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Abstract
In this article, we consider planar graphs in which each vertex is not incident to some

cycles of given lengths, but all vertices can have differentrestrictions. This generalizes the
approach based on forbidden cycles which corresponds to thecase where all vertices have
the same restrictions on the incident cycles. We prove that aplanar graphG is 3-choosable
if it is satisfied one of the following conditions:

(1) each vertexx is neither incident to cycles of lengths4, 9, ix with ix ∈ {5, 7, 8},
nor incident to 6-cycles adjacent to a 3-cycle.

(2) each vertexx is not incident to cycles of lengths4, 7, 9, ix with ix ∈ {5, 6, 8}.
This work implies five results already published [13, 3, 7, 12, 4].

1 Introduction

Only simple graphs are considered in this paper unless otherwise stated. Aplane graphis a
particular drawing of a planar graph in the euclidean plane.For a plane graphG, we denote
its vertex set, edge set, face set and minimum degree byV (G), E(G), F (G) and δ(G),
respectively. Aproper vertex coloringof G is an assignmentc of integers (or labels) to the
vertices ofG such thatc(u) 6= c(v) if the verticesu andv are adjacent inG. A graphG
is L-list colorableif for a given list assignmentL = {L(v) : v ∈ V (G)} there is a proper
coloring c of the vertices such that∀v ∈ V (G), c(v) ∈ L(v). If G is L-list colorable for
every list assignment with|L(v)| ≥ k for all v ∈ V (G), thenG is said to bek-choosable.

Thomassen [8] proved that every planar graph is 5-choosable, whereas Voigt [9] proved
that there exist planar graphs which are not 4-choosable. Onthe other hand, in 1976, Stein-
berg conjectured that every planar graph without cycles of lengths 4 and 5 is 3-colorable (see
Problem 2.9 [6]). This conjecture remains widely open. In 1990, Erd̋os suggested the follow-
ing relaxation of Steinberg’s conjecture: What is the smallest integeri such that every graph
withoutj-cycles for4 ≤ j ≤ i is 3-colorable. The best known upper bound isi ≤ 7 [2]. It is
natural to ask the same question for choosability:

Problem 1 What is the smallest integeri such that every graph withoutj-cycles for
4 ≤ j ≤ i is 3-choosable?

Voigt [10] proved that it is not possible to extend Steinberg’s conjecture to list coloring:
she gave a planar graph without 4-cycles and 5-cycles which is not 3-choosable ; hencei ≥ 6.
The best known upper bound isi ≤ 9: this bound is obtained by using a structural lemma of
Borodin [1].
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Figure 1: (A) Orchid, (B) sunflower, and (C) lotus.

Lemma 1 [1] Let G be a planar graph with minimum degree at least 3. IfG does not contain
cycles of lengths 4 to 9, thenG contains a 10-face incident to ten 3-vertices and adjacent to
five 3-faces.

It follows by Erdős, Rubin and Taylor [5] that every planar graph without cycles of lengths
4 to 9 is 3-choosable. Zhang and Wu [13] improved Borodin’s result by proving that:

Lemma 2 [13] Let G be a planar graph with minimum degree at least 3. IfG does not
contain cycles of lengths 4, 5, 6, and 9, thenG contains a 10-face incident to ten 3-vertices
and adjacent to five 3-faces.

It implies that every planar graph without cycles of lengths4, 5, 6, 9 is 3-choosable.
Chen, Lu, and Wang [3] proved that every planar graph withoutcycles of lengths 4, 6, 7, 9 is
3-choosable. Their result is based on the following lemma:

Lemma 3 [3] Let G be a planar graph with minimum degree at least 3. IfG contains neither
cycles of lengths 4, 7, 9, nor 6-cycle with a chord, thenG contains a 10-face incident to ten
3-vertices or an 8-face incident to eight 3-vertices.

Shen and Wang [7] proved that every planar graph without cycles of lengths 4, 6, 8, 9 is
3-choosable by showing that:

Lemma 4 [7] Let G be a planar graph with minimum degree at least 3. IfG does not contain
cycles of lengths 4, 6, 8, and 9, thenG contains a 10-face incident to ten 3-vertices.

Moreover every planar graph without cycles of lengths 4, 5, 7, 9 (resp. 4, 5, 8, 9, and 4,
7, 8, 9) is 3-choosable [12] (resp. [11], [4]).

In this article, we consider planar graphs in which each vertex is not incident to some
cycles of given lengths, but all vertices can have differentrestrictions. This generalizes the
approach based on forbidden cycles which corresponds to thecase where all vertices have the
same restrictions on the incident cycles. Let us introduce some notations which will allow to
present our main result.
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Some notation: The degree of a face is the length of its boundary walk. We willwrite
d(x) for dG(x) the degree of the vertexx in G when no confusion can arise. Ak-vertex,
k+-vertex, or k−-vertexis a vertex of degreek, at leastk, or at mostk. Similarly, we can
definek-face,k+-face,k−-face, etc. We say that two cycles (or faces) areadjacentif they
share at least one common edge. Suppose thatf andf ′ are two adjacent faces by sharing
a common edgee. We say thatf andf ′ arenormally adjacentif |V (f) ∩ V (f ′)| = 2. A
triangle is synonymous with a 3-face. Forf ∈ F (G), we useb(f) to denote the boundary
walk of f and writef = [u1u2 · · ·un] if u1, u2, · · · , un are the vertices ofb(f) appearing in
a boundary walk off .

A cycle C or a facef is callednontriangular if it is not adjacent to any 3-cycles. We
say ani-facef is ani∗-face if f is adjacent to exactly one 3-face normally. Moreover, we
call suchi∗-face isheavy. Similarly, we say ani-cycleC is ani∗-cycle if C is adjacent to
exactly one 3-cycle normally. For simpleness, we call suchi∗-cycle isheavy. Two i∗-cycles
(or i∗-faces) arenormally adjacentif these twoi-cycles (ori-faces) are normally adjacent.

An orchid is a6∗-face incident to six 3-vertices and adjacent to a 3-face. Asunfloweris an
8-face incident to eight 3-vertices and adjacent to at leastseven 5-faces. Alotus is a 10-face
incident to ten 3-vertices and adjacent to five clusters, where a cluster is either a 3-face, or a
5-face, or a6∗-face (see Figure 1).

The following theorem is our main result which implies Lemmas 1-4.

Theorem 1 LetG be a planar graph with minimum degree at least 3 andG does not contain
4-cycles and 9-cycles. IfG further satisfies the following structural properties:

(C1) a 5-cycle or 6-cycle is adjacent to at most one 3-cycle;

(C2) a 5∗-cycle is neither adjacent to a5∗-cycle normally, nor adjacent to ani-cycle with
i ∈ {7, 8};

(C3) a6∗-cycle is neither adjacent to a 6-cycle, nor incident to ani-cycleC with i ∈ {3, 5},
whereC is opposite to such6∗-cycle by a 4-vertex;

(C4) a nontriangular 7-cycle is not adjacent to two 5-cycleswhich are normally adjacent;

(C5) a7∗-cycle is neither adjacent to a 5-cycle nor a6∗-cycle.
ThenG contains an orchid or a sunflower or a lotus.

We obtain the following Corollary 1 and Corollary 2 by Theorem 1.

Corollary 1 Let G be a planar graph in which each vertexx is neither incident to cycles of
lengths4, 9, ix with ix ∈ {5, 7, 8}, nor incident to 6-cycles adjacent to a 3-cycle. ThenG is
3-choosable.

Corollary 2 Let G be a planar graph in which every vertexx is not incident to cycles of
lengths4, 7, 9, ix with ix ∈ {5, 6, 8}. ThenG is 3-choosable.

Assuming Theorem 1, we can easily prove Corollary 1 and Corollary 2.

Proofs of Corollary 1 and Corollary 2: Suppose thatG1, G2 is a counterexample to Corol-
lary 1, Corollary 2 with the smallest number of vertices respectively. Thus,Gi is connected
(i = 1, 2). Obviously, for eachi ∈ {1, 2}, we observe thatδ(Gi) ≥ 3. Otherwise, letui

be a vertex of minimum degree inGi. By the minimality ofGi, Gi − ui is 3-choosable.
Obviously, we can extend anyL-coloring such that∀x ∈ V (G) : |L(x)| ≥ 3 of Gi−ui to Gi

and ensureGi is 3-choosable. Next, in each case, we will show that eachGi contains either
an orchid, or a sunflower, or a lotus. DenoteNA, NB, NC be the set of black vertices of (A),
(B) and (C) in Figure 1, respectively. For eachj ∈ {1, 2, 3}, one can easily observe that we
can extend anyL-coloring such that for allx ∈ V (G) : |L(x)| ≥ 3 of Gi − Nj to Nj and
make sureGi is 3-choosable. Thus,G1 andG2 are both 3-choosable. A contradiction.
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SinceGi does not contain 4-cycles and 9-cycles, we only need to verify if Gi satisfies all
the structural properties (C1) to (C5), wherei ∈ {1, 2}.

(1) For G1, since each vertexx is not incident to 6-cycles adjacent to a 3-cycle, each
5-cycle or 6-cycle only can be nontriangular cycles. This implies that there is neither5∗-face
nor 6∗-face inG1. Thus, (C1), (C2) and (C3) are satisfied. Then we only need to consider
(C4) and (C5). If (C4) is not satisfied, then there appears a vertex x which is incident to an
ix-cycle withix ∈ {5, 7, 8}, which contradicts the assumption ofG1. If (C5) is not satisfied,
then a vertexy is appeared such thaty is incident to aniy-cycle with iy ∈ {5, 7, 8}. A
contradiction.

(2) ForG2, because it does not contain 7-cycles, we confirm that there is no6∗-cycle and
7∗-cycle inG2. Thus, we only need to check properties (C1) and (C2). It is easy to establish
a 7-cycle or a 4-cycle if a 5-cycle or 6-cycle is adjacent to atleast two 3-cycles. Thus, (C1)
is satisfied. Let us check (C2). If there exist two5∗-cycles adjacent normally, then a 7-cycle
or a 9-cycle is produced, contradicting the absence of 7-cycles and 9-cycles. If a5∗-cycle is
adjacent to an8-cycle, then there is a vertex incident to a 5-cycle, a 6-cycle and an 8-cycle,
which is impossible. Therefore, (C2) is satisfied.

This completes the proofs of Corollary 1 and Corollary 2. 2

By Corollary 1, it is easy to deduce Corollary 3:

Corollary 3 Every planar graphG in which every vertexv is not incident to cycles of lengths
4, 6, 9, ix with ix ∈ {5, 7, 8} is 3-choosable.

Thus, by Corollary 2 and Corollary 3, we deduce Corollary 4 which covers five results
mentioned before [13, 3, 7, 12, 4].

Corollary 4 Every planar graphG without {4, i, j, 9}-cycles with5 ≤ i < j ≤ 8 and
(i, j) 6= (5, 8) is 3-choosable.

Section 2 is dedicated to the proof of Theorem 1.

2 Proof of Theorem 1

Let G be a counterexample to Theorem 1, i.e., an embedded plane graphG with δ(G) ≥ 3,
no cycles of lengths 4 and 9, satisfying the structural properties (C1) to (C5), and containing
no orchid, no sunflower, and no lotus (i.e., none of the configurations depicted by Figure 1).

First, we supposeG is 2-connected. Thus, the boundary of each facef of G forms a
cycle. Besides, the following assertions (O1) to (O7) hold naturally by the assumption ofG.

(O1) A 5-face or a 6-face is adjacent to at most one 3-face;

(O2) A 5∗-face is neither adjacent to a5∗-face normally, nor adjacent to ani-face with
i ∈ {7, 8};

(O3) A 6∗-face is neither adjacent to a 6-face, nor incident to ani-facef with i ∈ {3, 5},
wheref is opposite to such6∗-face by a 4-vertex;

(O4) A nontriangular 7-face is not adjacent to two 5-faces which are normally adjacent (there
is no 3-vertex incident to a nontriangular 7-face and to two 5-faces);

(O5) A 7∗-face is neither adjacent to a 5-face nor a6∗-face;

(O6) G does not contain 4-faces and 9-faces;

(O7) Each vertexv is incident to at most
⌊

d(v)
2

⌋

3-faces.

Moreover, the following additional properties hold:
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Claim 1 For some fixedi ∈ {5, 6, 7, 8}, if an i-face is adjacent to a 3-face, then they are
normally adjacent.

Proof. Suppose the claim is false. Letfi = [v1v2 · · · vi] be ani-face andf2 = [v1v2u] be a
3-face such thatf1 is adjacent tof2 and|V (f1) ∩ V (f2)| ≥ 3. It means thatu is equal to
somevj with j ∈ {3, 4, · · · , i}. According to the value ofi, one can easily observe that ifu
is a vertexvj with 3 ≤ j ≤ i, theG contains either a 2-vertex or a 4-cycle, a contradiction.
This completes the proof of Claim 1. 2

SinceG does not contain 9-cycles, we obtain the following Claims 2 and 3 easily by
Claim 1:

Claim 2 Each 7-face is adjacent to at most one 3-face.

Claim 3 No 8-face is adjacent to a 3-face.

Claim 4 If two 5-faces are adjacent to each other, then they can only be normally adjacent.

Proof. Suppose that there are two adjacent 5-facesf1 = [v1v2 · · · v5] andf2 = [v1v2uvw]
with v1v2 as a common edge. If|V (f1) ∩ V (f2)| = 2, then Claim 4 follows. Otherwise, by
symmetry, we only need to consider the following cases. Ifw = v5, thend(v1) = 2 which is
impossible. Ifw = v4, thenG contains a 4-cyclev1v2v3v4v1, a contradiction. This implies
u /∈ b(f1) andw /∈ b(f1). If v = v5 or v = v4, then a 4-cycleuv2v1v5u or wv1v5v4w can be
easily established, a contradiction, that completes the proof of Claim 4. 2

Claim 5 A nontriangular 5-face can not be adjacent to a5∗-face inG.

Proof. Suppose on the contrary that a nontriangular 5-facef1 = [v1v2 · · · v5] is adjacent to a
5∗-facef2 = [v1v2u3u4u5] by a common edgev1v2. By definition,f1 is not adjacent to any
3-face. By Claim 4, eachui can not be equal to somevj with i, j ∈ {3, 4, 5}. By symmetry,
we have to handle the following two properties:

• Assume thatv1u5u is a 3-face. By Claim 1,u 6= v2, u3, u4. Moreover,u 6= v5 by choice
of f1. If u = v4 or u = v3, thenG contains a 4-cycle, which is impossible. Thus,u does not
belong tob(f1) ∪ b(f2) andG contains a 9-cycleuv1v5v4v3v2u3u4u5u, a contradiction.

• Assume thatu5u4u is a 3-face. Notice thatu 6= v1, v2, u3 by Claim 1. Ifu = v3 or v4

or v5, thenG contains a 4-cycle which is impossible. Thus,u does not belong tob(f1)∪b(f2)
andG contains a 9-cycleuu5v1v5v4v3v2u3u4u, a contradiction, that completes the proof of
Claim 5. 2

By Claim 4 and assertion (O2), we have:

Claim 6 There is no adjacent two5∗-faces inG.

Claim 7 No 3-vertex is incident to three 5-faces.

Proof. Assume to the contrary thatG contains a 3-vertexu adjacent to three verticesv1, v2, v3

and incident to three 5-facesf1 = [uv1x1x2v2], f2 = [uv2y1y2v3], andf3 = [uv3z1z2v1].
By Claim 4, fi andfj are normally adjacent for each pair{i, j} ⊂ {1, 2, 3}. It implies
that all vertices in(V (f1) ∪ V (f2) ∪ V (f3)) \ {u} are mutually distinct. However, a 9-
cycle v1x1x2v2y1y2v3z1z2v1 is established, contradicting the assumption onG. Thus, we
complete the proof of Claim 7. 2

Claim 8 Under isomorphism, a 6-face can be adjacent to a 5-face in an unique way as
depicted by Figure 2.
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f2f1

Figure 2: A 6-facef1 is adjacent to a 5-facef2.

Proof. Assuming that a 6-facef1 = [v1v2 · · · v6] is adjacent to a 5-facef2 = [v1v2uvw] with
v1v2 as a common edge. If{u, v, w}∩{v3, v4, v5, v6} = ∅, then a 9-cyclev2v3v4v5v6v1wvuv2

is formed, which is a contradiction. Thus, we confirm that|V (f1)∩V (f2)| ≥ 3. By symmetry
of f1, it suffices to consider the following cases.

• If w = v5 andu = v4, then a 4-cyclev1v5v4v2v1 is established, which is impossible.
• Assuming thatw 6= v5 andu 6= v4. Notice thatw 6= v6. Or else, a 2-vertexv1 is

produced. Ifw = v4, then a 4-cyclev1v6v5v4v1 is made. Ifw = v3, then a 4-cyclev2uvv3

is constructed. A contradiction is always produced. By symmetry, we see thatw and u
do not belong tob(f1). Moreover,v 6= v3 andv 6= v4. Otherwise, a 4-cyclewv1v2v3w or
v4v3v2uv4 is established, contradicting the assumption onG. Thus, by symmetry,v /∈ V (f1),
which means that|V (f1) ∩ V (f2)| = 2, which is impossible.

• Without loss of generality, we may suppose thatw = v5 andu 6= v4. Clearly,u 6= v3

sinced(v2) ≥ 3. Sou /∈ V (f1). One can easily observe thatv 6= v3 andv 6= v4 by the
absence of 4-cycles. Thus, we ensure thatv /∈ b(f1). It implies thatf1 is adjacent tof2 in an
unique way as Figure 2 shown. This completes the proof of Claim 8. 2

Claim 9 No 3-vertex is incident to two 5-faces and one 6-face.

Proof. Suppose the claim is not true. We assume that there exists a 3-vertexu adjacent to
three verticesv1, v2, v3 and incident to two 5-facesf1 = [uv1x1x2v2], f2 = [uv2y1y2v3],
and one 6-facef3 = [uv3z1z2z3v1].

x1

y1

f1

z3

v2

v1z2

x2

y2

u

v3

z1

f3

f2

Figure 3: A 3-vertexu incident to two 5-facesf1 andf2 and to one 6-facef3.

By Claim 8,z2 = y2 = x1. Hence a 4-cyclez2v1uv3z2 exists which is a contradiction.
Thus, we complete the proof of Claim 9. 2

Claim 10 No 3-vertex is incident to one 5-face and two 6-faces.

Proof. Suppose on the contrary that there exists a 3-vertexu adjacent to three verticesv1, v2, v3

and incident to two 6-facesf1 = [uv3y1y2y3v1], f2 = [uv2z1z2z3v3], and one 5-face
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f3

y2

y3

x2 v1

u

x1

x2

y1

y2

y3

v3

z3

z2

z1

x1
f1

f2 f2

f1 f3

v2u

v1

v2v3

z1

z2

z3

y1

Figure 4: A 3-vertexu incident to one 5-facef3 and two 6-facesf1 andf2.

f3 = [uv1x1x2v2]. By Claim 8, we see thatf1 andf3 can only be adjacent to each other
in an unique way as depicted by Figure 2. One can easily observe thatx1 = y2 or v2 = y1.
Next, we will make use of contradictions to show thatf2 can not exist inG. We have to deal
with the following two cases.

Case 1 x1 = y2.

For simpleness, denotex∗ = x1 = y2. By Claim 8, we see thatx2 = z2. It is easy to
see that a 5-facex∗v1uv2x2x

∗ adjacent to two 3-cyclesx∗y3v1x
∗ andv2z1x2v2 is produced.

This contradicts (C1).

Case 2 v2 = y1.

Clearly, uv3y1 is a 3-cycle which is not a 3-face. For simpleness, lety∗ = v2 = y1.
Obviously,{z1, z2, z3} ∩ {y2, y3, x1, x2} = ∅ sinceG is a plane graph. However, a 9-cycle
y∗z1z2z3v3uv1x1x2y

∗ is easily established, which is impossible. This completesthe proof
of Claim 10. 2

Claim 11 No6∗-face is adjacent to a 5-face inG.

Proof. Suppose on the contrary that there exists a 6-facef1 = [v1v2 · · · v6] adjacent to a 5-
facef2 = [v1v2uvw] by a common edgev1v2. By Claim 8,f1 andf2 can only be adjacent
in an unique way depicted by Figure 2, which means thatw = v5. Note thatf1 is adjacent to
a 3-cyclev1v5v6v1 which is not a 3-face. Thus,f1 can not be adjacent to any other 3-face by
(C1), which means thatf1 can not be a6∗-face. This completes the proof of Claim 11.2

It is easy to derive Claim 12 by Claim 11.

Claim 12 No6∗-face is adjacent to a5∗-face inG.

By (C1), similarly as the proof of Claim 11 we have:

Claim 13 No5∗-face is adjacent to a 6-face inG.

Furthermore, assertion (O3) implies the following claim:

Claim 14 There is no adjacent6∗-faces inG.

Claim 15 Let G be a connected plane graph withn vertices,m edges andr faces. Then
using Euler’s formula we have:

∑

v∈V (G)

(2d(v) − 6) +
∑

f∈F (G)

(d(f) − 6) = −12 (1)
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Proof. Euler’s formulan−m + r = 2 yields(4m− 6n) + (2m− 6r) = −12. This identity
and the relation

∑

v∈V d(v) =
∑

f∈F d(f) = 2m imply (1). 2

We now use a discharging procedure. We first assign to each vertex v an initial charge
ω(v) such that for allv ∈ V (G), ω(v) = 2d(v) − 6 and to each facef an initial charge
such that for allf ∈ F (G), ω(f) = d(f) − 6. In the following, we define discharging rules
and redistribute charges accordingly. Once the discharging is finished, a new charge function
ω∗ is produced. However, the total sum of charges is kept fixed when the discharging is in
process. Nevertheless, we can show thatω∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G). Using (1),
this leads to the following obvious contradiction:

−12 =
∑

v∈V (G)∪F (G)

ω(v) =
∑

v∈V (G)∪F (G)

ω∗(v) ≥ 0

and hence demonstrates that no such counterexample can exist.

Before stating the discharging rules, we first give some notations which will be used
frequently in the following argument. Letx, y ∈ V (G) ∪ F (G), we useτ(x → y) to denote
the charge transferred fromx to y. For a vertexv ∈ V (G) and for an integeri ≥ 5, let
m3(v), mi(v), andmi∗(v) denote the number of 3-faces, nontriangulari-faces, and heavy
i-faces incident tov, respectively. Furthermore, we denoteMi(v) = mi(v) + mi∗(v) and
call a facef anon-3-faceif d(f) 6= 3.

For simpleness, we write an edgeuv is a(b1, b2)-edgeif d(u) = b1 andd(v) = b2. Let
f1 andf2 be two faces adjacent to each other by a common edgeuv. If u andv are both not
incident to any 3-face, then we calluv a good common edge. We further say suchuv is a
good common(b1, b2)-edgeif uv is a(b1, b2)-edge.

The discharging rules are defined as follows:

(R1) Each5+-face sends 1 to its adjacent 3-face.

(R2) Letv be a 4-vertex.

(R2a) Ifm3(v) = 2, then for each non-3-facef , τ(v → f) = 1.

(R2b) If m3(v) = 1, then letf1 denote the incident 3-face andf ′ be the opposite face
of f1.

(R2b1) If f ′ is a nontriangular 5-face, thenv sends2
3 to each incident face different

of f1.

(R2b2) Otherwise,v sends 1 to each incident face which is adjacent tof1.

(R2c) If m3(v) = 0, let f1, f2, f3, andf4 denote the faces ofG incident tov in a cyclic
order such that the degree off1 is the smallest one among all faces incident tov,
then we do like this:

(R2c1) ifM5(v) = 0, thenv sends1
2 to each incident face.

(R2c2) if M5(v) = 1, thenv sends2
3 to each off1, f2, andf4 whenf1 is a nontri-

angular 5-face; orv sends1 to each off2 andf4 whenf1 is a5∗-face.

(R2c3) ifM5(v) = 2, then

(R2c3.1) v sends2
3 to each nontriangular 5-face and1

3 to each other incident face
whenm5(v) = 2.

(R2c3.2) v sends2
3 to each incident face ofv except the unique5∗-face when

m5(v) = 1 andm5∗(v) = 1.

(R2c3.3) v sends 1 to each incident face which is not a5∗-face whenm5∗(v) = 2.

(R2c4) ifM5(v) = 3, thenv gives 2
3 to each incident nontriangular 5-face.

(R2c5) ifM5(v) = 4, thenv gives 1
2 to each incident nontriangular 5-face.
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(R3) Letv be a 5-vertex andf be a non-3-face incident tov. Then

(R3a) τ(v → f) = 4
3 if m3(v) = 2.

(R3b) τ(v → f) = 1 if m3(v) = 1.

(R3c) if m3(v) = 0, v sends 1 to each incident face different from5∗-faces when

m5∗(v) ≥ 1; or sends5
6 to each incident6∗-face and sends4−

5

6
m6∗ (v)

5−m6∗ (v) to each
other incident face whenm5∗(v) = 0.

(R4) Letf be a7+-face. Iff ′ is adjacent tof by a good common edgee, then

(R4a) τ(f → f ′) = 1
3 if f ′ is a nontriangular 5-face ande is a(3, 3)-edge.

(R4b) τ(f → f ′) = 1
6 if f ′ is a6∗-face ande is a(3, 3)-edge or a(3, 4)-edge.

(R5) Each10+-face sends 1 to each adjacent5∗-face by a good common(3+, 3+)-edge.

(R6) Each6+-vertex sends 1 to each incident face.

Let us check thatω∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G).
Sinceδ(G) ≥ 3, d(v) ≥ 3 for each vertexv ∈ V (G). We have to handle the following

cases, depending on the size ofd(v).

Case 1 d(v) = 3.

It is easy to see thatω∗(v) = ω(v) = 2 × 3 − 6 = 0 by (R1) to (R6).

Case 2 d(v) = 4.

Clearly,ω(v) = 2 andv is incident to at most two 3-faces by (O7). Ifm3(v) = 2, then
we deduce thatω∗(v) = 2 − 2 × 1 = 0 by (R2a). Ifm3(v) = 1 (v is incident to exactly
one 3-face), then depending on the opposite face of such 3-face,v gives either23 × 3 = 2, or
1 × 2 = 2 by (R2b1) or (R2b2). Hence,ω∗(v) = 0. Finally, we only need to consider the
case ofm3(v) = 0. We divide the discussion into five subcases in the light of the value of
M5(v).

Subcase 2.1 M5(v) = 0.

This implies that the degree of each face incident tov is at least 6 by the absence of
4-faces. According to (R2c1),ω∗(v) ≥ 2 − 1

2 × 4 = 0.

Subcase 2.2 M5(v) = 1.

It is easy to observe thatv sends either23×3 = 2 if m5(v) = 1, or1×2 = 2 if m5∗(v) = 1
by (R2c2). Thus,v gives totally at most 2 to incident faces. Hence,ω∗(v) ≥ 2 − 2 = 0.

Subcase 2.3 M5(v) = 2.

If m5(v) = 2, thenω∗(v) ≥ 2− 2
3 ×2− 1

3 ×2 = 0 by (R2c3.1). Ifm5(v) = m5∗(v) = 1,
then such nontriangular 5-face and5∗-face can not be adjacent to each other by Claim 5.
Thus, applying (R2c3.2),ω∗(v) ≥ 2 − 2

3 × 3 = 0. Otherwise, supposem5∗(v) = 2.
Notice thatv is incident to two5∗-faces which are opposite to each other by Claim 6. Thus,
ω∗(v) ≥ 2 − 1 × 2 = 0 by (R2c3.3).

Subcase 2.4 M5(v) = 3.

We first notice thatm5∗(v) 6= 3 since there are no adjacent5∗-faces inG by Claim 6. If
1 ≤ m5∗(v) ≤ 2, then there exists at least one nontriangular 5-face adjacent to one5∗-face,
contradicting the Claim 5. Thus,m5∗(v) = 0, and som5(v) = 3. According to (R2c4), we
have thatω∗(v) ≥ 2 − 2

3 × 3 = 0.

Subcase 2.5 M5(v) = 4.
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Figure 5: Some of discharging rules (R1) to (R3).
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One can observe thatm5∗(v) = 0 by Claim 5 and Claim 6. It implies thatv is incident to
exactly four nontriangular 5-faces. Consequently, we havethatω∗(v) ≥ 2 − 1

2 × 4 = 0 by
(R2c5).

Case 3 d(v) = 5.

Obviously,ω(v) = 4 andm3(v) ≤ 2 by (O7). It is easy to observe thatv sends either
4
3 × 3 = 4 by (R3a) if m3(v) = 2, or 1 × 4 = 4 by (R3b) if m3(v) = 1. Therefore,
ω∗(v) ≥ 4 − 4 = 0 if m3(v) > 0. Now we may assume thatm3(v) = 0. This implies that
each face incident tov is a5+-face combining the fact thatG does not contain any 4-faces. By
Claim 6, we have thatm5∗(v) ≤ 2. Moreover, each face adjacent to a5∗-face must be a10+-
face by Claim 5, Claim 6, Claim 12, Claim 13, (O2) and the absence of 9-faces. So by (R3c),

ω∗(v) ≥ 4−1×4 = 0 if m5∗(v) ≥ 1; orω∗(v) ≥ 4− 5
6m6∗(v)−

4− 5

6
m6∗ (v)

5−m6∗ (v) (5−m6∗(v)) = 0

if m5∗(v) = 0.

Case 4 d(v) ≥ 6.

According to (R6), we have thatω∗(v) ≥ (2d(v) − 6) − 1 × d(v) = d(v) − 6 ≥ 0.

Letf ∈ F (G). Thenb(f) is a cycle sinceG is 2-connected. We writef = [v1v2 · · · vd(f)]
and suppose thatfi is the face ofG adjacent tof with vivi+1 ∈ b(f) ∩ b(fi) for i =
1, 2, · · · , d(f), where (and in the following discussion) all indices are taken modulod(f)
plus 1. We observe thatd(f) 6= 4 andd(f) 6= 9 by (O6). Fori ≥ 3, let ni(f) denote the
number ofi-vertices incident tof . Let m5(f), m5∗(f), andm6∗(f) denote the number of
nontriangular 5-faces, heavy 5-faces, and heavy6∗-faces adjacent tof .

Case 5 d(f) = 3.

Let f be a 3-face and thenω(f) = −3. Sinceδ(G) ≥ 3, f is adjacent to three faces and
each adjacent face is neither a 3-face nor a 4-face by the absence of 4-cycles inG. It implies
thatf gets3 × 1 from its adjacent faces by (R1). Thus,ω∗(f) ≥ −3 + 1 × 3 = 0.

Case 6 d(f) = 5.

Let f = [v1 · · · v5] and thenω(f) = −1. Clearly,f is adjacent to at most one 3-face by
(O1).

• We first assume thatf is a nontriangular 5-face, which means that there is no 3-face
adjacent tof . Thus,f sends nothing to all its adjacent faces. Moreover, eachfi can not be a
5∗-face by Claim 5. We only have to deal with the the following three possibilities, depending
on the value ofn3(f).

Subcase 6.1 n3(f) = 5.

It means thatvi is a 3-vertex for alli = 1, . . . , 5. If there exists a 6-face adjacent tof ,
then by Claim 8 we see that they must be adjacent to each other in an unique way as depicted
by Figure 2. It is easy to see that there is one4+-vertex appeared onb(f), which contradicts
n3(f) = 5. Thus, each face adjacent tof is either a nontriangular 5-face or a7+-face by the
absence of 4-faces. Furthermore, we notice thatf is adjacent to at most two nontriangular
5-faces which are not adjacent by Claim 7. Sof is adjacent to at least three7+-faces such
that each7+-face is adjacent tof by a good common(3, 3)-edge. Therefore, applying (R4a),
we obtain thatω∗(f) ≥ −1 + 3 × 1

3 = 0.

Subcase 6.2 n3(f) = 4.

Let v1 be such a4+-vertex andvj be a 3-vertex for allj = 2, 3, 4, 5. Clearly,v1 gives
at least12 to f by (R2) and (R3). Moreover,f1 andf5 can not be any 6-face by Claim 8.
If d(f1) = 5 andd(f5) = 5, thend(fj) /∈ {5, 6} with j ∈ {2, 4} according to Claim 7
and Claim 9. Thus, forj ∈ {2, 4}, fj is a7+-face by the absence of 4-faces and eachfj is
adjacent tof by a good common(3, 3)-edge. By (R4a), we see thatτ(f2 → f) = 1

3 and
τ(f4 → f) = 1

3 . So we obtain thatω∗(f) ≥ −1 + 1
2 + 1

3 × 2 = 1
6 > 0.
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Now we may suppose that there exists at least one face off1 andf5 which is a7+-
face, i.e.,d(f1) ≥ 7. Then by (R2) and (R3), we see thatτ(v1 → f) ≥ 2

3 . Clearly, for
eachi ∈ {2, 3, 4}, fi is adjacent tof by a good common(3, 3)-edge. According to Claim
7, Claim 9 and Claim 10, we see that there exists at least one face of f2, f3, f4 which is a
7+-face. Hence,ω∗(f) ≥ −1 + 1

3 + 2
3 = 0 by (R4a).

Subcase 6.3 n3(f) ≤ 3.

It means that there are at least two vertices whose degree areboth at least 4. By (R2), we
derive thatω∗(f) ≥ −1 + 1

2 × 2 = 0.

• Now, we may suppose thatf is a5∗-face. It implies thatf is adjacent to exactly one
3-face. Without loss of generality, letf1 = [vv1v2] be such 3-face that it is adjacent tof .
By Claim 1,v 6= vi for all i = 3, 4, 5. Sinceδ(G) ≥ 3, d(vi) ≥ 3 with i ∈ {1, 2, · · · , 5}.
By Claim 6 and (O2), for eachj ∈ {2, 3, 4, 5}, fj is neither a5∗-face nor ani-face with
i = 7, 8. Furthermore, we observe thatd(fj) 6= 3, d(fj) 6= 4, d(fj) 6= 5, d(fj) 6= 6,
andd(fj) 6= 9 by (O1), (O6), Claim 5, and Claim 13, respectively. Thus, we confirm that
d(fj) ≥ 10. Therefore, we derive thatτ(f3 → f) = 1 andτ(f4 → f) = 1 by (R5). Hence,
ω∗(f) ≥ −1 − 1 + 1 × 2 = 0 by (R1).

Case 7 d(f) = 6.

Let f = [v1 · · · v6] and thenω(f) = 0. If f is a nontriangular 6-face, then it is easy to
deduce thatω∗(f) = ω(f) = 0 by (R1) to (R6). Now, we assume thatf is a6∗-face. Without
loss of generality, assumef1 = [vv1v2] is a 3-face adjacent tof . It is obvious thatv /∈ b(f)
by Claim 1. Furthermore,f is adjacent to at most one 3-face by (O1). Sof only need to
send 1 to the unique 3-facef1. Obviously, for eachj ∈ {2, · · · , 6}, d(fj) /∈ {3, 4, 5, 6} by
(O1), (O6), Claim 11 and (O3). Noting thatv3v5 /∈ E(G) andv3v6 /∈ E(G) by (C1) and the
absence of 4-cycles. This implies that eachvi has at least one outgoing neighbor which is not
lied onb(f). Since there is no orchid inG, f is incident to at least one4+-vertex. It implies
thatn3(f) ≤ 5. Next, in each case, we will show that the total chargef obtained is at least 1
and thusω∗(f) ≥ −1 + 1 = 0.

Subcase 7.1 n3(f) = 5.

It means that there is exactly one4+-vertex incident tof . If d(v2) ≥ 4, thenτ(v2 →
f) ≥ 1 by (R2a), (R2b2), (R3a), (R3b) and (R6) sinced(f2) 6= 5. Otherwise, by symmetry,
suppose somevi is a 4+-vertex wherei ∈ {3, 4}. Denotev∗ be such a4+-vertex. First,
we observe that each adjacent face different fromf1 is a 7+-face by the discussion above.
If d(v∗) ≥ 5, thenτ(v∗ → f) ≥ 5

6 by (R3) and (R6). Noting that there is at least onefj

sends1
6 to f , wherej ∈ {3, 4, 5}. Thus,f gets at least56 + 1

6 = 1 from v∗ and its adjacent
7+-faces. Ifd(v∗) = 4, then the opposite face off , which is incident tof by v∗, can not be
a 3-face or a 5-face by (O3). Sov∗ is incident to four6+-faces and thusv∗ gives 1

2 to f by
(R2c1). Consequently,f gets at least12 + 1

6 × 3 = 1 by (R4b).

Subcase 7.2 0 ≤ n3(f) ≤ 4.

It implies that there are at least two4+-vertices incident tof . It is easy to see that every
5+-vertex sends at least56 to f by (R3) and (R6). Moreover, every 4-vertex sends at least1

2
to f since it is not incident to any 3-face or 5-face. Hence,f receives at least12 × 2 = 1 from
its incident4+-vertices.

In what follows, for simpleness, letp5(f), p5∗(f), andp6∗(f) denote the number of
nontriangular 5-face,5∗-face, and6∗-face receiving a charge13 , 1, 1

5 from f , respectively.
Clearly,p5(f) ≤ m5(f), p5∗(f) ≤ m5∗(f) andp6∗(f) ≤ m6∗(f).

Case 8 d(f) = 7.

Thenω(f) = 1. Let m3(f) be the number of 3-faces adjacent tof . Clearly,m3(f) ≤ 1
by Claim 2.
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• We first assumef is a nontriangular 7-face. Noting thatd(fi) ≥ 5 sinceG contains no
4-faces. By (O2),m5∗(f) = 0. By (O4),p5(f) ≤ 3. We will divide the argument into four
subcases according to the value ofp5(f).

Subcase 8.1 p5(f) = 3.

Supposef1, f3, f5 are such three 5-faces that each of them takes a charge1
3 from f . By

(R4a), we see that all common edges(v1v2), (v3, v4) and(v5, v6) are good(3, 3)-edges. This
implies thatd(vi) = 3 with i ∈ {1, · · · , 6}. By Claim 11, one can easily defer that none of
f2, f4, f6, f7 can be a6∗-face. Thus,p6∗(f) ≤ m6∗(f) = 0. Consequently, we deduce that
ω∗(f) ≥ 1 − 1

3 × 3 = 0 by (R4a).

Subcase 8.2 p5(f) = 2.

We may suppose thatfi is a 5-face which takes13 fromf . It means thatd(vi) = d(vi+1) =
3 and(vi, vi+1) is a good common edge. Thus,fi−1 andfi+1 can not be any6∗-face by Claim
11. It follows immediately thatp6∗(f) ≤ 7 − (2 + 3) = 2 sincep5(f) = 2. Consequently,
we have thatω∗(f) ≥ 1 − 1

3 × 2 − 1
6 × 2 = 0 by (R4).

Subcase 8.3 p5(f) = 1.

Without loss of generality, letf1 be such a nontriangular 5-face that(v1, v2) be a good
common(3, 3)-edge. This implies that neitherf2 nor f7 can be a6∗-face. Thus,p6∗(f) ≤
7 − 3 = 4. Hence, we haveω∗(f) ≥ 1 − 1

3 − 1
6 × 4 = 0 by (R4a) and (R4b).

Subcase 8.4 p5(f) = 0.

If p6∗(f) = 0, then according to (R4), we obtain thatω∗(f) ≥ 1− 0 = 1. Otherwise, we
may letf1 is a6∗-face, which takes a charge16 from f . It is obvious thatf1 must be adjacent
to f by a good common(3, 3)-edge or(3, 4)-edge, i.e.,d(v1) = 3 andd(v2) ∈ {3, 4}. It is
easy to observe thatf7 can not be any6∗-face because of Claim 14. Thus,p6∗(f) ≤ 6 and
ω∗(f) ≥ 1 − 1

6 × 6 = 0 by (R4b).

• Now we may assumem3(f) = 1, which implies thatf is a7∗-face and it is adjacent to
exactly one 3-face. Without loss of generality, letf1 = [vv1v2] be such a 3-face thatf sends
1 tof1. By Claim 1, we notice thatv is not lied onb(f). Moreover, for eachj ∈ {2, · · · , 7},
we deduce thatfj is neither a 5-face nor a6∗-face by (O5). It implies thatf sends nothing to
eachfj with j ∈ {2, · · · , 7}. Applying (R1), we deduce thatω∗(f) ≥ 1 − 1 = 0.

Case 9 d(f) = 8.

Clearly,ω(f) = 2 andf can not be adjacent to any 3-face by Claim 3. So we only need
to consider the size ofp5(f) andp6∗(f) since they may take charge fromf . It is easy to
calculate thatp5(f) ≤ 6 by the fact that there is no sunflower inG. We have to consider the
following possibilities by the value ofp5(f).

Subcase 9.1 p5(f) = 6.

It implies that there are at least seven vertices inV (f) are 3-vertices. Thus, the remaining
two faces adjacent tof , which are not nontriangular 5-faces, can not be any6∗-faces by Claim
11. Soω∗(f) ≥ 2 − 6 × 1

3 = 0 by (R4).

Subcase 9.2 p5(f) = 5.

One can easily notice that there is at most one offi with i ∈ {1, · · · , 8} which is a6∗-
face because no 5-face can be adjacent to a6∗-face by Claim 11 again. Therefore,ω∗(f) ≥
2 − 5 × 1

3 − 1
6 = 1

6 > 0.

Subcase 9.3 0 ≤ p5(f) ≤ 4.

By (R4), we derive that
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ω∗(f) ≥ 2 −
1

3
p5(f) −

1

6
p6∗(f)

≥ 2 −
1

3
p5(f) −

1

6
(8 − p5(f))

=
2

3
−

1

6
p5(f)

≥
2

3
−

1

6
· 4

= 0.

Next, we will discuss several cases whered(f) ≥ 10. Let f be such a10+-face thatf ′ is
adjacent tof . We callf ′ is specialif it takes charge 1 fromf . Let |F1(f)| denote the number
of adjacent special faces. LetSi be a face adjacent tof by an edgeei for i = 1, 2. If e1 is not
incident toe2, then we callS1 andS2 aremutually disjoint. According to (R1) and (R5), we
see that only 3-face and5∗-face may take charge 1 fromf , respectively. It implies that each
special face is either a 3-face or a5∗-face. We first observe that:

Observation 1 If f is adjacent to two special faces which share at least one common vertex
v that is lied onb(f), thenτ(v → f) ≥ 1.

Proof. Without loss of generality, assumef1 and f2 are both such two special faces that
v2 ∈ V (f1) ∩ V (f2) andv2 ∈ V (f). Since each5∗-face taking charge 1 from a10+-face
must be adjacent tof by a good common(3+, 3+)-edge, we see thatf1 andf2 are either both
3-faces or both5∗-faces. By the absence of two adjacent 3-faces and two adjacent 5∗-faces,
we confirm thatd(v2) ≥ 4. If d(f1) = d(f2) = 3, then by (R2a), (R3a) and (R6), it is easy
to deduce thatτ(v2 → f) ≥ 1. Otherwise, we may supposef1 andf2 are both5∗-faces.
According to (R2c3.3), (R3c) and (R6), we derive thatτ(v2 → f) = 1. This complete the
proof of Observation 1. 2

If there exist two special faces which share at least one common vertexv that is lied
on b(f), i.e., letfi andfi+1 be such two special faces thatvi+1 ∈ V (fi) ∩ V (fi+1) and
vi+1 ∈ V (f), then we see thatτ(vi+1 → f) ≥ 1 by Observation 1 andf sends at most2× 1
to fi andfi+1. It means thatf takes charge 1 fromvi+1 and then sends it tofi+1. Thus,
we can consider thatfi+1 takes nothing fromf . Therefore, we may suppose that all of the

special faces adjacent tof are mutually disjoint, which implies|F1(f)| ≤
⌊

d(f)
2

⌋

.

Observation 2 If fi is a special face with a (good) common(3+, 3+)-edgevivi+1, thenf
sends nothing tofi−1 andfi+1.

Proof. If fi is a 3-face, thenfi−1 andfi+1 can not be any special faces by the assumption
that special faces adjacent tof are mutually disjoint. Sincevi−1vi andvi+1vi+2 are not good
common edges, we conclude thatf sends nothing tofi−1 andfi+1 by (R4) and (R5).

Now we may assume thatfi is a 5∗-face. By symmetry, we only need to considervi,
depending ond(vi).

• If d(vi) = 3, thenfi−1 can not be a 3-face sincevivi+1 is a good common edge.
Moreover,fi−1 can not be any nontriangular 5-face,5∗-face or6∗-face by Claim 5, Claim 6
and Claim 12. Soτ(f → fi−1) = 0.

• Next, we may supposed(vi) ≥ 4. Clearly,fi−1 can not be any special faces by the
assumption that special faces adjacent tof are mutually disjoint. Furthermore, iffi−1 is a
nontriangular 5-face, thenf sends nothing to it becausevi−1vi is not a(3, 3)-edge. Iffi−1 is
a 6∗-face, then we discuss as follows: whenvi is a5+-vertex, thenτ(f → fi−1) = 0 since
vi−1vi is neither a(3, 3)-edge nor a(3, 4)-edge; whenvi is a4-vertex, thenfi is the opposite
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face offi−1 by a 4-vertex, which contradicts (O3). Thus, we prove thatτ(f → fi−1) = 0
andτ(f → fi+1) = 0. This completes the proof of Observation 2. 2

By using Observation 2, one can easily deduce Observation 3:

Observation 3 p5(f) + p6∗(f) ≤ d(f) − 2|F1(f)| − 1.

Case 10 d(f) = 10.

Then ω(f) = 4 and |F1(f)| ≤ 5. We divide the argument into the following three
subcases in light of|F1(f)|.

Case 10.1 |F1(f)| = 5.

It implies that there exist five mutually disjoint special faces that are adjacent tof . Since
G does not contain lotus, there exists at least one4+-vertex onb(f). Without loss of gen-
erality, supposev1 is such a vertex thatf1, f3, f5, f7, f9 are all special faces. Ifv1 is a
5+-vertex, thenv1 sends at least 1 tof by (R3) and (R6). Now we assume thatv1 is a 4-
vertex. If d(v10) = 3, thenf10 is not a nontriangular 5-face sincef9 is a special face. So
τ(v1 → f) = 1 by (R2b2), (R2c2) and (R2c3.3). Otherwise,d(v10) ≥ 4 andf receives at
least23 × 2 = 4

3 from v1 andv10 totally by (R2b1), (R2b2), (R2c2), (R2c3.2) and (R2c3.3).
Thus,ω∗(f) ≥ 4 − 1 × 5 + 1 = 0.

Case 10.2 |F1(f)| = 4.

It implies thatf is adjacent to exactly four special faces by four (good) common edges
which are disjoint each other. DenoteSi be such a special face adjacent tof by a common
edgeei, wherei = 1, 2, 3, 4. Noting thatei can not be incident toej for each pair(i, j) ⊂
{1, · · · , 4}. Thus, it follows that there are exist two vertices lied onb(f) which are not
incident to any common edgeei with i ∈ {1, · · · , 4}. W.l.o.g., assumei < j. If j = i + 1,
thenvivj is an edge ofb(f). Notice thatfi can not be a special face, i.e.,fi is neither a
3-face nor a5∗-face. Furthermore, iffi is nontriangular 5-face or a6∗-face, then there exists
at least one vertex inV (f) whose degree is at least 4 by the absence of lotus. Letv∗ be such
4+-vertex. If d(v∗) ≥ 5, thenτ(v∗ → f) ≥ 4

5 by (R3) and (R6). Now we may suppose
d(v∗) = 4. According to (R2c2), (R2c3.2) and (R2c3.3), it is obvious that each 4-vertex
sends at least23 to its incident face which is adjacent to a special face. Thus, we have that
ω∗(f) ≥ 4 − 1 × 4 − 1

3 + 2
3 = 1

3 > 0.

Case 10.3 0 ≤ |F1(f)| ≤ 3.

By Observation 3,p5(f) + p6∗(f) ≤ 9 − 2|F1(f)|. Therefore,ω∗(f) ≥ 4 − |F1(f)| −
1
3 (9 − 2|F1(f)|) = 1 − 1

3 |F1(f)| ≥ 1 − 1
3 × 3 = 0.

Case 11 d(f) = 11.

Clearly,ω(f) = 5 and|F1(f)| ≤ 5. By Observation 3,p5(f) + p6∗(f) ≤ 10− 2|F1(f)|.
Thenω∗(f) ≥ 5 − |F1(f)| − 1

3 (10 − 2|F1(f)|) = 5
3 − 1

3 |F1(f)| ≥ 5
3 − 1

3 × 5 = 0.

Case 12 d(f) ≥ 12.

By Observation 3,p5(f)+p6∗(f) ≤ d(f)−2|F1(f)|−1. Moreover,|F1(f)| ≤ ⌊ 1
2d(f)⌋.

Thus, we have that
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ω∗(f) ≥ (d(f) − 6) − |F1(f)| −
1

3
(d(f) − 2|F1(f)| − 1)

=
2

3
d(f) −

17

3
−

1

3
|F1(f)|

≥
2

3
d(f) −

17

3
−

1

3
·
d(f)

2

=
1

2
d(f) −

17

3

≥
1

2
· 12 −

17

3

=
1

3
.

Up to now, we proved Theorem 1 for 2-connected graphs.
Suppose now thatG is not a 2-connected planar graph and we will construct a 2-connected

plane graphG∗ with δ(G∗) ≥ 3 having neither 4-cycles nor 9-cycles and satisfying structural
properties (C1) to (C5). This obviously contradicts the result just established before.

We remark that the following proof is stimulated by the technique used in [3].
Let B be an end block ofG with the unique cut-vertexx. Let f be the outside face of

G. Notice thatdB(x) ≥ 2 anddB(v) ≥ 3 for eachv ∈ V (B)\{x}. Choosing another
vertexy of B such thaty 6= x andy lies on the boundary ofB. Obviously,x andy are both
belonging tob(f). Then we take ten copies ofB, i.e.,Bk with k = 1, · · · , 10. In each copy
Bk, the vertices corresponding tox andy are denoted byxk andyk, respectively. Then one
can embedBk, k = 1, · · · , 10, into f in the following way: first, letB = B1. Next, for each
k = 2, · · · , 10, consecutively embedBk into f by identifyingxk with yk−1. Finally, identify
y10 with a vertexu ∈ V (f)\V (B). Then the first resulting graph, denoted byG1.

Obviously, in the processing of constructingG1, we confirm that there are no new adjacent
cycles established. Furthermore, no 4-cycles and 9-cyclesare formed. Thus, it is easy to
deduce thatG1 satisfies the following structural properties.

(A1) Fewer end blocks thanG;

(A2) The minimum degree is at least 3;

(A3) Neither 4-cycles nor 9-cycles;

(A4) A 5-cycle or a 6-cycle is adjacent to at most one 3-cycle;

(A5) A 5∗-cycle is neither adjacent to a5∗-cycle normally, nor adjacent to ani-cycle with
i ∈ {7, 8};

(A6) A 6∗-cycle is not adjacent to a 6-cycle;

(A7) A nontriangular 7-cycle is not adjacent to two 5-cycleswhich are normally adjacent;

(A8) A 7∗-cycle is neither adjacent to a 5-cycle nor a6∗-cycle.

Furthermore, we confirm thatG1 also satisfies the following two structural properties:

(P1) G1 has neither orchid, nor sunflower, nor lotus;

(P2) A6∗-cycle is not incident to ani-cycleC with i ∈ {3, 5}, whereC is opposite to such
6∗-cycle by a 4-vertex.

16



(P1) For somek ∈ {2, · · · , 10}, notice that we just identify some vertexxk with yk−1.
It implies that any new cycle, which is not completely belongto someBk, must be an11+-
cycles, i.e.,C∗ = x1 · · ·x10u · · ·x1. Thus, any orchid, sunflower, or lotus can not be estab-
lished.

(P2) Assume to the contrary thatG1 contains a6∗-cycle, denoted byC∗
6 , which is incident

to a 3-cycleC3 or a 5-cycleC5 by a 4-vertexv∗. Clearly,v∗ must be equal tou or some
vertexxk with k ∈ {2, · · · , 10}. However,dG1

(u) = dB10
(u) + dG\B1

(u) ≥ 2 + 3 = 5 or
dG1

(xk) = dBk−1
(xk) + dBk

(xk) ≥ 3 + 2 = 5 for all k ∈ {2, · · · , 10}. We always get a
contradiction todG1

(v∗) = 4.
Now, if G1 is 2-connected, then we well done. Otherwise, we may repeat the process

described above and finally obtain a desiredG∗.
Thus, we complete the proof of Theorem 1. 2

References

[1] O. V. Borodin. Structural properties of plane graphs without adjacent triangles and an
application to 3-colorings.J. Graph Theory, 21:183–186, 1996.

[2] O. V. Borodin, A. N. Glebov, A. Raspaud, and M. R. Salavatipour. Planar graphs without
cycles of length from 4 to 7 are 3-colorable.J. Comb. Theory, Ser. B, 93:303–311, 2005.

[3] M. Chen, H. Lu, and Y. Wang. A note on 3-choosability of planar graphs. Inform.
Process. Lett., 105(5):206–211, 2008.

[4] M. Chen, L. Shen, and Y. Wang. Planar graphs without cycles of length 4, 7, 8 or 9 are
3-choosable. accepted.

[5] P. Erd̋os, A. L. Rubin, and H. Taylor. Choosability in graphsCongr. Numer., 26:125–157,
1979.

[6] T. R. Jensen and B. Toft. Graph coloring problems. Wiley-Interscience, New York, 1995.

[7] L. Shen and Y. Wang. A sufficient condition for a planar graph to be 3-choosable.Inform.
Process. Lett., 104:146–151, 2007.

[8] C. Thomassen. Every planar graph is 5-choosableJ. Combin. Theory Ser. B, 62:180–181,
1994.

[9] M. Voigt. List colourings of planar graphsDiscrete Math., 120:215–219, 1993.

[10] M. Voigt. A non-3-choosable planar graph without cycles of length 4 and 5.Discrete
Math., 307(7-8):1013–1015, 2007.

[11] Y. Wang et al.. Planar graphs without cycles of length 4, 5, 8 or 9 are 3-choosable.
Submitted, 2007.

[12] L. Zhang and B. Wu. Three-coloring planar graphs without certain small cycles.Graph
Theory Notes of New York, 46:27–30, 2004.

[13] L. Zhang and B. Wu. A note on 3-choosability of planar graphs without certain cycles.
Discrete Math., 297:206–209, 2005.

17


