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ABSTRACT

Precise radial-velocity measurements with the HARPS spectrograph reveal the presence of two planets orbiting the solar-type star
HD 45364. The companion masses are M sin i = 0.187 MJup and 0.658 MJup, with semi-major axes of a = 0.681 AU and 0.897 AU,
and eccentricities of e = 0.168 and 0.097, respectively. A dynamical analysis of the system further shows a 3:2 mean motion resonance
between the two planets, which prevents close encounters and ensures the stability of the system over 5 Gyr. This is the first time that
such a resonant configuration has been observed for extra-solar planets, although there is an analogue in our Solar System formed by
Neptune and Pluto. This singular planetary system may provide important constraints on planetary formation and migration scenarios.
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1. Introduction

At present, about 25% of the known exoplanets are in multi-
planetary systems. The older the radial-velocity planet-search
surveys, the higher the fraction of multi-planet families detected
in these programs. Taking into account the still strong bias
against long-period and/or low-mass planet detection, and the
enhanced difficulty of fully characterizing systems with more
than one planet, the fraction of known multi-planet systems is
certainly still a lower limit. It appears likely that a high number,
if not the majority, of planet-host stars form systems of planets
rather than isolated, single planetary companions.

Among the known multi-planet systems, a significant frac-
tion are in mean motion resonances, the majority of which are
in low-order resonances. The 2:1 resonance is the most com-
mon (HD 73526, HD 82943, HD 128311, GJ 876), but other con-
figurations are observed as well, such as the 3:1 resonance in
HD 75732 or the 5:1 resonance in HD 202206. These resonances
most probably arise from evolutionary processes as migrating
planets forming in the protoplanetary disc become trapped. In
our Solar System, we also find mean motion resonances in the

� Based on observations made with the HARPS instrument on the ESO
3.6 m telescope at La Silla Observatory under the GTO programme
ID 072.C-0488.
�� The table with the radial velocities is only available in electronic
form at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/496/521

satellites of the giant planets, or between these planets and sev-
eral asteroids. The most well-known example is the Io-Europa-
Ganymede system in a 4:2:1 resonance, or the Neptune-Pluto
system in a 3:2 resonance. While the satellites are believed to
achieve resonant configurations after tidal evolution of their or-
bits, the resonances between planets and asteroids were probably
formed after the inward or outward migration of the planets dur-
ing the early stages of the evolution of the Solar System.

The presence of two or more interacting planets in a system
dramatically increases our potential ability to constrain and un-
derstand the processes of planetary formation and evolution. The
dynamical analysis of such systems is then very useful, first for
constraining the system evolution history and second for deter-
mining the system “structure” in terms of orbital content.

Multi-planet systems are naturally found in planet-search
programs. However, improving the precision of the radial-
velocity measurements greatly helps their detection and com-
plete characterization. The HARPS search for southern extra-
solar planet is an extensive radial-velocity survey of some
2000 stars of the solar neighborhood conducted with the HARPS
spectrograph on the ESO 3.6-m telescope at La Silla (Chile) in
the framework of the Guaranteed Time Observations granted to
the HARPS building consortium (Mayor et al. 2003). About half
of the HARPS GTO time is dedicated to very high-precision
measurements of non-active stars selected from the CORALIE
planet-search program (Udry et al. 2000) and stars with already
known giant planets, while searching for lower mass compan-
ions. This program reveals itself as very efficient in finding
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Table 1. Observed and inferred stellar parameters of HD 45364.

Parameter HD 45364
Sp K0 V
V [mag] 8.08
B − V [mag] 0.72
π [mas] 30.69 ± 0.81
MV [mag] 5.51
Teff [K] 5434 ± 20
log g [cgs] 4.38 ± 0.03
[Fe/H] [dex] −0.17 ± 0.01
L [L�] 0.57
M∗ [M�] 0.82 ± 0.05
v sin i

[
km s−1

]
1

log R′HK −4.94
Prot(log R′HK) [day] 32

Photometric and astrometric data are from the Hipparcos catalogue
(ESA 1997) and the stellar physical quantities from Sousa et al. (2008).

multi-Neptune (Lovis et al. 2006) and multi-Super Earth sys-
tems (Mayor et al. 2009).

From the HARPS high-precision survey, we present an in-
teresting system of two planets in a 3:2 mean motion reso-
nance around HD 45364, a configuration not observed previ-
ously among extra-solar planet, but similar to the Neptune-Pluto
pair in the Solar System. Section 2 gathers useful stellar infor-
mation about HD 45364, its derived orbital solution is described
in Sect. 3, and the dynamical analysis of the system is discussed
in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2. Stellar characteristics of HD 45364

The basic photometric (K0V, V = 8.08, B − V = 0.72) and as-
trometric (π = 30.69 mas) properties of HD 45364 were taken
from the Hipparcos catalogue (ESA 1997). They are recalled in
Table 1 with inferred quantities such as the absolute magnitude
(MV = 5.51) and the stellar physical characteristics derived from
the HARPS spectra by Sousa et al. (2008). For the complete
high-precision HARPS sample (including HD 45364), these au-
thors provided homogeneous estimates of effective temperature
(Teff = 5434 ± 20 K), metallicity ([Fe/H]=−0.17 ± 0.01), and
surface gravity (log g = 4.38 ± 0.03) of the stars. A projected
low rotational velocity of the star, v sin i = 1 km s−1 was derived
from a calibration of the width of the cross-correlation function
used in the radial-velocity estimate (Santos et al. 2002).

HD 45364 is a non-active star in our sample with an activity
indicator log R′HK of −4.94. No significant radial-velocity jitter
is thus expected for the star. From the activity indicator, we also
derive a stellar rotation period Prot = 32 day (following Noyes
et al. 1984).

HD 45364 has a subsolar metallicity with [Fe/H]=−0.17 un-
like most of the gaseous giant-planet host stars (Santos et al.
2004). According to simulations of planet formation based on
the core-accretion paradigm, moderate metal-deficiency does
not, however, prevent planet formation (Ida & Lin 2004;
Mordasini et al. 2008). Taking into account its subsolar metal-
licity, Sousa et al. (2008) derived a mass of 0.82 M� for the star.
From the color index, the derived effective temperature, and the
corresponding bolometric correction, we estimated the star lu-
minosity to be 0.57 L�.
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Fig. 1. HARPS radial velocities for HD 45364, superimposed on a
3-body Newtonian orbital solution (Table 2).

3. Orbital solution for the HD 45364 system

The HARPS observations of HD 45364 started in December 2003
and have now been going for about four years and a half. From
the first stages of the observations, peculiar variations in the
radial velocities (Fig. 1) have shown the presence of one or
more companions in the system. After 58 measurements, we
are now able to determine the nature of these bodies. Using
a genetic algorithm combined with the iterative Levenberg-
Marquardt method (Press et al. 1992), we first attempted to fit
the complete set of radial velocities using a model with two
Keplerian orbits. This fit yields an adjustment of

√
χ2 = 2.71

and rms = 1.38 ms−1 with two planets, one at P = 225.8 day,
e = 0.174, and a minimum mass of 0.186 MJup, and another at
P = 343.9 day, e = 0.097, and a minimum mass of 0.659 MJup.

Due to the proximity of the two planets and their high min-
imum masses, the gravitational interactions between these two
bodies are strong. This prompts us to fit the observational data
using a 3-body Newtonian model, assuming co-planar motion
perpendicular to the plane of the sky, similarly to what has been
done for the system HD 202206 (Correia et al. 2005). The or-
bital parameters corresponding to the the best fitted solution are
listed in Table 2. We get identical results for

√
χ2 and veloc-

ity residuals as obtained with the two-Keplerian fit. Although
there is no significant improvement in the fit, an important dif-
ference exists: the new orbital parameters for both planets show
some deviations from the two-Keplerian case. In particular, the
arguments of the periastrons (ω) show a difference of some de-
grees. We then conclude that, despite being unable to detect the
planet-planet interaction in the present data, the orbits undergo
important perturbations, and we expect to detect this gravita-
tional interaction in the future. In Fig. 2, we plot the two best
fit models evolving in time and clearly observe detectable devi-
ations between the two curves that appear within ten years. The
3-body Newtonian fit provides a more accurate approximation of
the HD 45364 planetary system, and the orbital parameters thus
determined will be adopted as reference henceforward (Table 2).

We also fitted the data with a 3-body Newtonian model for
which the inclination of the orbital planes, as well as the node
of the outer planet orbit, were free to vary. We were able to find

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810774&pdf_id=1
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Table 2. Orbital parameters for the two bodies orbiting HD 45364, ob-
tained with a 3-body Newtonian fit to observational data (Fig. 1).

Param. [unit] HD 45364 b HD 45364 c

Date [JD-2400000] 53500.00 (fixed)
V [km s−1] 16.4665 ± 0.0002
P [day] 226.93 ± 0.37 342.85 ± 0.28
λ [deg] 105.76 ± 1.41 269.52 ± 0.58
e 0.1684 ± 0.0190 0.0974 ± 0.012
ω [deg] 162.58 ± 6.34 7.41 ± 4.30
K [m/s] 7.22 ± 0.14 21.92 ± 0.43
i [deg] 90 (fixed) 90 (fixed)

a1 sin i
[
10−3 AU

]
0.1485 0.6874

f (M)
[
10−9 M�

]
0.0085 0.3687

M sin i
[
MJup

]
0.1872 0.6579

a [AU] 0.6813 0.8972

Nmeas 58
Span [day] 1583
rms [m/s] 1.417√
χ2 2.789

Errors are given by the standard deviation σ and λ is the mean longitude
of the date (λ = ω + M). The orbits are assumed co-planar.
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Fig. 2. Radial velocity differences between the two independent
Keplerian model and the 3-body Newtonian model (Table 2). Data coin-
cides at JD = 2453776 (Feb. 9th 2006). We also plot the velocity resid-
uals of the 3-body fit (Fig. 1). With the current HARPS’s precision for
this star, we expect to observe these differences within ten years.

a wide variety of configurations, some with low inclination val-
ues for one or both planets, that slightly improved our fit to a
minimum

√
χ2 = 2.32 and rms = 1.14 m/s. However, all of

these determinations are uncertain, and since we also increase
the number of free parameters by three, we cannot say that there
has been an improvement with respect to the solution presented
in Table 2. The inclination of the orbits therefore remain un-
known, as do their true masses.

The residuals around the best fit solution are small, but re-
main slightly larger than the internal errors (Fig. 1). We may
then ask if there are other companions with different orbital pe-
riods. For this purpose, we used a genetic algorithm, since we
were unable to clearly isolate any significant peak in the fre-
quency analysis of the residuals. The inclusion of additional
companions in the system allows us to reduce the value of

√
χ2

slightly, although this can be justified as a natural consequence

Table 3. Fundamental frequencies for the orbital solution in Table 2.

Frequency Period
◦/yr yr

nb 576.429624 0.624534
nc 384.033313 0.937419
g1 −0.759309 474.115
g2 0.110472 3258.74
lθ 19.820696 18.1628

nb and nc are the mean motions, g1 and g2 are the secular frequencies
of the periastrons, and lθ is the libration frequency of the resonant angle
θb = 2λb − 3λc + ωb. Indeed, we have 2nb − 3nc + g1 = 0.

of increasing the number of free parameters. Identical adjust-
ments can be obtained with many orbital periods, as different
as 5 or 18 days, frequently with very high eccentricity values.
Therefore, no other companion can be conclusively detected in
the residuals from the orbital solution listed in Table 2. The best
fit solution was obtained by adding a linear drift to the data, with
slope = −0.86 ± 0.09 m s−1/yr, allowing us to reduce the value
of
√
χ2 to 2.42 and the rms = 1.21 m/s, while the orbital param-

eters of the two planets remain nearly the same. The solution
in Table 2 must then be considered to be the best determination
achievable so far, and a longer tracking of the system will pro-
vide more accurate orbital parameters for the HD 45364 system.

4. Dynamical analysis

We now briefly analyze the dynamics and stability of the plane-
tary system given in Table 2. Due to the two planets’ proximity
and high values of the masses, we expect that both planets are
affected by strong planetary perturbations from each other. The
present orbits of the two planets almost cross (Fig. 6), and unless
a resonant mechanism is present to avoid close encounters, the
system cannot be stable.

4.1. The 3:2 mean motion resonance

The ratio between the orbital periods of the two planets deter-
mined by the fitting process (Table 2) is Pc/Pb = 1.511, sug-
gesting that the system may be trapped in a 3:2 mean motion
resonance. To test the accurancy of this scenario, we performed
a frequency analysis of the orbital solution listed in Table 2 com-
puted over 100 kyr. The orbits of the planets are integrated with
the symplectic integrator SABAC4 of Laskar & Robutel (2001),
using a step size of 0.02 years. We conclude that in the nomi-
nal solution of Table 2, the two planets in the HD 45364 system
indeed show a 3:2 mean motion resonance, with resonant argu-
ment:

θb = 2λb − 3λc + ωb. (1)

The fundamental frequencies of the systems are the two mean
motions nb and nc, the two secular frequencies of the periastrons
g1 and g2, and the libration frequency of the resonant argument
lθ (Table 3). These frequencies are not independent because, due
to the 3:2 resonance, we have up to the precision of the determi-
nation of the frequencies (≈10−10),

2nb − 3nc + g1 = 0. (2)

The resonant argument θb is in libration around 0◦, with a li-
bration period 2π/lθ = 18.16 yr, and an associated amplitude
of about 68.44 degrees (Fig. 3a, Table 4). For the complete so-
lution, the libration amplitude can reach more than 80 degrees

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810774&pdf_id=2
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Fig. 3. Variation in the resonant argument, θb = 2λb − 3λc + ωb a) and
in the secular argument, Δω = ωb − ωc b), with time. θb is in libra-
tion around 0◦, with a libration period Plθ � 18.16 yr, and a princi-
pal amplitude of about 68.4◦ (Table 4). Δω is in libration around 180◦,
with a libration frequency gΔω = g1–g2 (corresponding to a period
PΔω � 413.9 yr), and a maximum amplitude of about 36.4◦.

because additional periodic terms are present. In Table 4, we pro-
vide a quasi-periodic decomposition of the resonant angle θb in
terms of decreasing amplitude. All the quasi-periodic terms are
easily identified as integer combinations of the fundamental fre-
quencies (Table 3). Since the resonant angle is modulated by a
relatively short period of about 18 years, the observation of the
system over a few additional decades may provide an estimate of
the libration amplitude and thus a strong constraint on the orbital
parameters of the system.

Although the mean motions nb and nc can be associated with
the two planets b and c, respectively, it is not the case for the
secular frequencies g1 and g2, and incidentally, both periastrons
precess with mean frequency g1 that is retrograde, with a period
of 474.115 years. The two periastrons are thus locked in an an-
tipodal state, and the difference Δω = ωb − ωc is in libration
around 180◦ with an amplitude of about 36.4◦ (Fig. 3b). As a
result, the argument θc = 2λb − 3λc + ωc librates around 180◦
with the same libration frequency lθ.

4.2. Stability analysis

To analyze the stability of the nominal solution and confirm the
presence of the 3:2 resonance, we performed a global frequency
analysis (Laskar 1993) in the vicinity of the nominal solution
(Fig. 4), in the same way as achieved for the HD 202206 sys-
tem by Correia et al. (2005). For each planet, the system is inte-
grated on a regular 2D mesh of initial conditions, with varying

Table 4. Quasi-periodic decomposition of the resonant angle θb = 2λb−
3λc+ωb for an integration over 100 kyr of the orbital solution in Table 2.

Combination νi Ai φi

nb nc g1 g2 lθ (deg/yr) (deg) (deg)
0 0 0 0 1 19.8207 68.444 –144.426
0 0 –1 1 0 0.8698 13.400 136.931
0 0 1 –1 1 18.9509 8.606 168.643
0 0 –1 1 1 20.6905 8.094 82.505
0 0 –2 2 0 1.7396 2.165 –176.138
0 0 –2 2 1 21.5603 0.622 –50.564
0 0 0 0 3 59.4621 0.540 –73.279
1 –1 0 0 –1 172.5756 0.506 7.504
1 –1 0 0 0 192.3963 0.501 –46.923
0 0 –3 3 0 2.6093 0.416 –129.207
0 0 2 –2 1 18.0811 0.420 121.712
1 –1 0 0 1 212.2170 0.416 78.651
0 1 –1 0 0 384.7926 0.451 176.155
1 –1 0 0 –2 152.7549 0.424 –118.070
0 1 –1 0 –1 364.9719 0.341 50.581
0 1 –1 0 1 404.6133 0.274 121.729
0 0 1 –1 3 58.5923 0.212 –120.210
1 –1 0 0 2 232.0377 0.201 24.225
0 0 –1 1 3 60.3319 0.211 153.652
1 0 –1 0 –1 557.3682 0.182 –86.342

We have θb =
∑N

i=1 Ai cos(νi t + φi), where the amplitude and phases Ai,
φi are given in degree, and the frequencies νi in degree/year. We only
give the first 20 terms, ordered by decreasing amplitude. All terms are
identified as integer combinations of the fundamental frequencies given
in Table 3. The fact that we are able to express all the main frequencies
of θb in terms of exact combinations of the fundamental frequencies g1,
g2 and lθ is a signature of a very regular motion.

semi-major axis and eccentricity, while the other parameters are
retained at their nominal values. The solution is integrated over
10 kyr for each initial condition and a stability indicator is com-
puted to be the variation in the measured mean motion over the
two consecutive 5 kyr intervals of time. For regular motion, there
is no significant variation in the mean motion along the trajec-
tory, while it can vary significantly for chaotic trajectories. The
result is reported in color in Fig. 4, where “red” represent the
strongly chaotic trajectories, and “dark blue” the extremely sta-
ble ones. In both plots (Figs. 4a,b), it appears that the only stable
zone that exists in the vicinity of the nominal solution are the
stable 3:2 resonant zones.

It is quite remarkable that, in contrast to the findings of
Correia et al. (2005) for the 5:1 resonance in the HD 202206 sys-
tem, there is perfect coincidence between the stable 3:2 resonant
islands, and curves of minimal χ2 obtained in comparing with
the observations. Since these islands are the only stable zones in
the vicinity, this picture presents a very coherent view of dynam-
ical analysis and radial velocity measurments, which reinforces
the confidence that the present system is in a 3:2 resonant state.

In Fig. 5, we plot the evolution of the HD 45364 planetary
system over 100 kyr in the rotating frame of the inner and the
outer planet, respectively. Due to the 3:2 mean motion resonance
trapping, the relative positions of the two planets are repeated
and never become closer than about 0.37 AU, preventing close
encounters and the consequent destruction of the system. The
paths of the planets in the rotating frame illustrate the relation-
ship between the resonance and the frequency of conjunctions
with the internal or external planet. The inner planet is in a 3:2
resonance with the outer planet, so the orbital configuration of
the system is repeated every 3 orbits of the inner planet and

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810774&pdf_id=3
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Fig. 4. Stability analysis of the nominal fit (Table 2) of the HD 45364 planetary system. For a fixed initial condition of the outer a) and inner
planet b), the phase space of the system is explored by varying the semi-major axis ak and eccentricity ek of the other planet, respectively. The
step size is 0.001 AU in semi-major axis and 0.005 in eccentricity. For each initial condition, the full system is integrated numerically over 10 kyr
and a stability criterion is derived with the frequency analysis of the mean longitude (Laskar 1990, 1993). As in Correia et al. (2005), the chaotic
diffusion is measured by the variation in the frequencies. The “red” zone corresponds to highly unstable orbits, while the “dark blue” region can
be assumed to be stable on a billion-years timescale. The contour curves indicate the value of χ2 obtained for each choice of parameters. It is
remarkable that in the present fit, there is perfect correspondence between the zone of minimal χ2 and the 3:2 stable resonant zone, in “dark blue”.
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Fig. 5. Evolution of the HD 45364 planetary system over 100 kyr in the co-rotating frame of the inner planet (left) and outer planet (right). x and y
are spatial coordinates in a frame centered on the star and rotating with the frequency nb (left) or nc (right). Due to the 3:2 mean motion resonance
the planets never get too close, the minimal distance of approach being 0.371 AU, while the maximum distance can reach 1.811 AU. We also
observe that the trajectories are repeated every 3 orbits of the inner planet and every 2 orbits of the outer planet.

every 2 orbits of the outer planet. In this particular frame, we
are also able to see the libration of each planet around its equi-
librium position.

4.3. Orbital evolution

From the previous stability analysis, it is clear that the HD 45364
planetary system listed in Table 2 is trapped in a 3:2 mean mo-
tion resonance and stable over a Gyr timescale. Nevertheless, we
tested directly this by performing a numerical integration of the
orbits over 5 Gyr using the symplectic integrator SABAC4 of
Laskar & Robutel (2001) with a step size of 0.02 years. The re-
sults displayed in Fig. 6 show that the orbits indeed evolve in a

regular way, and remain stable throughout the simulation, which
corresponds to the estimated age of the star.

Because of the strong gravitational interactions between the
two planets, both orbital eccentricities present significant varia-
tions. The eccentricity of the inner planet is within 0.12 < eb <
0.29, while that of the outer planet is within 0.04 < ec < 0.13.
We also observe rapid secular variations in the orbital parame-
ters, mostly driven by the rapid secular frequency g1, of period
2π/g1 ≈ 474 yr (Table 3). These secular variations in the orbital
elements occur much more rapidly than in our Solar System,
which should enable them to be detected directly from observa-
tions.
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Fig. 6. Long-term evolution of the HD 45364 planetary system over
5 Gyr starting with the orbital solution from Table 2. The panel shows
a face-on view of the system. x and y are spatial coordinates in a frame
centered on the star. Present orbital solutions are traced with solid lines
and each dot corresponds to the position of the planet every 100 kyr.
The semi-major axes (in AU) are almost constant (0.676 < ab < 0.693
and 0.893 < ac < 0.902), but the eccentricities undergo significant vari-
ations (0.123 < eb < 0.286 and 0.042 < ec < 0.133). The fundamental
periods related to the precession of the periastrons are 2π/g1 = −474 yr
and 2π/g2 = 3259 yr.

5. Discussion and conclusion

We have reported the detection of two planets orbiting the star
HD 45364, with orbital periods of 228 and 342 days, and mini-
mum masses of 0.187 and 0.658 MJup, respectively. A dynamical
analysis of the system has further shown a 3:2 mean motion res-
onance between the two planets, which ensures its stability over
5 Gyr despite the proximity of the two orbits. This is the first
time that such an orbital resonant configuration has been ob-
served for extra-solar planets, although an analogue does exist
in our Solar System composed by Neptune and Pluto. However,
while Neptune evolves in an almost circular orbit and is much
more massive than Pluto (which is the largest member of the as-
teroid family of the Plutinos), the two planets around HD 45364
have masses comparable to those of Saturn and Jupiter, and are
evolving in orbits with moderate eccentricity.

Dynamically, the system is extremely interesting. In the
nominal solution, the resonant angle θb = 2λb − 3λc + ωb is in
libration around 0◦, with a libration period of 18.16 years and a
dominating amplitude of 68.44 degrees. Such an orbital config-
uration may have been reached through the dissipative process
of planet migration during the early stages of the system evo-
lution. However, after being captured in resonance, subsequent
migration produces a significant increase in planetary eccentric-
ities, unless a damping mechanism is applied. Since the eccen-
tricities of the two planets around HD 45364 are relatively small
(Table 2), migration may cease shortly after capture in resonance
occurs, or, according to Crida et al. (2008), an inner disc must be
present. This singular planetary system may then provide impor-
tant constraints on planetary formation and migration scenarios.

The strong gravitational interactions between the planets
may also allow us to model their effect more accurately in the
near future. With the current precision of HARPS, about 1 m/s
for HD 45364, we expect to detect the signature of planet-planet
interactions in data in a few decades. The planet-planet interac-
tions may provide important information about the inclination of
the orbital planes and allow us to determine the precise masses
of both planets.
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