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On Bisimilarity and Substitution
in Presence of Replication?

Daniel Hirschkoff1 and Damien Pous2

1 ENS Lyon, Université de Lyon, CNRS, INRIA
2 CNRS, Laboratoire d’Informatique de Grenoble

Abstract. We prove a new congruence result for the π-calculus: bisim-
ilarity is a congruence in the sub-calculus that does not include restric-
tion nor sum, and features top-level replications. Our proof relies on
algebraic properties of replication, and on a new syntactic characteri-
sation of bisimilarity. We obtain this characterisation using a rewriting
system rather than a purely equational axiomatisation. We then deduce
substitution closure, and hence, congruence. Whether bisimilarity is a
congruence when replications are unrestricted remains open.

1 Introduction

We study algebraic properties of behavioural equivalences, and more precisely, of
strong bisimilarity (∼). This has long been an important question in concurrency
theory, with a particular focus on the search for axiomatisations of bisimilarity
(see [1] for a survey). Our primary goal is to establish congruence results for the
π-calculus [13]. At the heart of the π-calculus is the mechanism of name-passing,
which is the source of considerable expressive power. Name-passing however in-
troduces substitutions in the formalism, and these in turn lead to irregularities in
the behavioural theory of processes: due to the input prefix, we need bisimilarity
to be closed under substitutions for it to be a congruence.

To establish substitution closure, we exploit a new axiomatisation of bisimi-
larity. Several axiomatisation results for process calculi that feature an operator
of parallel composition (|) have been derived by decomposing this operator us-
ing sum, and possibly left merge [4,3,1]. We, on the contrary, are interested in
treating parallel composition as a primitive operator. One reason for this is that
the sum operator is often absent from the π-calculus since it can be encoded [9],
under certain conditions. More importantly, this operator makes substitution clo-
sure fail [13,2], so that existing axiomatisations of bisimilarity in calculi featuring
sum do not help when it comes to reason about congruence in the π-calculus.

In the present paper, we focus on properties of the replication operator [8],
noted (!). As [13,2] shows, bisimilarity is not substitution closed when both repli-
cation and name restriction are present in the calculus, and we have established
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in [5] that it is when we renounce to replication. To our knowledge, congru-
ence of bisimilarity in the restriction-free π-calculus with replication is an open
problem [13]; we provide here a partial answer.

Behavioural properties of replication. Replication can be seen as an “infinitary
version” of parallel composition. Structural congruence traditionally contains the
following structural laws (given here for CCS): !a.P | a.P ≡ !a.P and !a.P | !a.P ≡
!a.P , so that a replicated process acts as an unbounded number of copies of that
process in parallel. A contribution of this work is an analysis of behavioural laws
capturing other properties of replication. For example, for any context C, we
have

!a.P |C[a.P ] ∼ !a.P |C[0] and !a.C[a.C[0]] ∼ !a.C[0] .

The left-hand side law is a generalisation the first structural congruence law:
a replicated process can erase one of its copies arbitrarily deep in a term. The
right-hand side law is more involved: read from right to left, it shows that a
replicated process is able to replicate itself. Its most trivial instance is !a.a ∼ !a.

Although the above laws are the basic ingredients we need in order to char-
acterise bisimilarity in our setting, they do not form a complete axiomatisation
of bisimilarity, as the following example shows:

P1 = !a.(b|a.c) | !a.(c|a.b) ∼ !a.b | !a.c = P2 .

P1 can be obtained from P2 by inserting a copy of a.b inside !a.c, and, symmet-
rically, a copy of a.c inside !a.b. It seems reasonable to consider P2 as a kind of
normal form of P1; however, P1 and P2 cannot be related using the above laws.
Describing this phenomenon of “mutual replication” in all its generality leads to
complicated equational schemata, so that we take another approach.

Overview. Our first contribution is a syntactic characterisation of bisimilarity
on a fragment of CCS with top-level replications. This characterisation relies on
a rewriting system for processes (such that P1 rewrites into P2). An important
technical notion we need to introduce is that of seed : a seed of P is a process
bisimilar to P of minimal size; for example, P2 is a seed of P1. Our proof goes
by characterising bisimilarity on seeds, and establishing that any process P can
be rewritten into a seed of P .

Our second contribution is congruence of bisimilarity in the corresponding
fragment of the π-calculus. Concretely, we prove that bisimilarity is substitution
closed by considering visible bisimilarity (sometimes called io-bisimilarity [7]),
the equivalence obtained by disallowing challenges along internal communica-
tions. Visible bisimilarity is inherently substitution closed, and our characteri-
sation allows us to show that it coincides with bisimilarity.

Since the technical developments that lead to congruence in the π-calculus
follow to a large extent the path of our proofs for CCS, we moved them to the
appendix. On the contrary, we provide detailed proofs and present most inter-
mediate steps for CCS. We indeed view the reasonings we use in our proofs
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α.F
α−→ F !α.F

α−→ !α.F |F
P

µ−→ P ′

P |Q µ−→ P ′|Q
P

a−→ P ′ Q
a−→ Q′

P |Q τ−→ P ′|Q′

Fig. 1. Labelled Transition System for mCCS.

as an important contribution of this work. In particular, we make use of both
algebraic and coinductive reasoning, notably using “up-to techniques” for bisim-
ulation [12,10,11].

Outline. We describe the subset of CCS we work with and we prove general
properties of replication in Sect. 2. In Sect. 3, we introduce the notion of seed,
and give a characterisation of bisimilarity on seeds. The rewriting system is
defined in Sect. 4, where we show that any process can be rewritten into a seed,
and where we characterise strong bisimilarity. We present our new congruence
result for the π-calculus in Sect. 5. Section 6 suggests directions for future work.

2 General Setting, and Properties of Replication

We let a, b range over a countable set of names; we work in a fragment of CCS
which we call mCCS, defined by the following grammar:

α, β ::= a
∣∣ a µ ::= α

∣∣ τ (actions and labels)

E,F ::= 0
∣∣ α.F ∣∣ F |F P,Q ::= F

∣∣ !α.F
∣∣ P |P (processes)

D ::= []
∣∣ α.D ∣∣ D|F C ::= D

∣∣ !α.D
∣∣ C|P (contexts)

This calculus features no restriction, no sum, and allows only top-level replicated
prefixes. Note that the τ prefix is not included in the syntax, and only appears in
labels (µ); we return to this point in Sect. 6. We use P,Q to range over processes;
according to the syntax, a finite process (F ) is a process which does not contain
an occurrence of the replication operator (!α.). We omit trailing occurrences of
0, and write, e.g., α.β for α.β.0. We shall sometimes write

∏
i∈[1..k] αi.Fi for

α1.F1 | . . . |αk.Fk. We extend the syntactic operator of replication to a function
defined over processes by letting

!0 , 0 !(P |Q) , !P |!Q !!α.F , !α.F .

In particular, !F will always denote a process having only replicated (parallel)
components. We let C range over single-hole contexts, mapping finite processes
to processes, and similarly for finite contexts, ranged over using D. Note that
the hole cannot occur immediately under a replication in C.

The labelled transition system (LTS) we associate to this process calculus is
standard (Fig. 1 – we omit symmetric rules for parallel composition). This LTS
yields the following standard notion of bisimilarity, (∼). We also define visible
bisimilarity (∼̇), where silent transitions are not taken into account.
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Definition 1 Strong bisimilarity (∼) is the largest symmetric binary relation
over processes such that whenever P ∼ Q and P µ−→ P ′, there exists Q′ such that
P ′ ∼ Q′ and Q µ−→ Q′. Visible bisimilarity (∼̇) is defined similarly, by restricting
challenges to the cases where µ 6= τ .

Both bisimilarities are congruences. They are moreover preserved by the ex-
tended replication function, and we have ∼ ⊆ ∼̇ . On finite processes, bisimilar-
ity and visible bisimilarity coincide and can be characterised using the following
distribution law, where there are as many occurrences of F on both sides [5]:

α.(F |α.F | . . . |α.F ) ∼ α.F |α.F | . . . |α.F . (D)

We now present some important properties of replicated processes w.r.t.
bisimilarity. The following proposition allows us to obtain the two laws from
the introduction, that involve copying replicated sub-terms.

Proposition 2 If C[0] ∼ !α.F |P , then C[0] ∼ C[α.F ].

Proof. We show that R= {(C[0], C[α.F ]) / ∀C s.t. C[0] ∼ !α.F |P for some P}
is a bisimulation up to transitivity [10,11]. There are several cases to consider:

– the hole occurs at top-level in the context (C = []|Q) and the right-hand
side process does the following transition: C[α.F ] α−→ F |Q. By hypothesis,
Q ∼ !α.F |P so that we find Q′ such that Q α−→ Q′ and Q′ ∼ !α.F |F |P .
Injecting the latter equality gives Q′ ∼ Q|F , so that Q′ closes the diagram.

– the hole occurs under a replicated prefix of the context (C = !β.D|Q) which
is fired: we have C[0]

β−→ Pl = C[0]|D[0] and C[α.F ]
β−→ Pr = C[α.F ]|D[α.F ].

This is where we work up to transitivity: these processes are not related by
R (we work with single-hole contexts), but we have Pl R Pc R Pr, for
Pc = C[0]|D[α.F ], using contexts Clc = C[0]|D and Ccr = C|D[α.F ].

– the hole occurs under a non-replicated prefix in the context (C = β.D|Q), or
the context triggers a transition that does not involve or duplicate the hole;
it suffices to play the bisimulation game.

– we are left with the cases where a synchronisation is played; they can be
handled similarly (in particular because contexts have a single hole). ut

As a consequence, we obtain the validity of the following laws. We shall see in
the sequel that together with the distribution law (D), they capture the essence
of bisimilarity in our calculus.

!α.F | C[α.F ] ∼ !α.F | C[0] (A)
!α.D[α.D[0]] ∼ !α.D[0] (A′)

(Note that Prop. 2 and the above laws hold for full CCS and for the π-calculus,
as long as the hole does not occur as argument of a sum in C and D, and C and
D do not bind names occurring in α.F .) We now give two useful cancellation
properties of visible bisimilarity; they are actually also valid for bisimilarity (∼).
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Lemma 3 If !F ∼̇ P |Q, then !F ∼̇ !F |P .

Proof. We reason purely algebraically: we replicate both sides of !F ∼̇ P |Q, and
add P in parallel (since !P ∼̇ !P |P ): this gives !F ∼̇ !P |!Q ∼̇ !P |!Q|P . We deduce
!F ∼̇ !F |P by injecting the first equivalence into the second one. ut

Proposition 4 If !F |F0 ∼̇ !E|E0 with F0, E0 finite, then !F ∼̇ !E.

Proof. By emptying F0 on the left-hand side1, we find a finite process E1 such
that !F ∼̇ !E|E1 (∗). Similarly, by emptying E0 on the right-hand side we find
F1 such that !F |F1 ∼̇ !E (∗∗). By injecting the former equivalence in the latter,
we have !E|E1|F1 ∼̇ !E (†). By Lemma 3, (∗∗) gives !E ∼̇ !E|F1, that we can
inject into (∗) to obtain !E|E1|F1 ∼̇ !F . We finally deduce !E ∼̇ !F from (†). ut

Again, these properties are not specific to the subset of CCS we focus on: Prop. 4
holds provided that both F0 and E0 can be reduced to the empty process using
transitions (this is the case, e.g., for the normed processes of [6]). The counterpart
of this cancellation property does not hold; the replicated parts of bisimilar
processes cannot always be cancelled: we cannot deduce a ∼̇ 0 from !a|a ∼̇ !a|0.

3 Seeds

Definition 5 (Size, seed) The size of P , noted ]P , is the number of prefixes
in P . A seed of P is a process Q of minimal size such that P ∼̇ Q, whose number
of replicated components is maximal among the processes of minimal size. When
P is a seed of P , we simply say that P is a seed.

We show how to rewrite an arbitrary process into a seed in Sect. 4; in this section,
we give a characterisation of bisimilarity on seeds (Prop. 12).

Definition 6 (Distribution congruence) We call distribution congruence the
smallest congruence relation ≡ that satisfies the laws of an abelian monoid for
(|,0) and the distribution law (D).

Fact 7 We have ≡ ⊆ ∼ ⊆ ∼̇ ; the latter equivalence is substitution closed; on
finite processes, the three relations coincide.

Proof. The inclusions and the substitution closure of ∼̇ are straightforward. On
finite processes, ≡ = ∼ was proved in in [5], and one can deduce from other
results therein that ∼̇ ⊆ ∼ (a proof is given for π in appendix—Thm. B4). ut

It is easy to show that distribution congruence is decidable, and only relates
processes having the same size. In the sequel, we always work modulo distribution
congruence. We shall prove that on seeds, bisimilarity actually coincides with
1 In the present case, “emptying F0” means playing all prefixes of F0 in the bisimulation
game between !F |F0 and !E|E0. We shall reuse this terminology in some proofs below;
note that this is possible only with finite processes.
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distribution congruence. Thanks to Prop. 4, the replicated parts of bisimilar
seeds are necessarily bisimilar. As a consequence, in the remainder of this section,
we fix a seed S having only replicated components: S =

∏
i !αi.Si , and we study

processes obtained by composing S with finite processes.

Definition 8 (Clean process, residual) A finite process F is clean w.r.t. S,
written S#F , if F does not contain a sub-term of the form αi.Si: for all i and
finite context D, F 6≡ D[αi.Si].

A finite process R is a residual of S, written S  R when there exist k > 0,
α1, .., αk, and P1, .., Pk such that S α1−→ P1 . . .

αk−−→ Pk ≡ S|R. We shall use R to
range over such residual processes.

Note that if S  R, then R is a parallel composition of sub-terms of the Sis. We
can also remark that residuals and clean processes are stable under transitions:
if S#F (resp. S  F ) and F α−→ F ′, then S#F ′ (resp. S  F ′). As shown by
the following lemma, sub-terms of seeds are clean:

Lemma 9 (i) If S|F is a seed, then S#F ;
(ii) If S  α.R, then there exist i,D such that Si ≡ D[α.R].
(iii) If S  R, then S#R.

A seed cannot absorb its non-trivial residuals:

Lemma 10 S ∼̇ S|R and S  R entail R = 0.

Proof. Suppose by contradiction R ≡ α.R0|R1. Lemma 3 gives S ∼̇ S|α.R0,
hence S ∼̇ S|!α.R0 (∗) by replicating all processes. Moreover, S  α.R0, so that
Lemma 9(ii) gives i,D such that Si ≡ D[α.R0]. Therefore, by (∗) and law (A),
we obtain S ∼̇

∏
j 6=i!αj .Sj |!αi.D[0]|!α.R0. The latter process has the same size

as S, but it has strictly more replicated components, which is contradictory. ut

More generally, the replicated part of visible bisimilar seeds can be cancelled:

Lemma 11 If S|F ∼̇ S|E , S#F , and S#E, then F ≡ E.

Proof. We prove the following stronger property, by induction on n: for all n, F,E
such that ]F, ]E ≤ n, S#F , and S#E, we have:{

(i) ∀P, S|F ∼̇ S|P |E entails ]E ≤ ]F ;
(ii) S|F ∼̇ S|E entails E ≡ F .

The case n = 0 is trivial; assume n > 0.

(i) Suppose ]F < ]E by contradiction. By emptying F , we get P ′, E′ such that
S ∼̇ S|P ′|E′, with 0 < ]E′ ≤ ]E. Write E′ = α.E0|E1, then S ∼̇ S|α.E0 by
Lemma 3, and S|Si ∼̇ S|E0 for some i with αi = α. Necessarily, ]Si ≤ ]E0:
otherwise, by emptying E0, we would obtain a non empty residual R such
S|R ∼̇ S, which would contradict Lemma 10. Since ]E0 < ]E′ ≤ ]E ≤ n, we
can use the induction hypothesis, so that Si ≡ E0, and hence αi.Si ≡ α.E0,
which contradicts S#E.
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(ii) By the above point, ]F = ]E. We show that R , {(F,E)} ∪ ≡ is a visible
bisimulation. If F α−→ F ′, then S|F α−→ S|F ′, and S|E can answer this
challenge: S|E α−→ S|E′ with S|F ′ ∼̇ S|E′. If the answer comes from E,
we are done by induction: ]E′ = ]F ′ = ]F − 1 ≤ n − 1. Otherwise, i.e., if
S|F ′ ∼̇ S|Si|E for some i, we get a contradiction with (i): we would have
]E ≤ ]F ′ = ]E − 1. Challenges of E are handled symmetrically. ut

We can now characterise bisimilarity on seeds:

Proposition 12 For all seeds P, P ′, P ∼̇ P ′ iff P ∼ P ′ iff P ≡ P ′.

Proof. By Fact 7, it suffices to show that P ∼̇ P ′ entails P ≡ P ′. Write P
and P ′ as S|F and S′|F ′, where S, S′ are replicated processes. By Prop. 4,
S ∼̇ S′. Moreover, S and S′ are necessarily seeds because P and P ′ are (hence
the notation). Write S ≡

∏
i≤m !αi.Si and S′ ≡

∏
j≤n !α′j .S

′
j , play each prefix

on the left-hand side and apply Lemma 11 to show that there exists a map
σ : [1..m]→ [1..n], such that αi.Si ≡ α′σi.S′σi (recall that S#Sj by Lemma 9(iii)).
This map is bijective: we could otherwise construct a smaller seed. Therefore,
S ≡ S′. By Lemma 9(i), S#F and S′#F ′, which allows us to deduce F ≡ F ′,
using Lemma 11. Finally, P ≡ P ′. ut

We conclude this section by the following remark: seeds are stable under transi-
tions, so that they actually form a proper sub-calculus of CCS.

Proposition 13 If P is a seed and P µ−→ P ′, then P ′ is a seed.

4 Rewriting Processes to Normal Forms

By Prop. 12, the seed of a process P is unique up to distribution congruence (≡);
in the sequel, we denote it by s(P ). In this section, we show that the seed of a
process can be obtained using a rewriting system. This entails two important
properties of mCCS: visible and strong bisimilarity coincide and bisimilarity is
closed under substitutions (i.e., bisimilar processes remain bisimilar when ap-
plying an arbitrary name substitution).

Definition 14 (Rewriting) Any process T induces a relation between pro-
cesses, written T−→, defined by the following rules, modulo ≡:

T ≡ !α.F |Q

C[α.F ] T−→ C[0]
(R1)

!α.F |!α.F |P T−→ !α.F |P
(R2)

The reflexive transitive closure of T−→ is written T−→∗.

We give some intuitions about how the rewriting rules work. First, only the
replicated part of T matters when rewriting with T−→ . Relation T−→ is nevertheless
defined for an arbitrary process T in order to facilitate the presentation of some
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results below. Then, we observe that it is only sensible to rewrite P using T−→
when T is a seed of P . This means in particular that the rewriting system
does not provide a direct way to compute the seed of a process (since the seed
has to be guessed). It is rather a procedure to check that some process T is
a “simplification” of P—Lemma 15 below validates this intuition. Rule (R2) is
rather self-explanatory. The rewriting rule (R1) relates to laws (A) and (A′); we
illustrate its use by considering the following examples:

!a.b | !b | b.a !a|!b−−−→ !a.b | !b | b !a|!b−−−→ !a.b | !b !a|!b−−−→ !a | !b (1)

!a.(b | a.b) !a.b−−→ !a.b (2)

!a.b | !b.a !a|!b−−−→ !a.b | !b !a|!b−−−→ !a | !b (3)

!a|!a.b !a|!b−−−→ !a|!a !a|!b−−−→ !a (4)

(1) The first example shows how (R1) can be used to “implement” law (A) and
erase redundant sub-terms. At each rewrite step, a copy of a component
of the seed (here, !a|!b) is erased. In the third rewriting step, simplification
occurs in a replicated component.

(2) Law (A′) is applied: a replicated component can be “simplified with itself”.
(3) This example illustrates how the rewriting system solves the problem we

exposed in the introduction (processes P1 and P2), where two replicated
components have to simplify each other: by guessing the seed (!a|!b), we are
able to apply these two simplifications in sequence.

(4) Here, we make a wrong guess about the seed: when assuming that !b is part
of the seed, we can erase the prefix b in !a.b. However, at the end, we are
not able to validate this assumption: !b does not appear in the normal form.

Accordingly, we obtain the following correctness criterion:

Lemma 15 (Soundness) If P T−→∗ T , then P ∼ T .

Definition 16 (Joinability) We say that processes P and Q are joinable, writ-
ten P . Q, if there exists a process T such that P T−→∗ T and Q T−→∗ T .

By Lemma 15, . ⊆ ∼ ; the other property which is required in order to charac-
terise bisimilarity is completeness of the rewriting system, i.e., that all bisimilar
processes can be joined. For this, we show that any process can be rewritten into
a seed. The proof necessitates the following technical lemma:

Lemma 17 For all P , either P is a seed, or P
s(P )−−−→ P ′ for some P ′ s.t. P ∼ P ′.

Proof. Write P ≡ !F |FP and s(P ) ≡ S|FS , with F ≡
∏
i βi.Fi and S ≡∏

j !αj .Sj . By Prop. 4, and since P ∼̇ s(P ), !F ∼̇ S (∗).
Any transition at βi by !F is answered by S at some ασi, yielding equivalence

!F |Fi ∼̇ S|Sσi, which in turn gives S|Fi ∼̇ S|Sσi, by injecting (∗). By
Lemma 11, either (a) Fi ≡ Sσi, or (b) ¬(S#Fi). In the latter case, (b), this
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means that P admits some αj .Sj as a sub-term, and can be rewritten using rule
(R1), the resulting process being bisimilar to P , by Prop. 2.

Suppose now that we are in case (a) for all transitions from !F , that is, for
all i, there exists σi such that βi.Fi ≡ ασi.Sσi. We observe that the converse (as-
sociating a ηj to all js) also holds, and that the number of parallel components
in !F is necessarily greater than the number of components in S (otherwise, we
would obtain a smaller seed). In the case where this number is strictly greater,
this means a replicated component appears twice in !F , so that P can be rewrit-
ten using rule (R2). We are left with the case where the two processes have the
same number of components, which entails that they are equated by ≡.

To sum up, either P can be rewritten, or !F ≡ S. In the latter case, we
deduce S | FP ∼̇ S | FS from (∗), and since S#FS by Lemma 9(i), there are
two cases according to Lemma 11: either FP ≡ FS , in which case P ≡ s(P ): P
is a seed; or ¬(S#FP ), i.e., FP admits some αj .Sj as a sub-term, and we can
rewrite P using (R1), getting a process bisimilar to P by Prop. 2. ut

Proposition 18 (Completeness) For all P , P
s(P )−−−→∗ s(P ).

Thanks to our characterisation of bisimilarity on seeds (Prop. 12), we obtain:

Theorem 19 (Characterisation) In mCCS, visible and strong bisimilarity
coincide with joinability: P ∼̇ Q iff P ∼ Q iff P . Q.

Proof. We have . ⊆ ∼ ⊆ ∼̇ by Lemma 15. Then, P ∼̇ Q entails s(P ) ≡ s(Q) by

Prop. 12. Since P
s(P )−−−→∗ s(P ) and Q

s(Q)−−−→∗ s(Q) by Prop. 18, we get P . Q. ut

This result has several consequences. First, we do not need to play silent transi-
tions in bisimulation games. Second, bisimilarity is substitution closed in mCCS.
Third, bisimilarity is decidable in mCCS: the definition of joinability is a priori
not effective (we are not told how to find T ); however, according to the proof
of Thm. 19, it suffices to search for T among the processes whose size is smaller
than both P and Q to test whether P . Q.

It should be noted that Christensen et al. already proved decidability of
bisimilarity in a larger subset of CCS [3], so that the latter consequence is not
surprising. However, their axiomatisation exploits the sum operator and the
expansion law, so that it cannot be used to establish substitution closure in our
setting.

5 Congruence of Strong Bisimilarity in the π-calculus

In this section, we adapt the previous results from CCS to the π-calculus in order
to obtain closure of bisimilarity under substitutions, and deduce congruence in
the restriction-free π-calculus with only top-level replications.

In moving from CCS to π, some care has to be taken. The first reason for that
is that “being a sub-term of” is more subtle in π than in CCS, because of issues
related to binding and α-conversion. The second reason is that the LTS for the
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a〈b〉.F a〈b〉−−→ F !a〈b〉.F a〈b〉−−→ !a〈b〉.F |F

P
µ−→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q µ−→ P ′|Q

y /∈ fn(a(x).F )

a(x).F
a(y)−−−→ F{y/x}

y /∈ fn(a(x).F )

!a(x).F
a(y)−−−→ !a(x).F |F{y/x}

P
a〈b〉−−→ P ′ Q

a(x)−−−→ Q′

P |Q τ−→ P ′|Q′{b/x}

Fig. 2. Labelled Transition System for mπ.

π-calculus involves substitutions, and we must choose how to handle these in the
definition of behavioural equivalence. Among the various notions of bisimilarity
that exist for π, we shall actually adopt the simplest and coarsest one, namely
ground bisimilarity: when ground bisimilarity is closed under substitutions, the
ground, early and late versions of the equivalence coincide [13].

We let x, y, a, b range over a countable set of names. We work in the subset
of the π-calculus, called mπ, defined by replacing actions from the syntax of
mCCS (Sect. 2) with the following production: α, β ::= a(x)

∣∣ a〈b〉. As usual,
the operator of input prefix is binding, we write fn(P ) for the set of free names
of P , bn(α) for the set of names bounded by α, and we let P{y/x} stand for the
capture-avoiding substitution of x with y in P . Note that contexts (C) can bind
names (e.g., a(x).[]). The LTS for mπ is presented on Fig. 2, where symmetric
rules for parallel composition are omitted. The conditions involving freshness of
names ensure that P

a(x)−−−→ P ′ entails x /∈ fn(P ); this allows us to give a simple
definition of ground bisimilarity:

Definition 20 Ground bisimilarity, denoted by ∼, is the largest symmetric bi-
nary relation such that P ∼ Q entails that fn(P ) = fn(Q) and that whenever
P

µ−→ P ′, there exists Q′ s.t. Q µ−→ Q′ and P ′ ∼ Q′. Visible ground bisimilarity
(∼̇) is defined similarly, by restricting challenges to the cases where µ 6= τ .

Since we lack the restriction operator, the condition on free names is actually en-
forced by standard notions of bisimilarity. In particular, this definition coincides
with the standard definition of ground bisimilarity on mπ [13]: input prefixes
are tested with fresh names. On finite mπ-processes, ground bisimilarity is a
substitution closed congruence [5], so that it coincides with early and late bisim-
ilarities. We need to show that it also coincides with visible bisimilarity (the
proof, given in appendix, exploits some technical results from [5]):

Theorem 21 On finite mπ processes, ∼̇ and ∼ coincide.

As for CCS, we then establish that visible and ground bisimilarities coincide
on all mπ processes. Since visible bisimilarity is easily shown to be substitu-
tion closed (Prop. 22 below, proved in the appendix), this allows us to deduce
congruence and coincidence with the other notions of bisimilarity (Thm. 23).
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Proposition 22 Visible bisimilarity is a substitution closed congruence.

The reasoning goes along the same path as for CCS, so that we only review the
main differences, referring to appendix B for detailed proofs. We need to adapt
the definition of distribution congruence, and we rely on Thm. 21 to prove that
distribution congruence is contained in ground bisimilarity. As expected, we
need to impose conditions on names when stating results involving contexts;
for example, in Prop. 2, C should not bind free names of α.F . Note moreover
that we need to go against a Barendregt convention to perform some rewriting
steps. For example, we want to allow !a(x).a(x)

!a(x)−−−→ !a(x) . We finally obtain
coincidence of visible and ground bisimilarities, which yields congruence:

Theorem 23 (Characterisation and congruence) In mπ, early, late, visi-
ble and ground bisimilarity coincide and define a substitution closed congruence.

6 Conclusions and future work

We have presented a characterisation of strong bisimilarity in the restriction-
and sum-free fragment of CCS, where replications are only allowed at top-level
(Thm. 19). This has allowed us to put forward important algebraic properties of
replication w.r.t. bisimilarity. By extending this result to the π-calculus, we have
established congruence of bisimilarity in the corresponding fragment (Thm. 23).

We would like to push our results further, by finding extensions of the calculi
we have studied for which bisimilarity is substitution closed. A counterexample
involving the operators of restriction and replication is presented in [2] to estab-
lish non-congruence of bisimilarity. Therefore, in light of [5, Corollary 5.9] and
Thm. 23, we can think of two paths to explore: either add a limited usage of
restriction to the language, or study the full replication operator (allowing in
particular nested replications).

Adding the restriction operator. The counterexample of [2] suggests that re-
strictions occurring immediately under replications are problematic. A natural
extension of mCCS would therefore consist in adding restriction only to the
grammar for finite processes (we indeed know from [5] that restriction does not
break substitution closure on finite processes). In order to analyse this setting,
it seems necessary to understand a simpler extension of mCCS, where we just
add the τ prefix (which can be encoded as (νc) (c|c.P ), for a fresh c). We believe
that bisimilarity can then be captured using the following additional laws.

!a.E | !a.F ∼ !a.E | !a.F | !τ.(E|F )
C[0] ∼ !a.E | !a.F |P
C[0] ∼ C[τ.(E|F )]

However, an important difficulty in adapting our proofs to this case is the defini-
tion and analysis of a counterpart of visible bisimilarity in presence of τ prefixes.

11



Beyond top-level replications. Handling unrestricted replications seems really
challenging. We have started investigating the case where replication is not at
top-level, but where nested replications (i.e., replications that occur under repli-
cations) are forbidden. The law

α.C[!α.C[0]] ∼ !α.C[0]

seems important to capture bisimilarity in this setting: it somehow generalises
the distribution law (D) to replicated processes, and it allows one to equate
processes like !a and a.!a. We do not know at the moment whether this law,
together with the laws presented above, is sufficient to characterise bisimilarity.
One of the difficulties in studying this richer language is that seeds are no longer
stable under reduction (Prop. 13): for example, !a.b|c.!b is a seed while its reduct
along c, !a.b|!b, is not, being bisimilar to !a|!b.

Related to this question is the work on HOcore [7], a restriction-free higher-
order π-calculus where strong bisimilarity is characterised by the distribution
law. In this calculus, replication can be encoded using the higher order features.
The encoding is not fully abstract, however, so that it does not entail substitution
closure in presence of “standard” replication.

Weak bisimilarity. Rather complex laws appear when moving from the strong
to the weak case. For example, the following laws are valid for weak bisimilarity:

!a.a | a.b ≈ !a.a | a | b , !a | !a.b ≈ !a | !a | !b .

In both cases, although the related processes have the same size, the right-hand
side process could be considered as a seed. We do not know how to generalise
the first equivalence. For the second one, the following law, where 〈P 〉a is de-
fined homomorphically, except for 〈a.P 〉a = 〈a.P 〉a = 〈P 〉a, is an interesting
candidate:

!a.P | !a.Q ≈ !a | !a | !〈P 〉a | !〈Q〉a .
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A Omitted proofs about mCCS

Proof (of Lemma 9).

(i) By contradiction: if F ≡ D[αi.Si], then S|F ∼ S|D[0] by law (A), which
contradicts the minimality hypothesis about S|F .

(ii) We show that if S  α.R0|R1, then there exists i,D such that Si ≡
D[α.R0], by an induction on the transitions underlying S  α.R0|R1.

(iii) By contradiction, suppose that R ≡ D[αi.Si]. By emptying the prefixes of
D, we find R′ such that S  R′ and R′ ≡ αi.Si. By (ii), there exists j,D′
such that Sj ≡ D′[αi.Si], which is contradictory with the fact that S is a
seed: we have S ∼

∏
k 6=j !αk.Sk|!αj .D′[0] by law (A′) or (A), depending on

whether i = j or not. ut

Proof (of Prop. 13). Write P ≡ S|F , where S is replicated. S is a seed since P is
and we easily check that P ′ ≡ S|F ′, with S#F ′. Now, let S′|F ′′ be a seed of P ′.
By Prop. 4, S ∼̇ S′, so that S ≡ S′ by Prop. 12. We conclude with Lemma 11:
F ′ ≡ F ′′, so that P ′ is indeed also a seed. ut

Proof (of Lemma 15). By induction over the number of rewriting steps. This
is obvious if this number is zero; suppose now P

T−→ P ′
T−→∗ T . The induction

hypothesis gives P ′ ∼ T ; we reason by cases on the rule used to rewrite P :

– (R1): this means that P ≡ C[α.F ], P ′ ≡ C[0] and T ≡ !α.F |Q. From
!α.F |Q ∼ C[0], we deduce !α.F |Q ∼ C[α.F ] by Prop. 2, hence P ∼ T .

– (R2): we easily have P ∼ P ′, hence P ∼ T . ut

Proof (of Prop. 18). By induction on the size of P . By Lemma 17, either P

is a seed and we are done; or P
s(P )−−−→ P ′ with P ∼ P ′. We easily check that

]P ′ < ]P so that by induction, we have P ′
s(P ′)−−−→∗ s(P ′). From P ∼ P ′, we

deduce s(P ) ∼ s(P ′), so that s(P ) ≡ s(P ′) by Prop. 12. This allows us to obtain

P
s(P )−−−→ P ′

s(P )−−−→∗ s(P ), as the rewriting system is defined modulo ≡ . ut
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B Extension to the mπ-calculus

In this appendix, we adapt the proofs from mCCS to mπ, and establish the
results announced in Sect. 5.

B.1 Setting and algebraic laws about replication

The results from Sect. 2 extend without difficulties to the π-calculus:

Proposition B1 (Prop. 2) If C[0] ∼ !α.F |P , where C does not bind any free
name of α.F , then C[0] ∼ C[α.F ].

Proof. Similar to the proof of Prop. 2, the fact that C should not bind any free
name of α.F is used when the fired prefix is an input and guards the hole: this
ensures that α.F is not affected by the induced substitution. ut

As a consequence, we obtain the validity of laws (A) and (A′), with the extra
proviso that C (resp. D) does not bind names occurring free in α.F (resp. α.D):

Lemma B2 (Lemma. 3) If !F ∼̇ P |Q, then !F ∼̇ !F |P .

Proof. We rely on the same purely algebraic reasoning as for Lemma 3, since the
relevant laws are valid in mπ (i.e., !P ∼̇ !P |P and the fact that ∼̇ is preserved
by extended replication). ut

Proposition B3 (Prop. 4) If !F |F0 ∼̇ !E|E0, then !F ∼̇ !E.

Proof. Working in mπ does not prevent us from emptying E0 and F0. The rest
of the CCS proof uses algebraic arguments, and can be replayed. ut

B.2 Seeds

Seeds in mπ are defined exactly like in mCCS (Def. 5). We then prove the
counterpart of Fact. 7. We start with coincidence of visible and ground bisimi-
larity on finite processes: while this can be derived from the results in [5], visible
bisimilarity is not taken into account in that paper.

Theorem B4 (Thm. 21) On finite mπ processes, ∼̇ and ∼ coincide.

Proof. It suffices to prove that ∼̇ ⊆ ∼ . We exploit a technical result from [5],
the absence of ‘mutual desynchronisation’ (Lemma 4.4), i.e.,

if α 6= β, E α−→ E′, F β−→ F ′, then ∀F0, β.E |F ′ |F0 6∼̇ E′ |α.F |F0.
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In [5], this result is proved for the finite fragment of mCCS, and then extended
to the finite sum-free fragment of the π-calculus, by considering an ‘erasing’
translation from π into CCS (cf. Def. 5.3, Lemma 5.4 and Prop. 5.5 in [5]—the
translation transforms visible bisimilar π-calculus processes into bisimilar CCS
processes, so that the absence of mutual desynchronisation can be established
w.r.t. visible bisimilarity in π).

Using this property, we show that the restriction of ∼̇ to finite processes
is a ground bisimulation, i.e., that challenges along silent transitions can be
answered: suppose that E ∼̇ F , and E

τ−→ E′. W.l.o.g., we can write E =
a(b).E2|a〈b〉.E1|E0. By playing the input prefix, and then the output prefix,

E ∼̇ F gives F
a(b)−−→ a〈b〉−−→ F ′1 with E′ ∼ F ′1. By playing theses prefixes in reverse

order, we obtain F
a〈b〉−−→ a(b)−−→ F ′2 with E′ ∼ F ′2. There are two cases to consider:

– if one of these sequences of transitions emanating from F involves the firing
of concurrent prefixes, then we can deduce F τ−→ F ′i , and close the diagram;

– if both correspond to the firing of sequential prefixes, i.e., F1 ≡ a(b).U |a〈b〉.V |F0

with U
a〈b〉−−→ U ′, V

a(b)−−→ V ′, F ′1 ≡ U ′|a〈b〉.V |F0, and F ′2 ≡ a(b).U |V ′|F0, we
check that F ′1 and F ′2 determine a mutual desynchronisation (F ′1 ∼̇ E′ ∼̇ F ′2),
which is contradictory. ut

We then show that visible bisimilarity is a substitution closed congruence, on all
mπ processes. We let σ range over capture-avoiding name substitutions; we rely
on the following lemma to reason about reducts along input transitions.

Lemma B5 Pσ
a0(x)−−−→ P0 iff there exists z, a, P ′ such that P

a(z)−−→ P ′, a0 = aσ,
and P0 = P ′{σ, z → x} (where {σ, z → x} is the parallel substitution that extends
σ with the replacement of x for z).

Proposition B6 (Prop. 22) In mπ, ∼̇ is a substitution closed congruence.

Proof. Using Lemma B5, we show that {(Pσ,Qσ) / σ, P ∼̇ Q} is a visible ground
bisimulation. This is possible because ∼̇ does not test challenges along silent
transitions (however, unlike for CCS, we cannot fix the substitution). Congruence
then follows: we use substitution closure in order to handle the input prefix. ut

Another difficulty is that [5] does not provide an algebraic characterisation of
bisimilarity on finite π-processes—while it does for finite mCCS processes, using
the distribution law (D). Therefore, we can no longer work with a “structural”
definition of distribution congruence: we have to use the following definition.

Definition B7 (Distribution congruence for mπ—Def. 6) We call distri-
bution congruence the smallest congruence relation ≡ that satisfies the laws of
an abelian monoid for (|,0) and contains the restriction of ∼ to finite processes.

This definition and the above results allow us to deduce the remaining inclusions
corresponding to Fact. 7, about mCCS:
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Lemma B8 In mπ, we have ≡ ⊆ ∼ ⊆ ∼̇ .

Proof. The second inclusion is immediate from the definitions. For the first in-
clusion, we show that ≡ is a ground bisimulation. We exploit the fact that ≡
is substitution closed on finite processes (Prop. B6 and Thm. B4) in order to
handle replicated input prefixes: if !a(x).F ≡ !a(x).E because F ≡ E, and, if

!a(x).F
a(y)−−−→ !a(x).F |F{y/x}, then !a(x).E answers with the obvious transition,

and we check that !a(x).F |F{y/x} ≡ !a(x).E |E{y/x}: thanks to substitution
closure on finite processes, we have F{y/x} ≡ E{y/x}. ut

The notion of residual process remains unchanged; we have to adapt the notion
of clean process (w.r.t. a fixed seed having only replicated components only:
S =

∏
i !αi.Si):

Definition B9 (Clean process, residual—counterpart of Def. 8)
F is clean w.r.t. S, written S#F , if it is not the case that for some i and

finite context D, F ≡ D[αi.Si], where D does not bind any free name of αi.Si.
R is a residual of S, written S  R when there exist k > 0, α1, .., αk, and

P1, .., Pk such that S α1−→ P1 . . .
αk−−→ Pk ≡ S|R. We shall use R to range over

such residual processes.

The second point of Lemma 9 needs to be strenghtened:

Lemma B10 (Lemma 9) (i) If S|F is a seed, then S#F ;
(ii) If S  α.R, then there exist i,D such that Si ≡ D[α.R] and D does not

bind free names of S.
(iii) If S  R, then S#R.

Proof. The first two points are handled like in the CCS case; we give more details
for the third one. By contradiction, suppose that R ≡ D[αi.Si], where D does
not bind free names of α.Si. By emptying the prefixes of D, we find R′ such that
S  R′ and R′ ≡ αi.Si (since D does not capture names of αi.Si, αi.Si appears
unchanged after the sequence of transitions). By (ii), there exists j,D′ such that
Sj ≡ D′[αi.Si] where D′ does not bind free names of S and hence, in particular,
of αi.Si. Therefore, we can use laws (A′) or (A) to obtain a contradiction, like
in the CCS case. ut

Lemma B11 (Lemma 10) S ∼̇ S|R and S  R entail R = 0.

Proof. Suppose by contradiction R = α.R0|R1. Lemma B2 gives S ∼̇ S|α.R0,
hence S ∼̇ S|!α.R0 by replicating all processes. Moreover, S  α.R0, so that
Lemma B10(ii) gives i,D such that Si ≡ D[α.R0] and D does not bind free
names of S. Since S ∼̇ S|α.R0, the free names of α.R0 are contained in those
of S, so that they cannot be captured by D. This allows us to use law (A) to
obtain a contradiction, like in the CCS case. ut

Lemma B12 (Lemma 11) If S|F ∼̇ S|E S#F , and S#E, then F ≡ E.
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Proof. Same proof as for Lemma 11. ut

Proposition B13 (Prop. 12) For all seeds P, P ′, we have P ∼̇ P ′ iff P ∼ P ′
iff P ≡ P ′.

Proof. Same proof as for Prop. 12. ut

B.3 Rewriting system

The rewriting system is extended tomπ by avoiding name captures when erasing
components of the seed using rule (R1); joinability is defined as previously:

Definition B14 (counterpart of Defs. 14 and 16) Any process T induces
a relation between processes, written T−→, defined by the following rules, modulo
distribution congruence (≡):

T ≡ !α.F |Q cn(C) ∩ fn(α.F ) = ∅

C[α.F ] T−→ C[0]
(R1)

!α.F |!α.F |P T−→ !α.F |P
(R2)

(Where cn(C) denotes the set of names captured by C.) The reflexive transitive
closure of T−→ is written T−→∗. We say that processes P and Q are joinable, written
P . Q, whenever there exists a process T such that P T−→∗ T and Q T−→∗ T .

With these definitions, the proofs of Lemmas 15, 17, and Prop. 18 can be replayed
without additional difficulties, so that we obtain:

Theorem B15 (Characterisation—Thm. 19) Inmπ, visible and strong bisim-
ilarity coincide with joinability: P ∼̇ Q iff P ∼ Q iff P . Q.

Since visible bisimilarity is a substitution closed congruence on mπ (Prop. B6),
we deduce that the same holds for ground bisimilarity. This in turn entails co-
incidence with early and late bisimilarities, as stated in Thm. 23.
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