedure
prevents the presence of overshoots in the initial data. However, no particular treatment is applied to en-
force the stochastic continuity during time integration. In Figure 1, we provide an illustration of the random
initial condition for a spatial discretization with Nc = 200 uniform cells in physical space. The plot shows
a sample set of 20 realizations of the random initial condition U0(x, ξ), with its expectation and standard
deviation. It can be observed that the realizations present slightly inclined shocks, an effect caused by the
cell average procedure and which can be reduced by taking a finer spatial mesh.
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Figure 2: Solution of the stochastic Burgers equation at t = 0.2, 0.4, 0.6, and 0.8. The solution mean (red) and standard
deviation (blue) are plotted as a function of x, together with a reconstruction of 20 randomly generated realizations (green).
Computations with Nr = 3 and No = 3.

5.1.2. Time integration

The stochastic Burgers equation is time-integrated using the Roe solver described above. We recall that
since U is a scalar, the Galerkin problem is hyperbolic. The stochastic discretization is performed using
the SE basis. Moreover, the evaluation of the stochastic expansion of the nonlinear flux F (U) relies on
pseudo-spectral methods that will be detailed in section 5.3.

It is well-known that for the deterministic Burgers equation, the eigenvalue of the stochastic Jacobian
matrix ∇UF is U . Because in the present setting the initial condition is almost surely positive for any x, we
expect U > 0 with probability one, for all (x, t). Therefore, the spectrum of the Galerkin Jacobian matrix
is expected to be strictly positive, so that the upwinding matrix of the Galerkin problem reduces to the
Galerkin Jacobian matrix (the polynomial transformation is in fact the identity).

In Figure 2 we show the stochastic solution at times t = 0.2, 0.4, 0.6, and 0.8. The computation uses
Nr = 3 and No = 3, so that the dimension of the stochastic space is 16×64 = 1024. The solution expectation
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Figure 3: Space-time diagrams of the expectation (left) and standard deviation (right) of the stochastic Burgers solution.
Contours are in the range [0, 1] with a constant spacing 0.05. Computations with Nr = 3 and No = 3.

and standard deviation, together with a random sample set of realizations are also plotted. The realizations
are reconstructed from the stochastic expansions of the solutions, using a unique set of randomly generated
realizations of ξ ∈ [0, 1]2.

Focusing first on the stochastic solution, we observe that the proposed method correctly captures the
dynamics of the Burgers equation. The shocks are transported with the correct velocity and the discontinu-
ities remain sharp as time evolves. For t = 0.2, the first shock whose velocity is 0.75 has not yet reached the
second shock whose velocity is 1/3. At t = 0.4, a fraction of the realizations corresponds to a situation where
the first and second shocks have merged. At t = 0.6, the shocks have merged for nearly all realizations, a
situation which is fully achieved at t = 0.8. It can be observed that the realizations, although corresponding
to the same sample set of ξ in all plots, present a different distribution before and after the shocks have
merged. Indeed, since the merging happens at different times depending on the initial locations of the two
shocks and the shock velocities are different before and after merging, the final location of the shock is not
expected to be uniform.

The uncertain shock dynamics can also be analyzed from the standard deviations of the stochastic
solution: not only the maximum standard deviation is larger at t = 0.8, denoting the higher amplitude of
the discontinuity, but the profiles are different. The expectation plots confirm the previous observations.
While the uncertainty in shock location induces an affine evolution of 〈U〉 when the two shocks are distinct,
a variable slope of 〈U〉 with x is observed after the shocks have merged: this indicates a non-uniform
distribution of the final shock location. Similarly, the dynamics of the (deterministic) rarefaction wave is
well captured.

In addition to the analysis of the uncertain shocks dynamics, Figure 2 also demonstrates that the Roe
solver for the Galerkin system does not create spurious uncertainty in the solution, through numerical
diffusion for instance. This can be better seen from Figure 3 where the space-time diagrams of the solution
expectation and standard deviation are plotted over the larger period of time t ∈ [0, 2]. For time t > 0.7, in
a moving frame attached to the remaining shock, the standard deviation reaches a maximum at t ≈ 1 where
it peaks at σ(U) ≈ 0.42, and then slowly decays. This decay is not a numerical artifact, but is induced by
the rarefaction wave which has grown up to occupy the whole domain, as seen from the expectation plot
where the plateau U = 1 has disappeared for t > 1.

For analysis purpose, we define a moving observation point xo(t) = 0.25 + 0.5t. The observation point
is initially located between the two stochastic shocks. Since the velocity of xo is lower than 0.75, xo will be
caught-up by the first random shock. Moreover, since xo moves faster than the second shock, there is a time
interval for which the stochastic solution at xo corresponds to a set of events ξ with different configurations
of the shocks. This is seen from Figure 4 where the stochastic solution U(xo(t), t, ξ) is plotted as a function of
ξ = (ξ1, ξ2) for various times t ∈ [0.2, 0.7]. For t = 0.2, the observation point starts to be caught-up by some
events corresponding to the largest realizations of X1,2: the solution is a function of ξ1 only. At t = 0.3, a
larger fraction (roughly 1/4) of the first shock has overrun the observation point, and the stochastic solution
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Figure 4: Stochastic solution of the Burgers equation at observation point xo(t) as a function of (ξ1, ξ2) and for different times
as indicated. Computations with No = 3 and Nr = 3.

exhibits two plateaus. At t = 0.4, the observation point starts to reach the second shock, introducing some
dependence on ξ2, while a fraction of events corresponds to shocks having merged. This creates a stochastic
solution with three distinct plateaus with respective values 1, 1/2, and 1/6, whose configuration evolves in
time. At t = 0.7, the solution at the observation point is essentially constant and equal to 1, with only a
small fraction of events for which U = 1/6.

These results demonstrate the ability of the proposed method to account for nonlinear dynamics and
complex interaction between random shocks. However, plots in Figure 4 deserve more comments. Firstly,
although the multi-resolution scheme allows for discontinuities across the stochastic discretization cells, the
solutions reported here appear essentially continuous. While the initialization procedure ensures stochastic
continuity of the initial condition, the numerical method maintains satisfactorily this property as time
advances, as expected from the properties of the Burgers equation, provided that the resolution is fine
enough. Secondly, the transitions between the states are smooth. This is due to the numerical diffusion of
the Roe method which is known to spread the shocks on a few spatial cells. The smoothness of the stochastic
solution reflects this spatial numerical diffusion. This point will be further evidenced below, where we show
that the smooth transitions in the stochastic domain have a characteristic thickness independent of the
stochastic resolution. In addition, we can observe that the smooth transitions are thicker along the second
(ξ2) stochastic direction than along the first (ξ1). This is due to the different shock velocities (effects of
different local CFLs).
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Figure 5: Stochastic solutions of the Burgers equation as a function of (ξ1, ξ2) at x = 0.5 and time t = 0.5 for different stochastic
discretization parameters Nr and No as indicated.

5.1.3. Convergence analysis

We present in Figure 5 the stochastic solutions at the observation point xo and t = 0.5 for different
stochastic discretizations. The plots of the first line illustrate the convergence of the approximation with
the expansion order No, while those of the second line highlight the convergence with the resolution level
Nr. It is seen that when the stochastic discretization is too coarse, the solution exhibits significant disconti-
nuities between stochastic discretization cells. Moreover, as claimed above, the transition thicknesses in the
stochastic domain becomes independent of No and Nr as they increase.

5.2. Test case 2: Burgers equation

The purpose of this test case is to assess the method still for the Burgers equation (so that the Galerkin
system is guaranteed to be hyperbolic), but in a situation involving positive and negative wave speeds
thereby requiring the calculation of |∇uf(uRoe

LR )| as outlined in sections 4.2 and4.3.

5.2.1. Problem definition

We still consider the Burgers equation, but with stochastic initial condition U0(x, ξ) defined using two
uncertain states, U+(ξ1) and U−(ξ2), the first one almost surely positive and the second one almost surely
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Figure 6: Random initial condition for test case 2: sample set of 20 random realizations, mean, and standard deviation.

negative. We take for x ∈ [0, 1],

U0(x, ξ) =











U+(ξ1) x < 1/3,

U−(ξ2) x > 2/3,

U+(ξ1)(2 − 3x) + U−(ξ2)(3x − 1) 1/3 ≤ x ≤ 2/3,

(48)

such that U0(x, ξ) is continuous for any ξ ∈ [0, 1]2. We define the stochastic states as

U+(ξ1) = 1 + 0.1(2ξ1 − 1), ξ1 ∼ U [0, 1] → U+ ∼ U [0.9, 1.1],

U−(ξ2) = −1 + 0.05(2ξ2 − 1), ξ2 ∼ U [0, 1] → U− ∼ U [−1.05,−0.95],
(49)

and we solve the stochastic Burgers equation with Dirichlet boundary conditions, U = U+ at x = 0 and
U = U− at x = 1. The initial condition is illustrated in Figure 6. Nc = 200 cells are used for space
discretization.

5.2.2. Time integration

Although initially continuous, the stochastic solution will develop in finite time a discontinuity with a
stochastic jump |U+ −U−| and a stochastic propagation velocity (U+ +U−)/2. The stochastic character of
the shock magnitude and velocity has to be contrasted with the situation of the previous test case, where
the jumps and shock velocity were certain. This yields a much more complex situation as illustrated in
Figure 7 where the solution is plotted at different times for the stochastic discretization parameters No = 3
and Nr = 3 so that dimSNo,Nr = 1024.

From the realizations plotted in Figure 7, we can observe the appearance of overshoots which are a
direct consequence of the shock formation and its uncertain propagation velocity. To get further insight, we
present in Figure 8 the evolution of the solution at a fixed point xo = 0.5 and different times. The plots
show the evolution from the initially smooth solution to a shocked solution with states U+ or U− according
to the sign of 2(ξ1 − 1/2) − (ξ2 − 1/2). In addition, it is seen that overshoots occur only in a neighborhood
of the discontinuity, namely in stochastic elements containing the developping discontinuity. Using a finer
stochastic discretization (increasing Nr) delays the emergence of the overshoots and reduces the portion of
the stochastic domain affected by them.

5.2.3. Validation of the method used to evaluate the upwinding matrix

Another interesting property of the present test case is that contrary to the previous one, there exist
spatial cells where the solution U can take positive and negative values. As a result, the eigenvalues of
the Galerkin Jacobian matrix ∇uf are no longer always positive, and the polynomial transformation q to
approach the absolute value of ∇uf(uRoe

LR ) is no longer trivial as in the previous example. We then investigate
the impact of the selected polynomial degree d of q on the computed solution. In the example presented
previously, we used polynomials with degree d = 3. In Figure 9 we report the stochastic solution at x = 0.5
and t = 0.5 as computed using increasing polynomial degree d. It is seen that for d = 1, the solution
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Figure 7: Stochastic solution of the Burgers equation at different times. The solution mean (red) and standard deviation (blue)
are plotted as a function of x, together with a reconstruction of 20 randomly generated realizations of the solution (green).
Computations with Nr = 3 and No = 3.

exhibits significant discontinuities and overshoots across the stochastic discretization cells containing the
developping shock (where the solution changes sign). When d = 2, the overshoots and discontinuities are
greatly reduced compared to the case d = 1. Increasing further d does not bring significant improvement in
the solution. In fact, at that stage the error in the solution isessentially dominated by the stochastic and
spatial discretization error, whereby the error in the approximation of |∇uf(uRoe

LR )| for d > 3 is negligible.
To measure more precisely the error on the approximation of |∇uf(uRoe

LR )|, we compute the set of exact
eigenvalues {λα}α=0,...,P of the Galerkin Jacobian matrix ∇uf . We then compare the quantities |λα| with
their respective polynomial approximation q(λα). The error is quantified using the L2 and L∞ measures,
defined respectively as

ε22 =
1

P

P
∑

α=0

(|λα| − q(λα))
2
, ε∞ = max

0≤α≤P
||λα| − q(λα)|. (50)

In Figure 10 we present the error measures at t = 0.4 as a function of x. We first remark that the error is
limited to the portion of the spatial domain where the stochastic shock can be present, and diminishes as
d increases. The error measures appear to stagnate when d increases beyond 5 as one may have expected
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Figure 8: Stochastic solution of the Burgers equation as a function of (ξ1, ξ2) at x = 0.5 and different times as indicated.
Computations with Nr = 3 and No = 3.

since the computations here use No = 3, so that the estimated eigenvalues (at the tensorized Gauss points)
used for the determination of q are not the actual eigenvalues of ∇uf .

5.2.4. Convergence of the stochastic error

We take advantage of this simple problem setting to investigate the convergence of the stochastic solution.
Indeed, for this Riemann problem, we can easily derive the exact solution U(x, t, ξ) for any given ξ, hereafter
denoted Uex, as long as the shock has not reached one of the domain boundaries [12]. We rely on a Monte-
Carlo sampling strategy to estimate the two first moments of Uex. We proceed as follows. Firstly, a random
sample set of M realizations of ξ is generated by sampling uniformly [0, 1]2. Secondly, for each element ξ(i)

of the sample set, we define u(i)(x, t) ≡ Uex(x, t, ξ(i)) for i = 1, . . . ,M . The sample set estimate of the mean
is

〈Uex〉 (x, t) ≈ 1

M

M
∑

i=1

u(i)(x, t) = Es(Uex)(x, t), (51)

while the sample set estimate of the standard deviation of is

σ2(Uex)(x, t) ≈ 1

M

M
∑

i=1

(

u(i) − Es(Uex)
)2

(x, t) = σ2
s(Uex)(x, t). (52)

To minimize the random sampling error in the sample estimate, we use M = 100000.

19



d = 1 d = 2

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

ξ1

ξ2

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

ξ1

ξ2

d = 3 d = 5

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

ξ1

ξ2

 0 0.2 0.4 0.6 0.8 1

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

ξ1

ξ2

Figure 9: Stochastic solution of the Burgers equation as a function of (ξ1, ξ2) at x = 0.5 and t = 0.5 and for different degrees
d of the polynomial q to approximate the absolute value of ∇uf(uRoe

LR
). Computations with Nr = 3 and No = 3.

In Figure 11, we compare the mean and standard deviation of the exact and computed solution for
No = 2 and Nr = 4 at t = 0.6 on a mesh with Nc = 201 cells. It is seen that the means of the computed and
exact solutions are in excellent agreement. For the standard deviations, computed and exact solutions are
again in agreement, although one can notice that the computed solution slightly under-estimates the standard
deviation with less than 5% of relative error. Using a finer stochastic discretization only marginally improves
the error on the standard deviation, since the error in U is here dominated by the spatial discretization error.
This is demonstrated in Figure 12, where the difference in the computed and exact standard deviations is
plotted for finer and finer spatial meshes. One observes that for Nc = 501, the discretization error has
reached the level of the stochastic discretization error.

To further analyze the stochastic convergence of the method, we monitor the convergence of the semi-
discrete stochastic solution, discretized on a fixed spatial mesh. In the following, we set Nc = 301. We
define the error measure on the semi-discrete solution as

ε2h ≡
∫

Ω

〈

(

UNo,Nr
h (x, t, ·) − Uex

h (x, t, ·)
)2

〉

dx, (53)

where UNo,Nr
h and Uex

h are the computed and exact semi-discrete solutions. Since the latter is unknown, we
again rely on a Monte Carlo estimation,

ε2h ≈ 1

M

M
∑

i=1

∫

Ω

(

UNo,Nr
h (x, t, ξ(i)) − Uex

h (x, t, ξ(i))
)2

dx, (54)

20



 0.001

 0.01

 0.1

 1

 0.46  0.48  0.5  0.52  0.54

ε 2

x

d=1
d=2
d=3
d=4
d=5

 0.001

 0.01

 0.1

 1

 0.46  0.48  0.5  0.52  0.54

ε ∞

x

d=1
d=2
d=3
d=4
d=5

Figure 10: Measures ε2 (top) and ε∞ (bottom) of the errors on the eigenvalues of the absolute value of ∇uf(uRoe

LR
) at time

t = 0.4 and different degrees d of the polynomial q. Computations with Nr = 3 and No = 3.

where UNo,Nr
h (x, t, ξ(i)) and Uex

h (x, t, ξ(i)) are evaluated from the stochastic expansion of the computed
solution and solving the corresponding deterministic (discrete) Burgers problem respectively, for each element
ξ(i) in the sample set. We use a sample set dimension M = 10000. Figure 13 reports the stochastic error
ε2h, at time t = 0.6, as a function of the resolution level Nr and for expansion orders No = 1, 2 and 3. In this
simulations, the approximation of the upwind matrix uses a polynomial degree defined as d = min(8, P).
We observe the decay of the stochastic error for both increasing resolution level and expansion order. For
Nr = 0 and No = 3, the simulation is unstable due to the large error level.

5.3. Test case 3: Euler equations

In this section, the method is tested on the stochastic Euler equations with one random parameter. The
goal of this test case is to assess the method on a non linear hyperbolicsystem of conservation laws, so that the
obtained Galerkin system is not proven to be hyperbolic. We consider the one-dimensional Sod shock tube

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0.4  0.42  0.44  0.46  0.48  0.5  0.52  0.54  0.56  0.58  0.6

x

Computed mean
Exact mean

Computed Std-Dev
Exact Std-Dev

Figure 11: Comparison of the mean and standard deviation of the numerical solution at t = 0.6, computed with No = 2, Nr = 4
and Nc = 201, with the corresponding MC estimates of the exact solution of the stochastic Burgers equation. Only a portion
of the computational domain is shown for clarity.
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problem, where the flow of an ideal gas is governed by the Euler equations. Conventional thermodynamic
notation is used instead of the lower/upper case convention adopted previously. The conserved quantities
are the fluid density ρ, the impulse q = ρv (with v the velocity), and the total energy E = 1/2ρv2 + ρe,
where the first term is the kinetic energy and the second one the internal energy (per unit volume). The tube
extends over one unit of length and is closed by two rigid walls at x = 0 and x = 1. Boundary conditions
are q = 0 and ∂ρ

∂x
= ∂E

∂x
= 0 at the solid walls. The discretization makes use of Nc = 250 cells in physical

space.

5.3.1. Problem definition

Recall that in the deterministic Euler equations, the conservative variables and fluxes are

u = (ρ, q, E), f(u) = (fρ(ρ, q, E), fq(ρ, q, E), fE(ρ, q, E)) = (ρv, ρv2 + p, v(E + p)), (55)

with the velocity v = q/ρ and the pressure p given by the ideal gas law

p = p(ρ, q, E) = (γ − 1)

(

E − 1

2
ρv2

)

, (56)

where γ > 1 is the adiabatic coefficient. The initial conditions are

ρ0(x) =

{

1 x ∈ [0, 1/2],

0.125 x ∈ ]1/2, 1],
v0(x) = 0, and p0(x) =

{

1 x ∈ [0, 1/2],

0.125 x ∈ ]1/2, 1].
(57)
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We recall the deterministic Jacobian matrix

J(u) =





0 1 0
1/2(γ − 3)v2 −(γ − 3)v γ − 1

1/2(γ − 1)v3 − vH H − (γ − 1)v2 γv



 , (58)

where H = (E + p)/ρ is the enthalpy. The eigenvalues of J(u) are v ± c and v where c is the sound velocity
such that c2 = (γ − 1)(H − 1

2ρv2). Moreover, with obvious notation, the Roe state is such that

ρRoe =
√

ρLρR, vRoe =

√
ρLvL +

√
ρRvR√

ρL +
√

ρR

, HRoe =

√
ρLHL +

√
ρRHR√

ρL +
√

ρR

. (59)

We consider an uncertainty on the adiabatic coefficient γ which is parametrized using a unique random
variable ξ having a uniform distribution in [0, 1]. We consider a uniform probability distribution of γ in the
range [1.4, 1.6], so that the parametrization is

γ(ξ) = 1.4 + 0.2 ξ, ξ ∼ U [0, 1]. (60)

Consistently with the notation introduced above, we set

U(x, t, ξ) = (ρ(x, t, ξ), q(x, t, ξ), E(x, t, ξ)) ∈ AU ⊗ L2(Ξ, pξ), (61)

and
F (U ; ξ) = (F ρ(U(x, t, ξ)), F q(U(x, t, ξ); ξ), FE(U(x, t, ξ); ξ)) ∈ R3 ⊗ L2(Ξ, pξ), (62)

where AU ⊂ R3 is the set of admissible states such that the density and the pressure are positive.

5.3.2. Numerical solver

Computation of the Galerkin flux f(u) ∈ R3(P+1). For given expansions of ρ(ξ) =
∑P

α=0 ραΨα(ξ), q(ξ) =
∑P

α=0 qαΨα(ξ), and E(ξ) =
∑P

α=0 EαΨα(ξ), we have to compute the stochastic modes (fρ)α, (fq)α, and
(fE)α. The stochastic modes of F ρ(·; ξ) are immediately obtained from

(fρ)α =
〈

F ρ(UP ; ·)Ψα

〉

= 〈qΨα〉 = qα. (63)

The determination of the stochastic modes of F q(·; ξ) and FE(·; ξ) is more complex because these fluxes
are nonlinear. Contrary to approaches that compute the Galerkin flux f(u) in a non-intrusive way by a
quadrature formula, we consider an approximation of the projection of the flux F (·; ξ) on SP, denoted by
FP(·; ξ), that we compute in a pseudo-spectral way

F (·; ξ) ≈ FP(·; ξ) =

P
∑

α=0

(fP)αΨα(ξ). (64)

The Galerkin flux f(u) is therefore approximated as

f(u) ≈ fP(u) = (fP)α=0,...,P. (65)

To this end, we rely on [6], which describes tools for accurate evaluations of polynomial and non-polynomial
functions of variables represented by stochastic expansions. For instance, the components of the pressure
p = (γ − 1)(E − 1/2ρv2) are computed in the following way. We first compute the expansion of q2(ξ) from
the expansion of q(ξ),

q2(ξ) =

(

P
∑

α=0

qαΨα

)(

P
∑

α=0

qαΨα

)

=

P
∑

α,β=0

qαqβΨαΨβ . (66)
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Generally, q2 6∈ SP (its expansion possesses terms with degree > No), and we approximate its expansion on
SP as

q2 ≈ q ∗ q =

P
∑

α=0

(q ∗ q)αΨα, (q ∗ q)α =

P
∑

β,δ=0

qβqδMαβδ, (67)

where we have denoted by ∗ the stochastic product in SP defined using the multiplication tensor Mαβδ ≡
〈ΨαΨβΨδ〉. This third-order tensor depends only on the stochastic basis, can be computed once and for
all at the beginning of the simulation, and its sparse character in the stochastic space is exploited for its
storage. The product between two stochastic expansions is the most basic operation for the treatment of
nonlinearities and is used to define other nonlinear operations. For instance, the kinetic energy ρv2 = q2/ρ
on SP is approximated as

ρv2 = q2/ρ ≈ (q ∗ q) ∗ 1/ρ, (68)

where q ∗q is defined by (67) and the approximation of 1/ρ is obtained from the resolution of a linear system
obtained by setting ρ ∗ (1/ρ) = 1 [6]. Finally, the approximation of the expansion of p on SP is

p ≈ (γ − 1) ∗ (E − (q ∗ q) ∗ (1/ρ)/2). (69)

All in all, the approximation of the Galerkin flux amounts to the application of four stochastic products and
a stochastic inversion. It should be stressed that the resulting flux is inexact, due to intermediate truncation
errors. Nervertheless, for well resolved simulations, this estimate should be correct enough. The analysis
of the impact of errors induced by pseudo-spectral approximations goes beyond the present scope; we refer
to [6] for a general discussion.

Computation of the Galerkin Jacobian matrix. In view of the application of Roe’s scheme, we need to com-
pute the Galerkin Jacobian matrix ∇uf(u) ∈ R3(P+1),3(P+1). As previously, we consider an approximation
of the projection of ∇UF (·; ξ) on SP, computed in a pseudo-spectral way with the tools described above, so
that

∇UF (·; ξ) ≈ ∇UFP(·; ξ) =

P
∑

α=0

(∇ufP)αΨα(ξ), (70)

and the Galerkin Jacobian matrix ∇uf(u) is approximated as

∇uf(u) ≈ ∇ufP(u) =
〈

(

∇UFP(UP; ·)
)

ij
ΨαΨβ

〉

0≤α,β≤P,1≤i,j≤3

≡
(

P
∑

δ=0

(

(∇ufP)δ

)

ij
Mαβδ

)

0≤α,β≤P,1≤i,j≤3

. (71)

For instance, (∇ufP(u))αβ,12 = δαβ , and (∇ufP(u))αβ,33 =
∑P

δ=0(γ ∗ v)δMαβδ, ∀α, β = 0, . . . ,P. In terms
of computational complexity, this approach requires nine stochastic products and a stochastic inversion. The
summations can be conveniently optimized by exploiting the sparse structure of the multiplication tensor.

Computation of ∇uf(uRoe
LR ) and its absolute value. As before, we rely on pseudo-spectral approximations to

compute the stochastic modes of the Roe state’s components defined by (59). A nonlinear system is solved
with Newton’s method to approximate the square root of the density in SP by setting

√
ρ∗√ρ = ρ. Finally,

the absolute value of ∇uf(uRoe
LR ) is computed as described in sections 4.2 and 4.3, using the stochastic

eigenvalues of ∇UF (URoe,P
LR , ξ) at Gauss points in each stochastic element.
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Figure 14: Space-time diagram of the deterministic density (left) and the expected density computed with parameters No = 2
and Nr = 3 (right).

Figure 15: Space-time diagram of the standard deviations in the density for early (left) and longer times (right) computed with
parameters No = 2 and Nr = 3. Different color scales are used.

5.3.3. Results analysis

In this section we present and analyze the results for the shock tube problem with uncertainty in the
adiabatic coefficient. We make first a general analysis of the results, taking No = 2 and Nr = 3 as stochastic
discretization parameters, so that the dimension of the stochastic space is 24.

In the deterministic case and for the initial condition (57) for a certain realization of γ(ξ), a shock wave
generated at the discontinuity travels to the right with velocity v + c, while a slower rarefaction fan travels
to the left with velocity v − c, and a contact discontinuity wave travels to the right with velocity v. When
the waves reach the solid wall, they are reflected inside the domain and so propagate toward each other,
merge, and interact. When the waves have crossed each other, they continue to propagate up to the point
where they again reflect on a wall, and so on.

Here, the uncertain sound velocity will affect the propagation velocity of the shock wave, contact dis-
continuity, and rarefaction fan. Solutions for different realizations of γ(ξ) exhibit similar patterns as in
the deterministic case, but with different slopes for the shock, contact discontinuity, and rarefaction fan in
the space-time diagram. This is verified in Figure 14 where the density in the deterministic case and its
expectation in the stochastic case are plotted. The spreading of the location of both the shock and the
contact discontinuity when time increases is clearly visible, while for the rarefaction fan, which is already
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smooth in the deterministic case, the impact of the uncertain sound velocity is less pronounced.
The impact of the uncertainty can also be appreciated from the standard deviations of the density,

reported in Figure 15 for early and longer times. The highest values of the standard deviations are observed
along the path of the shock wave, the maximum values corresponding to times at which the shock wave
reflects on the tube walls. For early times (t ≤ 0.25), uncertainty is present only in areas where the shocks
can depend on the sound velocity in the prescribed uncertainty range. The first process leading to larger
uncertainty levels is the shock-wall interaction since the arrival of the shock at a wall causes an abrupt
increase of the density over a short time interval. The uncertainty in the arrival time of the shock wave
therefore induces a large variability in the solution. The second process leading to larger uncertainty levels
is the interaction between the uncertain shock, contact discontinuity, and rarefaction fan.

To assess the validity of the stochastic expansion, we show in Figure 16 a reconstruction of the stochastic
density ρ(x, t, ξ) at selected times. The discontinuity in ρ(x, ·, ξ) is initially in the x-direction. As time
increases, the density becomes discontinuous in both x- and ξ-directions since the stochastic wave propagates
with an uncertain velocity. In the (x, ξ)-plane, the discontinuity becomes more and more oblique reflecting
a monotonic dependence of the shock velocity on ξ. For points (x, ξ) not too close to the discontinuity,
the solution is smooth and appears to be accurately approximated by the stochastic expansion. In the
neighborhood of the discontinuity, the solution exhibits small unphysical oscillations that are triggered by
the well-known Gibbs phenomenon so that the density takes values slightly outside its expected range. Such
oscillations appear to be caused by an unsufficient stochastic resolution and can be reduced by increasing
the resolution level and/or the polynomial order of the stochastic approximation. This is illustrated in
Figures 17 and 18, which show the convergence of the density field as the value of No or Nr is increased.
Oscillations become smaller as the level of stochastic resolution increases.

To complete the discussion, we provide a brief estimate of the computational efficiency of the numerical
method for the Euler problem with random γ. We show in Table 1 the evolution of the computational
times for different stochastic discretizations. CPU times (TCPU ) are reported for an integration of the Euler
equations up to t = 3 on a fixed grid having Nc = 250 cells, and are normalized by the computational time
using No = Nr = 0, i.e. for the deterministic problem. Since the time step for the integration is based on
a fixed CFL, it also depends on the stochastic discretization: the measured times correspond to different
numbers of iterations performed. However, we observed roughly 0.5% variability in the number of time
iterations between the most and least refined simulations such that the CPU times can also be interpreted
as times to perform a fixed number of iterations.

Inspection of TCPU in Table 1 shows a linear scaling with the number 2Nr of stochastic elements for
fixed polynomial order No. This scaling was expected and achieved thanks to the decoupling of the Galerkin
problems over the stochastic elements for the projection on the SE basis. This linear scaling is expected to
hold also for higher-dimensional problems (N > 1), so in general we shall have TCPU ∼ O(2Nr) for uniform
partitions of the stochastic domain.

For fixed resolution level Nr, the scaling of TCPU with the dimension of SNo,Nr is roughly linear at least
for No ≤ 4, as shown in Table 1. There are two effects. Firstly, the spectral evaluation of the nonlinearities
in the flux and Roe’s states have a complexity (number of operation counts) that essentially scale with the
number of non zero terms in the Galerkin multiplication tensor Mαβδ, which itself increases exponentially
with No. Secondly, as No increases, a higher degree d has to be used for the polynomial approximation of
the upwind matrixes, with higher computational costs as a result. The second effect can be tempered, based
on the numerical experiments on the Burgers equation, by limiting d to a low value; the present simulations
actually used a definition d+1 = min(9, 3(No+1)), since allowing for higher degree d for No ≥ 3 was found
to have no significant effect on the solution. All in all, the complexity of the nonlinearity resolution appears
to be the most limiting factor of the present method, and this effect is expected to be worse for problems with
higher stochastic dimension N (see for instance [16]): this trend pleads for using multi-resolution schemes
with low-order expansions for non-smooth stochastic problems.
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Nr = 2 Nr = 3 Nr = 4

No = 0
No = 1
No = 2
No = 3
No = 4

TCPU dimSNr,No

4.0 (4)
6.9 (8)

11.8 (12)
17.1 (16)
24.8 (20)

TCPU dimSNr,No

8.1 (8)
13.9 (16)
23.2 (24)
34.1 (32)
49.3 (40)

TCPU dimSNr,No

16.1 (16)
27.8 (32)
46.5 (48)
68.1 (64)
98.0 (80)

Table 1: Normalized computational times TCPU for different stochastic discretization parameters Nr and No.

6. Conclusion

In this paper we have investigated theoretically and numerically a fully intrusive multi-resolution scheme
for stochastic hyperbolic systems of conservation laws, exhibiting discontinuities in both physical and stochas-
tic spaces. The method is based on the Galerkin projection of the original stochastic problem on a space
of piecewise polynomials and uses a Roe-type solver with upwind matrices that are efficiently computed by
an original and fast method. Numerical tests on the stochastic Burgers and Euler equations in one spatial
dimension and, respectively, in two and one stochastic dimensions indicate that the method is accurate
and robust while maintaining moderate computational costs. Nevertheless, further savings in computa-
tional costs are necessary to explore problems with higher stochastic dimensions. To this purpose, adaptive
stochastic mesh refinement methods are the focus of ongoing efforts. Furthermore, extension of Roe solvers
to include for instance entropy correctors is under investigation. Finally, additional mathematical studies
are still needed to consolidate the theoretical bases of the method.
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Figure 16: Reconstruction of the stochastic density ρ(x, t; ξ) at selected times.
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Figure 17: Convergence of the stochastic density ρ(x, t; ξ) with No. Nr = 3, t = 6.5 s.
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No = 1 et Nr = 1 (#SNo,Nr = 4) No = 1 et Nr = 2 (#SNo,Nr = 8)
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Figure 18: Convergence of the stochastic density ρ(x, t; ξ) with Nr. No = 1, t = 6.5 s.
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