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Abstract

We investigate different aspects of independence here, in the context of theory revision, generalizing slightly work by
Chopra, Parikh, and Rodrigues, and in the context of preferential reasoning.
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1 Introduction

We give some results on

(1) Theory revision:

Parikh and co-authors (see [CP00]), and, independently, Rodrigues (see [Rod97]), have investigated a notion of logical
independence, based on the sharing of essential propositional variables. We do a semantical analogue here. What
Parikh et al. call splitting on the logical level, we call factorization (on the semantical level).

A comparison of the work of Parikh and Rodrigues can be found in [Mak09].

Note that many of our results are valid for arbitrary products, not only for classical model sets.

We go very slightly beyond Parikh’s work, as a matter of fact our generalization is alreday contained in the Axiom
P2g, due to K.Georgatos (see [CP00]):

(P2g) If T is split between L1 and L2, α, β are in L1 and L2 respectively, then T ∗ α ∗ b = T ∗ β ∗ α = T ∗ (α ∧ β).

On the other hand, we stay below Parikh’s work and do not investigate partial overlap (see B−structures model in
[CP00]).

We claim no originality of the basic ideas, just our proofs and perhaps an example might be new - but they are always
elementary and very easy.
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(2) Preferential reasoning:

We shortly discuss preferential structures which have properties of defaults in the fact that they permit to treat sub-
ideal information. Usually, we have only the ideal case, where all “normal” information holds, and the classical case.
(Reiter) defaults, but also e.g., inheritance systems, permit to satisfy only some, but not necessarily all, default rules,
and are thus more flexible. We show how to construct preferential structures with the same properties.

1.1 The situation in the case of theory revision

We work here with arbitrary, non-empty products. Intuitively, Y is the set of models for the propositional variable set U.
We assume the Axiom of Choice.

Definition 1.1

Let U be an index set, Y = Π{Yk : k ∈ U}, let all Yk 6= ∅, and X ⊆ Y. Thus, σ ∈ X is a function from U to
⋃
{Yk : k ∈ U}

s.t. σ(k) ∈ Yk. We then note Xk := {y ∈ Yk : ∃σ ∈ X .σ(k) = y}.

If U ′ ⊆ U, then σ⌈U ′ will be the restriction of σ to U ′, and X⌈U ′ := {σ⌈U ′ : σ ∈ X}.

If A := {Ai : i ∈ I} is a partition of U, U ′ ⊆ U, then A⌈U ′ := {Ai ∩ U ′ 6= ∅ : i ∈ I}.

Let A := {Ai : i ∈ I}, B := {Bj : j ∈ J} both be partitions of U, then A is called a refinement of B iff for all i ∈ I there is
j ∈ J s.t. Ai ⊆ Bj .

A partition A of U will be called a factorization of X iff X = {σ ∈ Y : ∀i ∈ I(σ⌈Ai ∈ X⌈Ai)}, we will also sometimes say for
clarity that A is a partition of X over U.

We will adhere to above notations throughout these pages.

If X is as above, U ′ ⊆ U, and σ ∈ X⌈U ′, then there is obviously some (usually not unique) τ ∈ X s.t. τ⌈U ′ = σ. This trivial
fact will be used repeatedly in the following pages. We will denote by σ+ some such τ - context will tell which are the U ′

and U. (To be more definite, we may take the first such τ in some arbitrary enumeration of X .)

Given a propositional language L, v(L) will be the set of its propositional variables, and v(φ) the set of variables occuring
in φ. A model set C is called definable iff there is a theory T s.t. C = M(T ) - the set of models of T.

1.2 Organization

We treat here the following:

(1) We give a purely algebraic description of factorization.

This is the algebraic analogue of work by Parikh and co-authors, and we claim almost no originality, perhaps with the
exception of an example and the remark on language independence.

(2) We generalize slightly the Parikh approach so it can be described as commuting with decomposition into sublanguages
and addition.

We show by a trivial argument that this corresponds to a generalized Hamming distance between models.

(3) We go beyond Rational Monotony and show how to construct a preferential structure from a set of (normal) defaults.
Thus, we give an independent semantics to normal defaults, translating their usual treatment into a homogenous
construction of the preferential structure.

In the general case, this gives nothing new, as any preferential structure can be constructed this way. (We consider
the one-copy case only.) Most of the time, it will result in a special structure which automatically takes into account
the specificity criterion to resolve conflicts. The essential idea is to take a modified Hamming distance on the set of
satisfied defaults, modified as we do not count the defaults, but look at them as sets, together with the subset relation.

We also show that our approach can be seen as a revision of the ideal, perhaps non-existant case, or as an approach to
this ideal case as the limit. Of course, when the ideal case is consistent, then this will be our result.

(4) Independence in the case of TR is treated by looking at “independent” parts “independently”, and later summing up.
In the case of defaults, we treat the defaults independently, just as in the Reiter approach, but also “inside” the model
sets, we treat subsets just as we the sets themselves, resulting in a partial kind of rankedness (by default).

(5) We conclude by giving a simple informal argument why the TR situation is more complicated than the default situation.

2 Factorisation

Fact 2.1

If A, B are two partitions of U, A a factorization of X , and A a refinement of B, then B is also a factorization of X .

Proof

Trivial by definition. 2

Fact 2.2

Let A be a factorization of X over U, U ′ ⊆ U. Then A⌈U ′ is a factorization of X⌈U ′ over U ′.
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Proof

If Ai ∩ U ′ 6= ∅, let σ′

i ∈ X⌈(Ai ∩ U ′). Let then σi := σ′+

i ⌈Ai. If Ai ∩ U ′ = ∅, let σi := τ⌈Ai for any τ ∈ X . Then
σ :=

⋃
{σi : i ∈ I} ∈ X by hypothesis, so σ⌈U ′ ∈ X⌈U ′, and σ⌈(Ai ∩ U ′} = σ′

i. 2

Fact 2.3

If {A,A′} is a factorization of X over U, A a factorization of X⌈A over A, A′ a factorization of X⌈A′ over A′, then A ∪A′

is a factorization of X over U.

Proof

Trivial 2.

Fact 2.4

If A, B are two factorizations of X , then there is a common refining factorization.

Proof

Let σ s.t. ∀i ∈ I∀j ∈ J(σ⌈(Ai ∩Bj) ∈ X⌈(Ai ∩Bj)), show σ ∈ X . Fix i ∈ I. By Fact 2.2 (page 2), B⌈Ai is a factorization of
X⌈Ai, so ∪{σ⌈(Ai ∩Bj) : j ∈ J, Ai ∩Bj 6= ∅} = σ⌈Ai ∈ X⌈Ai. As A is a factorization of X , σ ∈ X . 2

This does not generalize to infinitely many factorizations:

Example 2.1

Take as index set ω + 1, all Yk := {0, 1}. Take X := {σ : σ⌈ω arbitrary, and σ(ω) := 0 iff σ⌈ω is finally constant }. Consider
the partitions An := {n, (ω + 1) − n}, they are all fatorizations of X , as it suffices to know the sequence from n + 1 on to
know its value on ω. A common refinement A will have some A ∈ A s.t. ω ∈ A. Suppose there is some n ∈ ω ∩ A, then
A 6⊆ n+ 1, A 6⊆ (ω + 1) − (n + 1), this is impossible, so A = {ω}. If A were a factorization of X , so would be {ω, {ω}} by
Fact 2.1 (page 2), but X does not factor into X⌈ω and X⌈{ω}.

Comment 2.1

Above set X is not definable as a model set of a corresponding language L : If φ is not a tautology, there is a model m s.t.
m |= ¬φ. φ is finite, let its variables be among p1, . . . , pn and perhaps pω. If pω is not among its variables, it is trivially also
false in some m′ in X . If it is, then modify m accordingly beyond n. Thus, exactly all tautologies are true in X , but X 6= Y =
the set of all L−models.

We have, however:

Fact 2.5

Let X =
⋂
{Xm : m ∈M} and X ,Xm ⊆ Y for all m ∈M.

Let A be a partition of U, and a factorization of all Xm.

Then A is also a factorization of X .

Proof

Let σ s.t. ∀i ∈ I σ⌈Ai ∈ X⌈Ai.

But X⌈Ai = (
⋂
{Xm : m ∈ M})⌈Ai ⊆

⋂
{Xm⌈Ai : m ∈ M} : Let τ ∈ X⌈Ai, so by X =

⋂
{Xm : m ∈ M} τ+ ∈ Xm for all

m ∈M, so τ ∈ Xm⌈Ai for all m ∈M.

Thus, ∀i ∈ I, ∀m ∈M : σ⌈Ai ∈ Xm⌈Ai, so ∀m ∈M.σ ∈ Xm by prerequisite, so σ ∈ X . 2

Fact 2.6

Let A ∪A′ be a partition of U, and for all σ ∈ X⌈A and all τ : A′ →
⋃
{Xk : k ∈ A′} with τ(k) ∈ Xk σ ∪ τ ∈ X . Then

(1) A ∪A′ is a factorization of X over U.

(2) Any partition A′ = {A′

k : k ∈ I ′} of A′ is a factorization of X⌈A′ over A′.

(3) If A is a factorization of X⌈A over A, and A′ a partition of A′, then A ∪A′ is a factorization of X .

3



Proof

(1) and (2) are trivial, (3) follows from (1), (2), and Fact 2.3 (page 3). 2

Corollary 2.7

Let U = v(L) for some language L. Let X be definable, and {Am : m ∈ M} be a set of factorizations of X over U. Then
A := ∪{Am : m ∈M} is also a factorization of X .

Proof

Let X = M(T ). Consider φ ∈ T. v(φ) is finite, consider X⌈v(φ). There are only finitely many different ways v(φ) is partitioned
by the Am, let them all be among Am0

, . . . ,Amp
. M(φ)⌈v(φ) might not be factorized by all Am0

⌈v(φ), . . . ,Amp
⌈v(φ), but

M(T )⌈v(φ) is by Fact 2.2 (page 2). By Fact 2.4 (page 3), A⌈v(φ) is a factorization of M(T )⌈v(φ).

Consider now Xφ := (M(T )⌈v(φ)) × Π{(0, 1) : k ∈ v(L) − v(φ)}.

By Fact 2.6 (page 3), (1) {v(φ), v(L) − v(φ)} is a factorization of Xφ over v(L).

By Fact 2.6 (page 3), (2) A⌈(v(L) − v(φ)) is a factorization of Xφ⌈(v(L) − v(φ)) over v(L) − v(φ).

By Fact 2.6 (page 3), (3) A is a factorization of Xφ over v(L).

M(T ) =
⋂
{(M(T )⌈v(φ)) × Π{(0, 1) : k ∈ v(L) − v(φ)}: φ ∈ T }, so by Fact 2.5 (page 3), A is a factorization of M(T ).

2

Comment 2.2

Obviously, it is unimportant here that we have only 2 truth values, the proof would just as well work with any, even an
infinite, number of truth values. What we really need is the fact that a formula affects only finitely many propositional
variables, and the rest are free.

Unfortunately, the manner of coding can determine if there is a factorization, as can be seen by the following example:

Example 2.2

(1) p= “blue”, q= “round”, q’= “blue iff round”.

Then

p ∧ q = blue and round, ¬p ∧ ¬q = ¬blue and ¬round

p ∧ q′ = blue and round, ¬p ∧ q′ = ¬blue and ¬round

Thus, both code the same (meta-) situation, the first cannot be factorized, the second can.

Our example (first presented in [Sch07a]) is discussed in more detail in [Mak09], see Section 5. there.

(2) More generally, we can code e.g. the non-factorising situation {p∧q∧r,¬p∧¬q∧¬r} also using q′ = p↔ q, r′ = p↔ r,
and have then the factorising situation {p ∧ q ∧ r,¬p ∧ q′ ∧ r′}.

(3) The following situation cannot be made factorising: {p ∧ q, p ∧ ¬q, ¬p ∧ ¬q}. Suppose there were some such solution.
Then we need some p′ and q′, and all 4 possibilities {p′∧ q′, p′ ∧¬q′, ¬p′ ∧ q′, ¬p′ ∧¬q′}. If we do not admit impossible
situations (i.e. one of the 4 possibilities is a contradictory coding), then 2 possibilities have to contain the same
situation, e.g. p ∧ q. But they are mutually exclusive (as they are negations), so this is impossible.

2

Remark 2.8

As we worked with abstract sequences, which need not be models, we can apply our results and the ideas behind them
(essentially due to Parikh/Rodrigues) e.g., to

• Update: if a set of sequences (where the points are now models, and not true/false) factorizes, then we can update the
components (i.e. look for the locally “best” subsequences), and then compose them to the globally “best” sequences.

• Utility streams: if a set of utility streams factorizes, we can do the same, commutativity and associativity of addition
will guarantee the desired result.

• Preferential reasoning: Again, we factorize, and choose the locally best which we compose to the globally best.

The idea is always the same: If a set factorizes, choose locally, and compose to the global choice - provided this is the desired
result!
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3 Factorisation and Hamming distance

Definition 3.1

Given x, y ∈ Σ, a set of sequences over an index set I, the Hamming distance comes in two flavours:

ds(x, y) := {i ∈ I : x(i) 6= y(i)}, the set variant,

dc(x, y) := card(ds(x, y)), the counting variant.

We define ds(x, y) ≤ ds(x
′, y′) iff ds(x, y) ⊆ ds(x

′, y′),

thus, s−distances are not always comparabel.

We can also give different importance to different i in the counting variant, so e.g., dc(〈x, x′〉, 〈y, y′〉) might be 1 if x 6= y and
x′ = y′, but 2 if x = y and x′ 6= y′.

Fact 3.1

dc has the normal addition, set union takes the role of addition for ds, ∅ takes the role of 0 for ds, both are distances in the
following sense:

(1) d(x, y) = 0 iff x = y,

(2) d(x, y) = d(y, x),

(3) the triangle inequality holds, for the set variant in the form ds(x, z) ⊆ ds(x, y) ∪ ds(y, z).

Proof

(3) If i 6∈ ds(x, y) ∪ ds(y, z), then x(i) = y(i) = z(i), so x(i) = z(i) and i 6∈ ds(x, z).

The others are trivial.

2

Both Hamming distances cooperate well with factorization, as we will see now. This is not surprising, as Hamming distances
work componentwise.

Definition 3.2

We say that a revision function ∗ factorizes iff for all T and φ and joint factorisations, which we write for simplicity
(and immediately for models) M(T ) = M(T )⌈L1×, . . . ,×M(T )⌈Ln, M(φ) = M(φ)⌈L1×, . . . ,×M(φ)⌈Ln, M(T ∗ φ) =
M(T ) |M(φ) = ((M(T )⌈L1) | (M(φ)⌈L1))×, . . . ,×((M(T )⌈Ln) | (M(φ)⌈Ln)).

To simplify notation, we will speak about Σ | T, Σi | Ti, σ1 × . . . σn, etc.

The advantage is that, when factorisation is possible, we can work with smaller theories, formulas, and languages, and then
do a trivial composition operation by considering the product.

Fact 3.2

If ∗ is defined by the counting or the set variant of the Hamming distance, then ∗ factorises.

Proof

We do the proof for the set variant, the counting variant proof is similar.

Let a factorisation as in the definition be given, and suppose τ ∈ T has minimal distance from Σ, i.e. τ ∈ Σ | T. We show
that each τi has minimal distance from Σi. If not, there is τ ′i closer to Σi, but then τ ′, which is like τ, only τi is replaced
by τ ′i is also in T, by factorisation. By definition of the Hamming distance, τ ′ is closer to Σ than τ is, contradiction. Thus
τ ∈ (Σ1 | T1) × . . . × (Σn | Tn). Conversely, let all τi ∈ (Σi | Ti), we have to show that τ := τ1 × . . . × τn ∈ Σ | T.
By factorisation, τ ∈ T. If there were a closer τ ′ ∈ T, then at least one of the components τ ′i would be closer than τi,
contradiction.

2

The authors do not know if all factorising distance defined revisions can be defined by one of the above Hamming distances.

4 Preferential modelling of defaults

Reiter defaults have the advantage to give results also for non-ideal cases. If, by default, α and α′ hold, but α is inconsistent
with the current situation, then α′ will still “fire”. Preferential structures say nothing about non-ideal cases. We construct
special preferential structures which have the same behaviour as Reiter defaults. In addition, specificity will be used to solve
conflicts.
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The idea is simple.

For simplicity, we admit direct contradictions: φ ∼| ψ and φ ∼| ¬ψ. This is done only to make the representation proof
simple. One can do without, but pays with more complexity (see below). We also use structures with one copy of each model
only.

Definition 4.1

(1) We call the default φ ∼| ψ more specific than the default φ′ ∼| ψ′ iff φ ⊢ φ′ - ⊢ is classical consequence.

(2) We say that the default φ ∼| ψ separates m and m′ iff m,m′ |= φ, but only one of m,m′ satisfies ψ.

Consider two models, m,m′. Take the most specific defaults which separate them. For each such default φ ∼| ψ, if m |= ψ,
m′ 6|= ψ, then set m ≺ m′. We might introduce cycles of length 2 here.

Remark 4.1

(1) The construction has a flavour of rankedness, as, if possible, we make each “good” element smaller than each “less good”
element. If e.g. φ ∼| ψ is the default, m,m′, n, n′ |= φ, and m,n |= ψ, but m′, n′ 6|= ψ, then m ≺ m′, n ≺ m′, m ≺ n′, n ≺ n′.

(2) We may create indirectly loops, as we may have m ≺ m′ ≺ m′′, and also see m′′ ≺ m.

(3) Let m ∈ X be minimal in our construction. Then there is no default φ ∼| ψ s.t. m |= φ ∧ ¬ψ, and there is m′ ∈ X,
m′ |= φ ∧ ψ. Thus, minimal elements are “as good as possible”, i.e. there is no better one in X. Of course, there might be
a default φ ∼| ψ with m |= φ ∧ ¬ψ, but “better” elements are outside X. Thus, minimal elements are an approximation of
the ideal case. We can also consider minimal elements as a revision of the ideal case by X, in the sense that we cannot get
closer to the ideal within X.

Conversely, given any preferential structure, we take any two models m,m′, if m ≺ m′ (which we see by m′ 6∈ µ({m,m′})),
we add the default Th{m,m′} ∼| Th{m}. By the basic law of 1-copy preferential structures, we create the structure again.
(Note that {m,m′} is the most specific set containing both.) Thus, our approach cannot result in new structural rules for
preferential structures, like smoothness, rankedness, etc.

5 Remarks on independence

The idea of independence was realized for defaults by trying to satisfy them independently, so if one fails, the others still
have a chance. This is a simple idea.

The case of theory revision is more complicated, as we have no predefined structure. In particular, the starting theory T
can be just a “blob” which makes independence difficult to realize. Moreover, we may try to revise just once, so no multiple
default satisfaction or so is needed. Perhaps the Parikh idea, and its refinement through (modified) Hamming distances is
all one can achieve.

It is evident how to treat our form of independent revision with IBRS, it can just be written as a diagram.

Perhaps the best way to write defaults as a diagram, is the trivial one: α ∼| β will be written α ⇒ β, and the treatment is
in the evaluation of the diagram - as outlined above.

5.1 Epistemic states and independence

It is probably adequate to say that [AGM85] consider the revision function ∗ an epistemic state (depending on K), as revealed
by the notion of epistemic entrenchment, and its equivalence to a revision function. In [LMS01], the global distance can
probably be seen as (fixed, global) epistemic state. Essentially the critique of such too rigid, fixed, epistemic states resulted
in dynamic states of [DP94] and [DP97]. The approach in [Spo88] incorporated already a dynamic approach. An excellent
short overview of such dynamic revision approaches can be found in [Ker99].

In preferential structures, we might see the relation choosing the normal situations as (again fixed) epistemic state. In
counterfactual conditionals, the distance can again be seen as the underlying epistemic state.

The present authors see the higher order arrows of reactive structures (see e.g., [GS08b]) as expressing epistemic states or
changes of epistemic states. This will be explored in future research by the present authors.

But, we can also see the approaches discussed in this article as an epistemic state, which can perhaps be resumed as: “divide
and conquer”.

References

[AGM85] C.Alchourron, P.Gardenfors, D.Makinson, “On the Logic of Theory Change: partial meet contraction and revision
functions”, Journal of Symbolic Logic, Vol. 50, pp. 510-530, 1985

[CP00] S.Chopra, R.Parikh, “Relevance sensitive belief structures”, Annals of Mathematics and Artificial Intelligence, vol.
28, No. 1-4, pp. 259-285, 2000

[DP94] A.Darwiche, J.Pearl, “On the Logic of Iterated Belief Revision”, in: “Proceedings of the fifth Conference on
Theoretical Aspects of Reasoning about Knowledge”, R.Fagin ed., pp. 5-23, Morgan Kaufman, Pacific Grove, CA,
1994

6



[DP97] A.Darwiche, J.Pearl, “On the Logic of Iterated Belief Revision”, Journal of Artificial Intelligence, Vol. 89, No. 1-2,
pp. 1-29, 1997

[GS08b] D.Gabbay, K.Schlechta, “Reactive preferential structures and nonmonotonic consequence”, to appear in Review of
Symbolic Logic hal-00311940, arXiv 0808.3075

[Ker99] G.Kern-Isberner, “Postulates for conditional belief revision”, Proceedings IJCAI 99, T.Dean ed., Morgan Kauf-
mann, pp.186-191, 1999

[LMS01] D.Lehmann, M.Magidor, K.Schlechta: “Distance Semantics for Belief Revision”, Journal of Symbolic Logic, Vol.66,
No. 1, March 2001, p. 295-317

[Mak09] D.Makinson: “Propositional relevance through letter-sharing” to appear in Journal of Applied Logic, special issue,
J.Delgrande ed.

[Rod97] O.T.Rodrigues: “A methodology for iterated information change”, PhD thesis, Imperial College, London, 1997

[Sch07a] K.Schlechta: “Factorization”, HAL, arXiv.org 0712.4360v1, 2007

[Spo88] W.Spohn, “Ordinal conditional functions: A dynamic theory of epistemic states”. In: W.L.Harper and B.Skyrms,
(eds.), “Causation in Decision, Belief Change, and Statistics”, vol. 2, p.105-134, Reidel, Dordrecht 1988,

7


