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Abstract

In this article, we consider planar graphs in which eachexeid not incident to some
cycles of given lengths, but all vertices can have differestrictions. This generalizes the
approach based on forbidden cycles which corresponds tatgewhere all vertices have
the same restrictions on the incident cycles. We prove thktraar grapitz is 3-choosable
if it is satisfied one of the following conditions:

(1) each vertex: is neither incident to cycles of lengtls9, i, with i, € {5,7,8},
nor incident to 6-cycles adjacent to a 3-cycle.

(2) each vertex: is not incident to cycles of lengths 7, 9, i, with i, € {5, 6, 8}.

This work implies five results already published [13, 3, 7,4]2

1 Introduction

Only simple graphs are considered in this paper unlesswibestated. Aplane graphis a
particular drawing of a planar graph in the euclidean pldfe.a plane graply/, we denote
its vertex set, edge set, face set and minimum degre¥ (oy), £(G), F(G) ando(G),
respectively. Aproper vertex coloringdf G is an assignment of integers (or labels) to the
vertices ofG such thate(u) # ¢(v) if the verticesu andv are adjacent irG. A graphG
is L-list colorableif for a given list assignment = {L(v) : v € V(G)} there is a proper
coloring c of the vertices such thatv € V(G),c(v) € L(v). If G is L-list colorable for
every list assignment witfl.(v)| > k for all v € V(G), thenG is said to bes-choosable
Thomassen [8] proved that every planar graph is 5-choosahlereas Voigt [9] proved
that there exist planar graphs which are not 4-choosablegh®unther hand, in 1976, Stein-
berg conjectured that every planar graph without cyclesmdths 4 and 5 is 3-colorable (see
Problem 2.9 [6]). This conjecture remains widely open. 180, %Erds suggested the follow-
ing relaxation of Steinberg’s conjecture: What is the sasdlintegeii such that every graph
without j-cycles for4 < j < i is 3-colorable. The best known upper bound s 7 [2]. Itis
natural to ask the same question for choosability:

Problem 1 What is the smallest integer such that every graph without-cycles for
4 < j < iis 3-choosable?

\oigt [10] proved that it is not possible to extend Steineopnjecture to list coloring:
she gave a planar graph without 4-cycles and 5-cycles whichti3-choosable ; hen¢e> 6.
The best known upper boundis< 9: this bound is obtained by using a structural lemma of
Borodin [1].
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Figure 1: (A) Orchid, (B) sunflower, and (C) lotus.

Lemmal [1]Let G be a planar graph with minimum degree at least 3= Ifloes not contain
cycles of lengths 4 to 9, ther contains a 10-face incident to ten 3-vertices and adjacent t
five 3-faces.

It follows by Erdds, Rubin and Taylor [5] that every planar graph without egaf lengths
410 9 is 3-choosable. Zhang and Wu [13] improved Borodirssilteby proving that:

Lemma?2 [13] Let G be a planar graph with minimum degree at least 3.Glfdoes not
contain cycles of lengths 4, 5, 6, and 9, th@rcontains a 10-face incident to ten 3-vertices
and adjacent to five 3-faces.

It implies that every planar graph without cycles of lengths, 6, 9 is 3-choosable.
Chen, Lu, and Wang [3] proved that every planar graph witlegates of lengths 4, 6, 7, 9 is
3-choosable. Their result is based on the following lemma:

Lemma 3 [3] Let G be a planar graph with minimum degree at least 37 I€ontains neither
cycles of lengths 4, 7, 9, nor 6-cycle with a chord, tiiénontains a 10-face incident to ten
3-vertices or an 8-face incident to eight 3-vertices.

Shen and Wang [7] proved that every planar graph withoutesyof lengths 4, 6, 8, 9 is
3-choosable by showing that:

Lemma4 [7]Let G be a planar graph with minimum degree at least 3= Ifloes not contain
cycles of lengths 4, 6, 8, and 9, théncontains a 10-face incident to ten 3-vertices.

Moreover every planar graph without cycles of lengths 4,,3 {#esp. 4, 5, 8, 9, and 4,
7,8,9)is 3-choosable [12] (resp. [11], [4]).

In this article, we consider planar graphs in which eachexeig not incident to some
cycles of given lengths, but all vertices can have differestrictions. This generalizes the
approach based on forbidden cycles which corresponds tmeewhere all vertices have the
same restrictions on the incident cycles. Let us introdocessnotations which will allow to
present our main result.



Some notation: The degree of a face is the length of its boundary walk. We wiilte
d(x) for de(z) the degree of the vertex in G when no confusion can arise. #vertex
kT-vertex or k~-vertexis a vertex of degreg, at leastk, or at mostk. Similarly, we can
definek-face, k™-face,k~-face, etc. We say that two cycles (or faces) adgcentif they
share at least one common edge. Supposefttaatd /' are two adjacent faces by sharing
a common edge. We say thatf and f’ arenormally adjacentf |V (f) NV (f')| = 2. A
triangle is synonymous with a 3-face. Fgre F(G), we useb(f) to denote the boundary
walk of f and writef = [ujus - - - up] if uy,us, - - -, u, are the vertices df( ) appearing in
a boundary walk off .

A cycle C or a facef is callednontriangularif it is not adjacent to any 3-cycles. We
say ani-face f is ani*-faceif f is adjacent to exactly one 3-face normally. Moreover, we
call suchi*-face isheavy Similarly, we say ari-cycleC' is ani*-cycleif C' is adjacent to
exactly one 3-cycle normally. For simpleness, we call siietycle isheavy Two i*-cycles
(ori*-faces) arenormally adjacentf these twoi-cycles (ori-faces) are normally adjacent.

An orchidis a6*-face incident to six 3-vertices and adjacent to a 3-faceurflowelis an
8-face incident to eight 3-vertices and adjacent to at Isagtn 5-faces. Aotusis a 10-face
incident to ten 3-vertices and adjacent to five clusters revaecluster is either a 3-face, or a
5-face, or &*-face (see Figure 1).

The following theorem is our main result which implies Lengiia4.

Theorem 1 LetG be a planar graph with minimum degree at least 3 @hdoes not contain
4-cycles and 9-cycles. ¢ further satisfies the following structural properties:

(C1) a5-cycle or 6-cycle is adjacent to at most one 3-cycle;

(C2) ab5*-cycle is neither adjacent to &*-cycle normally, nor adjacent to aircycle with
ie{7,8};

(C3) a6*-cycle is neither adjacent to a 6-cycle, nor incident toiacycleC with i € {3,5},
whereC' is opposite to such*-cycle by a 4-vertex;

(C4) anontriangular 7-cycle is not adjacent to two 5-cycldsch are normally adjacent;

(C5) a7*-cycle is neither adjacent to a 5-cycle no6&-cycle.
ThenG contains an orchid or a sunflower or a lotus.

We obtain the following Corollary 1 and Corollary 2 by Theoré.

Corollary 1 LetG be a planar graph in which each vertexis neither incident to cycles of
lengths4, 9, i, with i,, € {5,7,8}, nor incident to 6-cycles adjacent to a 3-cycle. Tliers
3-choosable.

Corollary 2 Let G be a planar graph in which every vertexis not incident to cycles of
lengthsd, 7,9, 4, with i, € {5,6,8}. ThenG is 3-choosable.

Assuming Theorem 1, we can easily prove Corollary 1 and GoroR.

Proofsof Corollary 1and Corollary 2:  Suppose that;, Gs is a counterexample to Corol-
lary 1, Corollary 2 with the smallest number of vertices exgiwely. Thus, is connected
(¢ = 1,2). Obviously, for each € {1,2}, we observe thai(G;) > 3. Otherwise, letu;
be a vertex of minimum degree i@;. By the minimality of G;, G; — u; is 3-choosable.
Obviously, we can extend ardy-coloring such thatz € V(G) : |L(z)| > 30of G; —u; t0 G;
and ensuré; is 3-choosable. Next, in each case, we will show that €cbontains either
an orchid, or a sunflower, or a lotus. Dend{a, Nz, N¢ be the set of black vertices of (A),
(B) and (C) in Figure 1, respectively. For eatke {1,2,3}, one can easily observe that we
can extend any.-coloring such that for ali € V(G) : |L(z)| > 3 of G; — N; to N; and
make suréy; is 3-choosable. Thusg;; andG, are both 3-choosable. A contradiction.



SinceG; does not contain 4-cycles and 9-cycles, we only need towiri¥; satisfies all
the structural properties (C1) to (C5), where {1,2}.

(1) For G4, since each vertex is not incident to 6-cycles adjacent to a 3-cycle, each
5-cycle or 6-cycle only can be nontriangular cycles. Thiplies that there is neithér-face
nor 6*-face inG;. Thus, (C1), (C2) and (C3) are satisfied. Then we only neednsider
(C4) and (C5). If (C4) is not satisfied, then there appearstxe which is incident to an
ip-cycle withi, € {5,7,8}, which contradicts the assumption@f. If (C5) is not satisfied,
then a vertexy is appeared such thatis incident to ani,-cycle withi, € {5,7,8}. A
contradiction.

(2) ForGs, because it does not contain 7-cycles, we confirm that tisereG*-cycle and
7*-cycle inG2. Thus, we only need to check properties (C1) and (C2). Itsy éaestablish
a 7-cycle or a 4-cycle if a 5-cycle or 6-cycle is adjacent teeast two 3-cycles. Thus, (C1)
is satisfied. Let us check (C2). If there exist tifocycles adjacent normally, then a 7-cycle
or a 9-cycle is produced, contradicting the absence of Tesyand 9-cycles. If &*-cycle is
adjacent to a®-cycle, then there is a vertex incident to a 5-cycle, a 6&weld an 8-cycle,
which is impossible. Therefore, (C2) is satisfied.

This completes the proofs of Corollary 1 and Corollary 2. O

By Corollary 1, it is easy to deduce Corollary 3:

Corollary 3 Every planar graplG in which every vertex is not incident to cycles of lengths
4,6,9,1, withi, € {5,7,8}is 3-choosable.

Thus, by Corollary 2 and Corollary 3, we deduce Corollary 4atcovers five results
mentioned before [13, 3, 7, 12, 4].

Corollary 4 Every planar graphG without {4, 4, j,9}-cycles with5 < i < j < 8 and
(1,7) # (5,8) is 3-choosable.

Section 2 is dedicated to the proof of Theorem 1.

2 Proof of Theorem 1

Let G be a counterexample to Theorem 1, i.e., an embedded plapk Graith §(G) > 3,
no cycles of lengths 4 and 9, satisfying the structural prigse(C1) to (C5), and containing
no orchid, no sunflower, and no lotus (i.e., none of the corditions depicted by Figure 1).
First, we supposé- is 2-connected. Thus, the boundary of each faAae G forms a
cycle. Besides, the following assertions (O1) to (O7) haturally by the assumption @f.

(O1) A 5-face or a 6-face is adjacent to at most one 3-face;

(02) A 5*-face is neither adjacent to &-face normally, nor adjacent to arface with
ie{7,8};

(0O3) A 6*-face is neither adjacent to a 6-face, nor incident ta-éace f with i € {3,5},
wheref is opposite to suchi*-face by a 4-vertex;

(O4) Anontriangular 7-face is not adjacent to two 5-facegtviare normally adjacent (there
is no 3-vertex incident to a nontriangular 7-face and to twades);

(O5) A T7*-face is neither adjacent to a 5-face ndr*aface;

(OB6) G does not contain 4-faces and 9-faces;
(O7) Each vertex is incident to at most@J 3-faces.

Moreover, the following additional properties hold:

4



Claim 1 For some fixed € {5,6,7,8}, if an i-face is adjacent to a 3-face, then they are
normally adjacent.

Proof. Suppose the claim is false. Lét = [vivs - - - v;] be ani-face andfs = [v1v9u] be a
3-face such thaf; is adjacent tofs and|V (f1) N V(f2)| > 3. It means thau is equal to
somev; with j € {3,4,---,i}. According to the value of, one can easily observe thatif

is a vertexv; with 3 < j < 4, the contains either a 2-vertex or a 4-cycle, a contradiction.
This completes the proof of Claim 1. ]

Since G does not contain 9-cycles, we obtain the following Claimsn? & easily by
Claim 1:

Claim 2 Each 7-face is adjacent to at most one 3-face.
Claim 3 No 8-face is adjacent to a 3-face.
Claim 4 If two 5-faces are adjacent to each other, then they can oalydrmally adjacent.

Proof. Suppose that there are two adjacent 5-faies [v1vs - - - v5] and fo = [v3v2uvW]
with v1v9 as a common edge. [V (f1) NV (f2)| = 2, then Claim 4 follows. Otherwise, by
symmetry, we only need to consider the following casea: # v5, thend(v;) = 2 which is
impossible. Ifw = vy, thenG contains a 4-cycle; vov3vyv1, @ contradiction. This implies
u ¢ b(f1)andw ¢ b(f1). If v =vs Orv = vy, then a 4-cyclewsvyvsu or wvvsvaw can be
easily established, a contradiction, that completes tbefff Claim 4. O

Claim 5 A nontriangular 5-face can not be adjacent té'aface inG.

Proof. Suppose on the contrary that a nontriangular 5-face [vjvs - - - v5] is adjacent to a
5*-face fo = [v1v2usugus] by a common edge, v,. By definition, f; is not adjacent to any
3-face. By Claim 4, each; can not be equal to some with i, j € {3,4,5}. By symmetry,
we have to handle the following two properties:

e Assume that, usu is a 3-face. By Claim 1y # vo, us, us. MoOreoveru # vs by choice
of f1. If u = vy Oru = v3, thenG contains a 4-cycle, which is impossible. Thusjoes not
belong tob(f1) U b(f2) andG contains a 9-cyclev, vsvsvsvausususu, a contradiction.

e Assume thatisuyu is a 3-face. Notice that # vy, vo, ug by Claim 1. Ifu = v3 or vy
orvs, thenG contains a 4-cycle which is impossible. Thusjoes not belong to( f1) Ub( f2)
andG contains a 9-cyclewusv, vsvivsvausugu, a contradiction, that completes the proof of
Claim 5. O

By Claim 4 and assertion (02), we have:
Claim 6 There is no adjacent two*-faces inG.
Claim 7 No 3-vertex is incident to three 5-faces.

Proof. Assume to the contrary thét contains a 3-vertex adjacent to three vertices, vy, v3
and incident to three 5-facgs = [uvix12202], fo = [uvayryavs], and f3 = [uvszi zov1].
By Claim 4, f; and f; are normally adjacent for each pdit,j} < {1,2,3}. It implies
that all vertices in(V (f1) U V(f2) UV (f3)) \ {u} are mutually distinct. However, a 9-
cycle vz xovoy1y2v321 2201 IS €stablished, contradicting the assumptioncanThus, we
complete the proof of Claim 7. ]

Claim 8 Under isomorphism, a 6-face can be adjacent to a 5-face in @igue way as
depicted by Figure 2.



Figure 2: A 6-facef; is adjacent to a 5-facé.

Proof. Assuming that a 6-facé = [vyvs - - - v5] is adjacent to a 5-fack = [v; vauvw] with
v1vy @asacommon edge. {ii, v, wN{vs, v4, v5, v6 } = (), then a 9-cyclesvzvyvs Vv WVUVS
is formed, which is a contradiction. Thus, we confirm thétf,)NV (f2)| > 3. By symmetry
of f1, it suffices to consider the following cases.

o If w = v5 andu = vy, then a 4-cycle; vsvavov; IS established, which is impossible.

e Assuming thatv # vs andu # v4. Notice thatw # vg. Or else, a 2-vertex; is
produced. Ifw = vy, then a 4-cyclen vgvsvavy is made. Ifw = vz, then a 4-cyclesuvvs
is constructed. A contradiction is always produced. By swimn we see thatv andu
do not belong td(f1). Moreover,y # vz andv # vy. Otherwise, a 4-cyclewv, vavsw Or
v4v3Vuvy IS established, contradicting the assumptiooThus, by symmetry ¢ V(f1),
which means thaf’(f1) NV (f2)| = 2, which is impossible.

e Without loss of generality, we may suppose that= v5 andu # vy4. Clearly,u # vs
sinced(vz) > 3. Sou ¢ V(f1). One can easily observe that# vs andv # v4 by the
absence of 4-cycles. Thus, we ensure thdtb( f;). Itimplies thatf; is adjacent tgfs in an
unique way as Figure 2 shown. This completes the proof ohC&i ]

Claim 9 No 3-vertex is incident to two 5-faces and one 6-face.

Proof. Suppose the claim is not true. We assume that there existgea&u adjacent to
three vertices, v2, v3 and incident to two 5-facef, = [uviz12202], fo = [uv2y1y2vs),
and one 6-facgs = [uvzz12223v1].

Figure 3: A 3-vertex; incident to two 5-faceg; and f, and to one 6-facés.

By Claim 8,z = y» = 1. Hence a 4-cyclesvyuvszo exists which is a contradiction.
Thus, we complete the proof of Claim 9. =]

Claim 10 No 3-vertex is incident to one 5-face and two 6-faces.

Proof. Suppose on the contrary that there exists a 3-verteacentto three vertices, vo, vs
and incident to two 6-face$; = [uvsy1y2ysv1], fo = [uvaz12223v3], and one 5-face



Figure 4: A 3-vertex: incident to one 5-facgs; and two 6-faced; and fs.

f3 = [uvizix2v2]. By Claim 8, we see thaf; and f3 can only be adjacent to each other
in an unique way as depicted by Figure 2. One can easily obseatr; = y Or vo = y;.
Next, we will make use of contradictions to show tlfatcan not exist irG. We have to deal
with the following two cases.

Casel =1 = yo.

For simpleness, denotg = x; = y». By Claim 8, we see thaty = z-. It is easy to
see that a 5-face* v uvaxox™ adjacent to two 3-cycles ysv, 2™ andvy zpxv5 IS produced.
This contradicts (C1).

Case2 vy = Yi-

Clearly, uvsy, is a 3-cycle which is not a 3-face. For simplenessytet= v, = ;.
Obviously,{z1, 22, 23} N {y2, y3, 21,22} = 0 sinceq is a plane graph. However, a 9-cycle
y*z12923v3uv 12122y ™ IS €asily established, which is impossible. This complétesproof
of Claim 10. m]

Claim 11 No6*-face is adjacent to a 5-face iA.

Proof. Suppose on the contrary that there exists a 6-face [vivs - - - vg] adjacent to a 5-
face fo = [v1vuvw| by a common edge; v,. By Claim 8, f; and f» can only be adjacent
in an unique way depicted by Figure 2, which means that vs. Note thatf; is adjacent to

a 3-cyclevyvsvgvy Which is not a 3-face. Thug; can not be adjacent to any other 3-face by
(C1), which means that; can not be &*-face. This completes the proof of Claim 11.0

It is easy to derive Claim 12 by Claim 11.
Claim 12 No 6*-face is adjacent to &*-face inG.

By (C1), similarly as the proof of Claim 11 we have:
Claim 13 No 5*-face is adjacent to a 6-face iA.

Furthermore, assertion (O3) implies the following claim:
Claim 14 There is no adjacerit*-faces inG.

Claim 15 Let G be a connected plane graph withvertices,m edges and- faces. Then
using Euler’'s formula we have:

> o(2dw) - 6)+ D (d(f)—6)=—12 (1)

veV(Q) fEF(G)



Proof. Euler’s formulan — m + r = 2 yields (4m — 6n) + (2m — 6r) = —12. This identity
and the relationy .y d(v) = >~ p d(f) = 2m imply (1). O

We now use a discharging procedure. We first assign to eatéxvwernn initial charge
w(v) such that for alv € V(G),w(v) = 2d(v) — 6 and to each facg an initial charge
such that for allf € F(G),w(f) = d(f) — 6. In the following, we define discharging rules
and redistribute charges accordingly. Once the dischaigifinished, a new charge function
w* is produced. However, the total sum of charges is kept fixeevthe discharging is in
process. Nevertheless, we can show thigt:) > 0 for all x € V(G) U F(G). Using (1),
this leads to the following obvious contradiction:

—-12= Z w) = Z w'(v) >0

veV(G)UF(Q) veV(G)UF(Q)
and hence demonstrates that no such counterexample can exis

Before stating the discharging rules, we first give some tiwota which will be used
frequently in the following argument. Let y € V(G) U F(G), we user(z — y) to denote
the charge transferred fromto y. For a vertexv € V(G) and for an integef > 5, let
ms(v), m;(v), andm;- (v) denote the number of 3-faces, nontriangutéeices, and heavy
i-faces incident ta, respectively. Furthermore, we dendtg(v) = m;(v) + m;~(v) and
call a facef anon-3-facef d(f) # 3.

For simpleness, we write an edge is a (b1, b2)-edgeif d(u) = by andd(v) = bs. Let
f1 and f> be two faces adjacent to each other by a common edg# « andwv are both not
incident to any 3-face, then we calb agood common edgeNe further say suchwv is a
good commoitiby , b2 )-edgeif wv is a (b1, b2)-edge.

The discharging rules are defined as follows:
(R1) Eachs*-face sends 1 to its adjacent 3-face.
(R2) Letwv be a 4-vertex.

(R2a) Ifms(v) = 2, then for each non-3-fack (v — f) = 1.
(R2b) If ms(v) = 1, then letf; denote the incident 3-face arfd be the opposite face
of fl-
(R2b1) If f"is a nontriangular 5-face, thensends% to each incident face different
of fi.
(R2b2) Otherwisey sends 1 to each incident face which is adjacenfto
(R2c) Ifms(v) = 0, let f1, f2, f3, andf, denote the faces @ incident tov in a cyclic
order such that the degree fifis the smallest one among all faces incident to
then we do like this:
(R2c1) if M5(v) = 0, thenv sends; to each incident face.

(R2c2) if Ms5(v) = 1, thenw sends§ to each offy, f2, and f, when f; is a nontri-
angular 5-face; oo sendsl to each off, and f; whenf; is a5*-face.

(R2c3) if M5(v) = 2, then
(R2c3.1) v sends: to each nontriangular 5-face agdo each other incident face
whenm;(v) = 2.
(R2c3.2)v sends% to each incident face of except the uniqué*-face when
ms(v) = 1 andmss(v) = 1.
(R2c3.3) v sends 1 to each incident face which is nét'dace whenns- (v) = 2.
(R2c4) if M5(v) = 3, thenv gives to each incident nontriangular 5-face.
(R2¢5) if M5(v) = 4, thenv gives% to each incident nontriangular 5-face.



(R3) Letw be a 5-vertex and be a non-3-face incident ta Then
(R3a) (v — f) = 2 if ma(v) = 2.
(R3b) 7(v — f) =1if ms(v) = 1.
(R3c) if mg(v) = 0, v sends 1 to each incident face different fréfaces when

ms-(v) > 1; or sendsg to each inciden6*-face and send 7_%,%*(5};) to each
other incident face whems- (v) = 0.

(R4) Letf be ar™-face. If f' is adjacent tgf by a good common edge then

(R4a) 7(f — )
(Rab) 7(f — f') =

(R5) Eachl0*-face sends 1 to each adjacéniface by a good commofs™, 37)-edge.

if f/is a nontriangular 5-face ands a (3, 3)-edge.
if f"isa6*-face anct is a(3,3)-edge or &3, 4)-edge.

1
3
1
6

(R6) Eachot-vertex sends 1 to each incident face.

Let us check thav*(z) > O forall z € V(G) U F(Q).
Sinced(G) > 3, d(v) > 3 for each vertex € V(G). We have to handle the following
cases, depending on the sizel6f).

Casel d(v) = 3.
Itis easy to see that*(v) = w(v) =2 x 3 — 6 = 0 by (R1) to (R6).
Case2 d(v) = 4.

Clearly,w(v) = 2 andw is incident to at most two 3-faces by (O7).1f;(v) = 2, then
we deduce that*(v) = 2 — 2 x 1 = 0 by (R2a). Ifmg(v) = 1 (v is incident to exactly
one 3-face), then depending on the opposite face of sucbe3«@ives either% x 3 =2,0r
1 x 2 = 2 by (R2b1) or (R2b2). Hencey*(v) = 0. Finally, we only need to consider the
case ofms(v) = 0. We divide the discussion into five subcases in the light efuhlue of
M5(’U).

Subcase 2.1 Mj5(v) = 0.

This implies that the degree of each face incident tig at least 6 by the absence of
4-faces. According to (R2¢1y*(v) > 2 — 3 x 4 = 0.

Subcase 2.2 M;(v) = 1.

Itis easy to observe thatsends eithef x 3 = 2if ms(v) = 1,0r1x2 = 2if ms. (v) = 1
by (R2c2). Thusy gives totally at most 2 to incident faces. Henegé(v) > 2 — 2 = 0.

Subcase 2.3 M;(v) = 2.

If ms(v) = 2, thenw*(v) > 2—2 x2— 1 x2 = 0by (R2c3.1). Ifms(v) = ms-(v) = 1,
then such nontriangular 5-face aAtiface can not be adjacent to each other by Claim 5.
Thus, applying (R2¢3.2)y*(v) > 2 — 2 x 3 = 0. Otherwise, suppose:s-(v) = 2.
Notice thatv is incident to two5*-faces which are opposite to each other by Claim 6. Thus,
w*(v) >2—1x2=0Dby (R2c3.3).

Subcase 2.4 M;s(v) = 3.

We first notice thains- (v) # 3 since there are no adjacefitfaces inG by Claim 6. If
1 < ms-(v) < 2, then there exists at least one nontriangular 5-face adjagc®ne5*-face,
contradicting the Claim 5. Thusys-(v) = 0, and soms(v) = 3. According to (R2c4), we
have thato*(v) > 2 — 2 x 3 =0.
Subcase 2.5 M;(v) = 4.



5T-face  Ht-face

1 1 1 1
1 1 5*-face
1 or 6" -face
5T-face
(R1) (R2a) (R2b2)

6T-face O 6T-face 6T-face  5H*-face

3 3
» Gt-face O 6t-face  10T-faceO 6T-face  6T-face O Gt-face
(R2cl) (R2¢2) (R2¢2) (R2¢3.1)

107-face 5*face o 10™-face

S*face 10"-face O 5H*-face

(R2c3.2) (R2¢3.3)

Figure 5: Some of discharging rules (R1) to (R3).
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One can observe thats- (v) = 0 by Claim 5 and Claim 6. It implies thatis incident to
exactly four nontriangular 5-faces. Consequently, we fhag&v* (v) > 2 — % x 4 =0 by
(R2c5).

Case3 d(v) = 5.

Obviously,w(v) = 4 andms(v) < 2 by (O7). Itis easy to observe thatsends either
3 x 3 = 4 by (R3a) ifmz(v) = 2, or1 x 4 = 4 by (R3b) if ms(v) = 1. Therefore,
w*(v) >4—4=0Iif mz(v) > 0. Now we may assume thats(v) = 0. This implies that
each face incident tois a5"-face combining the fact th&t does not contain any 4-faces. By
Claim 6, we have thatis- (v) < 2. Moreover, each face adjacent t6"aface must be a0 -
face by Claim 5, Claim 6, Claim 12, Claim 13, (O2) and the absasf 9-faces. So by (R3c),

(1) 2 4-1x4 = 0if m- (v) > 107w (v) > d—2mge (v) ~ 575 O (5 g (1) = 0
if 5= (U) =0.

Case4 d(v) > 6.
According to (R6), we have that*(v) > (2d(v) — 6) — 1 x d(v) = d(v) — 6 > 0.

Let f € F'(G). Thenb(f)is acycle sinc& is 2-connected. We writg = [v1vs - - - vg(p))
and suppose thaf; is the face ofG adjacent tof with v;v;411 € b(f) N b(f;) for i =
1,2,---,d(f), where (and in the following discussion) all indices areetaknodulod( f)
plus 1. We observe thak f) # 4 andd(f) # 9 by (0O6). Fori > 3, letn;(f) denote the
number ofi-vertices incident tof. Let ms(f), ms-(f), andmg-(f) denote the number of
nontriangular 5-faces, heavy 5-faces, and hédviaces adjacent tg.

Case5 d(f) = 3.

Let f be a 3-face and then(f) = —3. Sinced(G) > 3, f is adjacent to three faces and
each adjacent face is neither a 3-face nor a 4-face by theabdsé 4-cycles ir. It implies
that f gets3 x 1 from its adjacent faces by (R1). Thus;(f) > -3+ 1x3=0.

Case6 d(f) = 5.

Let f = [v1---v5] and thenw(f) = —1. Clearly, f is adjacent to at most one 3-face by
(01).

e We first assume thaf is a nontriangular 5-face, which means that there is no 8-fac
adjacent tof. Thus,f sends nothing to all its adjacent faces. Moreover, gadan not be a
5*-face by Claim 5. We only have to deal with the the followinge possibilities, depending
on the value ofi3(f).

Subcase 6.1 ns(f) = 5.

It means thav; is a 3-vertex for ali = 1,...,5. If there exists a 6-face adjacent fo
then by Claim 8 we see that they must be adjacent to each otherunique way as depicted
by Figure 2. Itis easy to see that there is drievertex appeared o ), which contradicts
n3(f) = 5. Thus, each face adjacenttds either a nontriangular 5-face of7a-face by the
absence of 4-faces. Furthermore, we notice yhet adjacent to at most two nontriangular
5-faces which are not adjacent by Claim 7. St adjacent to at least thrge -faces such
that eactv*-face is adjacent tg by a good commof3, 3)-edge. Therefore, applying (R4a),
we obtain thato* (f) > —1+3 x § = 0.

Subcase 6.2 ns(f) = 4.

Let v, be such al*-vertex andv; be a 3-vertex for alj = 2,3,4,5. Clearly,v; gives
at Ieast% to f by (R2) and (R3). Moreoverf; and f5 can not be any 6-face by Claim 8.
If d(f1) = 5 andd(fs) = 5, thend(f;) ¢ {5,6} with j € {2,4} according to Claim 7
and Claim 9. Thus, foj € {2,4}, f; is a7t-face by the absence of 4-faces and eAcls
adjacent tof by a good commoni3, 3)-edge. By (R4a), we see thaffo — f) = % and
7(fs — f) = . Sowe obtain that*(f) > —1+ 3+ 1 x2=¢ > 0.
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Now we may suppose that there exists at least one fagg ahd f5; which is a7™-
face, i.e.,d(f1) > 7. Then by (R2) and (R3), we see that, — f) > % Clearly, for
eachi € {2,3,4}, f; is adjacent tof by a good common3, 3)-edge. According to Claim
7, Claim 9 and Claim 10, we see that there exists at least aeedfyf, f3, f4 which is a
7t-face. Hencep*(f) > —1+ % + 2 = 0 by (R4a).

Subcase 6.3 n3(f) < 3.

It means that there are at least two vertices whose degrdmtrat least 4. By (R2), we
derive thato*(f) > -1+ 1 x 2 =0.

e Now, we may suppose thdtis a5*-face. It implies thatf is adjacent to exactly one
3-face. Without loss of generality, I¢i = [vviv2] be such 3-face that it is adjacent fo
By Claim 1,v # v; forall i = 3,4,5. Sinced(G) > 3, d(v;) > 3withi € {1,2,---,5}.
By Claim 6 and (02), for eachi € {2,3,4,5}, f; is neither a5*-face nor ani-face with
i = 7,8. Furthermore, we observe thétf;) # 3, d(f;) # 4, d(f;) # 5, d(f;) # 6,
andd(f;) # 9 by (01), (06), Claim 5, and Claim 13, respectively. Thus, wafrm that
d(f;) > 10. Therefore, we derive that f; — f) = 1 and7(fs — f) = 1 by (R5). Hence,
w*(f) > —1—141x2=0hby(R1).

Case7 d(f) = 6.

Let f = [v1---vg] and thenw(f) = 0. If f is a nontriangular 6-face, then it is easy to
deduce thab*(f) = w(f) = 0 by (R1) to (R6). Now, we assume thats a6*-face. Without
loss of generality, assumfe = [vvyv2] is a 3-face adjacent tf. It is obvious thaw ¢ b(f)
by Claim 1. Furthermoref is adjacent to at most one 3-face by (O1). Sonly need to
send 1 to the unique 3-fagk. Obviously, for eacly € {2,---,6}, d(f;) ¢ {3,4,5,6} by
(01), (06), Claim 11 and (O3). Noting thajvs ¢ E(G) andvsvs ¢ E(G) by (C1) and the
absence of 4-cycles. This implies that eachas at least one outgoing neighbor which is not
lied onb(f). Since there is no orchid i@, f is incident to at least ong™-vertex. It implies
thatns(f) < 5. Next, in each case, we will show that the total chafgibtained is at least 1
and thuso*(f) > -1+ 1=0.

Subcase 7.1 ns(f) = 5.

It means that there is exactly oAé-vertex incident tof. If d(vy) > 4, thent(vy —
f) > 1 by (R2a), (R2b2), (R3a), (R3b) and (R6) sintig,) # 5. Otherwise, by symmetry,
suppose some; is a4"-vertex wherei € {3,4}. Denotev* be such att-vertex. First,
we observe that each adjacent face different franis a 7+-face by the discussion above.
If d(v*) > 5, thent(v* — f) > 2 by (R3) and (R6). Noting that there is at least ofe
sends% to f, wherej € {3,4,5}. Thus,f gets at Ieasg + % = 1 from v* and its adjacent
7t-faces. Ifd(v*) = 4, then the opposite face ¢f which is incident tof by v*, can not be
a 3-face or a 5-face by (03). S¢ is incident to four6*-faces and thus* gives% to f by
(R2c1). Consequently, gets at Ieasg- + % x 3 =1 by (R4b).

Subcase 7.2 0 < ns(f) < 4.

It implies that there are at least twid -vertices incident tqf. It is easy to see that every
5T-vertex sends at Ieaétto f by (R3) and (R6). Moreover, every 4-vertex sends at Iéast
to f since it is not incident to any 3-face or 5-face. Hentegceives at Ieas} x 2 =1from
its incident4*-vertices.

In what follows, for simpleness, leis(f), ps+(f), andpg-(f) denote the number of
nontriangular 5-face;*-face, ands*-face receiving a charg?, 1, + from f, respectively.

Clearly,ps(f) < ms(f), ps-(f) < ms-(f) andpe- (f) < me-(f).
Case8 d(f) = 1.

Thenw(f) = 1. Letms(f) be the number of 3-faces adjacentftoClearly,ms(f) < 1
by Claim 2.
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¢ \We first assumg is a nontriangular 7-face. Noting thét/f;) > 5 sinceG contains no
4-faces. By (O2)ms+(f) = 0. By (04),ps(f) < 3. We will divide the argument into four
subcases according to the valuegf f).

Subcase 8.1 p5(f) = 3.

Supposefy, f3, f5 are such three 5-faces that each of them takes a cléafngmn f. By
(R4a), we see that all common eddesuv. ), (vs, v4) and(vs, vs) are good 3, 3)-edges. This
implies thatd(v;) = 3 with i € {1,---,6}. By Claim 11, one can easily defer that none of
f2, [, f6, f7 can be &*-face. Thusps-(f) < me-(f) = 0. Consequently, we deduce that
w*(f) = 1— 3 x 3=0by (R4a).

Subcase 8.2 p5(f) = 2.

We may suppose thdf is a 5-face which takes from f. It means thatl(v;) = d(vi+1) =
3and(v;, v;+1) isagood common edge. Thys, ; andf;; can not be ang*-face by Claim
11. It follows immediately thaps- (f) < 7 — (2 4+ 3) = 2 sinceps(f) = 2. Consequently,
we have thab*(f) > 1 — 1 x 2 — 1 x 2 =0by (R4).

Subcase 8.3 p5(f) = 1.

Without loss of generality, lef; be such a nontriangular 5-face tHat, v2) be a good
common(3, 3)-edge. This implies that neithgt nor f; can be &*-face. Thusps-(f) <
7 — 3 =4. Hence, we have*(f) > 1 — 1 — 1 x 4 = 0 by (R4a) and (R4b).

Subcase 8.4 p5(f) = 0.

If ps«(f) = 0, then according to (R4), we obtain that(f) > 1 — 0 = 1. Otherwise, we
may let f; is a6*-face, which takes a chargefrom f. Itis obvious thatf; must be adjacent
to f by a good commoni3, 3)-edge or(3,4)-edge, i.e.d(v1) = 3 andd(vz) € {3,4}. ltis
easy to observe thgt can not be ang*-face because of Claim 14. Thuys;(f) < 6 and
w*(f) > 1— L x 6=0Dby (R4b).

e Now we may assumes(f) = 1, which implies thatf is a7*-face and it is adjacent to
exactly one 3-face. Without loss of generality, fet= [vv;v3] be such a 3-face thgtsends
1to f,. By Claim 1, we notice that is not lied onb(f). Moreover, for eachi € {2,---,7},
we deduce thaf; is neither a 5-face nor@'-face by (O5). Itimplies thaf sends nothing to
eachf; with j € {2,---,7}. Applying (R1), we deduce that*(f) > 1 —1 = 0.

Case9 d(f) = 8.

Clearly,w(f) = 2 andf can not be adjacent to any 3-face by Claim 3. So we only need
to consider the size gf;(f) andpg-(f) since they may take charge frofn It is easy to
calculate thaps(f) < 6 by the fact that there is no sunflower@ We have to consider the
following possibilities by the value gfs(f).

Subcase 9.1 p5(f) = 6.

Itimplies that there are at least seven verticel (if ) are 3-vertices. Thus, the remaining
two faces adjacent t, which are not nontriangular 5-faces, can not be@nfaces by Claim
11. Sow*(f) >2—6 x + =0 by (R4).

Subcase 9.2 p5(f) = 5.

One can easily notice that there is at most ong;afith i € {1,---,8} which is a6*-
face because no 5-face can be adjacent@o-face by Claim 11 again. Therefore?(f) >
2-5x3—2=¢>0.

Subcase 9.3 0 < p5(f) < 4.
By (R4), we derive that
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S 2 2= 2ps(f) — gpe ()
> 2 o)~ 8- ps(f)
= ;—%m(f)
2 1
376"
= 0.

Next, we will discuss several cases whé(¢) > 10. Let f be such d0"-face thatf’ is
adjacenttof. We callf’ is specialif it takes charge 1 fronf. Let|F; (/)| denote the number
of adjacent special faces. L8t be a face adjacent tbby an edge; fori = 1, 2. If e; is not
incident toes, then we callS; andS, aremutually disjoint According to (R1) and (R5), we
see that only 3-face arigt-face may take charge 1 froif) respectively. It implies that each
special face is either a 3-face ob&aface. We first observe that:

Observation 1 If f is adjacent to two special faces which share at least one aomuartex
v thatis lied onb(f), thent(v — f) > 1.

Proof. Without loss of generality, assumg and f> are both such two special faces that
v € V(f1) NV(f2) andvy € V(f). Since eaclh*-face taking charge 1 from B)*-face
must be adjacent tp by a good commori3*, 37)-edge, we see thdf and f» are either both
3-faces or botlb*-faces. By the absence of two adjacent 3-faces and two adjatéaces,
we confirm thati(ve) > 4. If d(f1) = d(f2) = 3, then by (R2a), (R3a) and (R6), it is easy
to deduce that (v — f) > 1. Otherwise, we may suppoge and f» are both5*-faces.
According to (R2c3.3), (R3c) and (R6), we derive that, — f) = 1. This complete the
proof of Observation 1. O

If there exist two special faces which share at least one comwvertexv that is lied
onb(f), i.e., letf; and f;-1 be such two special faces that.;, € V(f;) N V(f;+1) and
vi+1 € V(f), then we see that(v;,1; — f) > 1 by Observation 1 and sends at most x 1
to f; and f;+1. It means thatff takes charge 1 from;,; and then sends it t¢; ;. Thus,
we can consider thaf;,; takes nothing fronyf. Therefore, we may suppose that all of the

special faces adjacent foare mutually disjoint, which implieg” (f)] < {@J .

Observation 2 If f; is a special face with a (good) comm¢si, 3+)-edgev;v; 11, then f
sends nothing tg;_; and f;41.

Proof. If f; is a 3-face, therf;_; and f;;1 can not be any special faces by the assumption
that special faces adjacentfare mutually disjoint. Since;_;v; andv; v, are not good
common edges, we conclude thfatends nothing tg; _; and f; 1 by (R4) and (R5).

Now we may assume thgt is a5*-face. By symmetry, we only need to considef
depending orl(v;).

e If d(v;) = 3, then f;_; can not be a 3-face sinegv;;; is a good common edge.
Moreover,f; _; can not be any nontriangular 5-fadé;face or6*-face by Claim 5, Claim 6
and Claim 12. Sa(f — f;—1) =0.

e Next, we may supposé(v;) > 4. Clearly, f;_; can not be any special faces by the
assumption that special faces adjacenf tare mutually disjoint. Furthermore, jf_; is a
nontriangular 5-face, thefisends nothing to it becausge ;v; is not a(3, 3)-edge. Iff;_; is
a6*-face, then we discuss as follows: whenis a5™-vertex, thenr(f — f,_1) = 0 since
v;—1v; is neither &3, 3)-edge nor 43, 4)-edge; wheny; is a4-vertex, theny; is the opposite
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face of f;_; by a 4-vertex, which contradicts (O3). Thus, we prove thgt — f;_1) = 0
andr(f — fiy1) = 0. This completes the proof of Observation 2. O

By using Observation 2, one can easily deduce Observation 3:

Observation 3 ps(f) + pe-(f) < d(f) — 2|Fi(f)] — 1.

Case10 d(f) = 10.

Thenw(f) = 4 and|Fi(f)] < 5. We divide the argument into the following three
subcases in light ofF, (f)].

Case10.1 |F(f)| = 5.

It implies that there exist five mutually disjoint speciatés that are adjacent fo Since
G does not contain lotus, there exists at least #hevertex onb(f). Without loss of gen-
erality, supposey; is such a vertex thafy, fs, f5, f7, fo are all special faces. If; is a
5T-vertex, thenv; sends at least 1 t¢ by (R3) and (R6). Now we assume thatis a 4-
vertex. Ifd(vip) = 3, then fio is not a nontriangular 5-face singeg is a special face. So
T(nn — f) = 1 by (R2b2), (R2c2) and (R2c3.3). Otherwigky;o) > 4 and f receives at
leastZ x 2 = 3 fromv; anduy, totally by (R2b1), (R2b2), (R2c2), (R2¢3.2) and (R2¢3.3).
Thus,w*(f) >4 —-1x5+1=0.

Case10.2 |Fy(f)| = 4.

It implies thatf is adjacent to exactly four special faces by four (good) cammdges
which are disjoint each other. Denate be such a special face adjacentftby a common
edgee;, wherei = 1, 2,3, 4. Noting thate, can not be incident te; for each pair(s, j) C
{1,---,4}. Thus, it follows that there are exist two vertices lied tif) which are not
incident to any common edgg with i € {1,---,4}. W.l.o.g., assume < j. If j =i+ 1,
thenv;v; is an edge ob(f). Notice thatf; can not be a special face, i.¢; is neither a
3-face nor &*-face. Furthermore, if; is nontriangular 5-face or @&'-face, then there exists
at least one vertex iiv (f) whose degree is at least 4 by the absence of lotusv'Lieé such
4F-vertex. Ifd(v*) > 5, thent(v* — f) > % by (R3) and (R6). Now we may suppose
d(v*) = 4. According to (R2c2), (R2c3.2) and (R2c3.3), it is obviobatteach 4-vertex
sends at Ieas§ to its incident face which is adjacent to a special face. Thwgshave that

(f)>4—1><4——+———>0

Case10.3 0 < |Fi(f)] < 3.

By Observation 3p;(f) + pe-(f) < 9 — 2|Fi(f)|. Thereforew™(f) = 4 — [Fi(f)| —
sO=2[R(NH)=1-3|FA(f)l21-5x3=0.

Casell d(f) = 11.

Clearly,w(f) = 5and|Fi(f)| < 5. By Observatlon 3ps(f)+p
Thenw*(f) > 5 —|Fi(f)| = 5(10 = 2|F1(f)]) = § — 31F(f)] >

Case12 d(f) > 12.

By Observation 3ps(f)+pe- () < d(f)—2|Fi(f)| 1. Moreover|Fy (f)| < |3d(f)].
Thus, we have that

C»JI»—A
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Up to now, we proved Theorem 1 for 2-connected graphs.

Suppose now thak is not a 2-connected planar graph and we will construct afvected
plane grapt* with §(G*) > 3 having neither 4-cycles nor 9-cycles and satisfying stmadt
properties (C1) to (C5). This obviously contradicts theautgjsist established before.

We remark that the following proof is stimulated by the teigiue used in [3].

Let B be an end block of7 with the unique cut-vertex. Let f be the outside face of
G. Notice thatdg(z) > 2 anddg(v) > 3 for eachv € V(B)\{z}. Choosing another
vertexy of B such thaty # = andy lies on the boundary aB. Obviously,x andy are both
belonging tob(f). Then we take ten copies &f, i.e., B, with k = 1,--- ,10. In each copy
By, the vertices corresponding toandy are denoted by, andy;, respectively. Then one
can embed, k = 1,---,10, into f in the following way: first, letB = B;. Next, for each
k=2,---,10, consecutively embeB;, into f by identifyingx;, with y;_1. Finally, identify
y10 With a vertexu € V(f)\V(B). Then the first resulting graph, denoted®y.

Obviously, in the processing of constructi@g, we confirm that there are no new adjacent
cycles established. Furthermore, no 4-cycles and 9-cykedormed. Thus, it is easy to
deduce thaf; satisfies the following structural properties.

(A1) Fewer end blocks thafi;

(A2) The minimum degree is at least 3;

(A3) Neither 4-cycles nor 9-cycles;

(A4) A 5-cycle or a 6-cycle is adjacent to at most one 3-cycle;

(A5) A 5*-cycle is neither adjacent tof&-cycle normally, nor adjacent to arcycle with
ie{7,8}

(AB) A 6*-cycle is not adjacent to a 6-cycle;
(A7) A nontriangular 7-cycle is not adjacent to two 5-cycldsich are normally adjacent;
(A8) A 7*-cycleis neither adjacent to a 5-cycle nas*acycle.

Furthermore, we confirm tha&t; also satisfies the following two structural properties:

(P1) G4 has neither orchid, nor sunflower, nor lotus;

(P2) A6*-cycle is not incident to aircycleC with i € {3,5}, whereC is opposite to such
6*-cycle by a 4-vertex.
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(P1) For somé: € {2,---,10}, notice that we just identify some vertex with y;_1.
It implies that any new cycle, which is not completely beldaggomeB;,, must be an1*-
cycles, i.e.C* = z1---xyou---x1. Thus, any orchid, sunflower, or lotus can not be estab-
lished.

(P2) Assume to the contrary th@j contains &*-cycle, denoted by, which is incident
to a 3-cycleCs or a 5-cycleCs by a 4-vertexv*. Clearly,v* must be equal ta: or some
vertexzy, with k € {2,---,10}. Howeverdg, (u) = dp,,(u) + de\p, (u) > 2 +3 =5 0r
de, (zx) = dp,_,(zr) +dp, (xx) > 3+ 2 =>5forall k € {2,---,10}. We always get a
contradiction talg, (v*) = 4.

Now, if G is 2-connected, then we well done. Otherwise, we may repeaprtocess
described above and finally obtain a desi¢&d

Thus, we complete the proof of Theorem 1. O
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