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Abstract. - Relaxation of initially out-of-equilibrium rough interfaces in presence of thermal noise
is investigated using Langevin formalism. During thermal equilibration towards the well-known
roughening regime, three scaling regimes observed over three successive ranges of length-scales are
evidenced: thermal roughening (late stage) at small scales, transient smoothening at intermediate
scales and remnant of the initial conditions at large scales. A generalization of the Family-Vicsek
scaling is found for the smoothening regime. A distinctive feature of the transient smoothening
regime resides in the existence of a super-universal exponent, i.e. independent of the considered
model. This approach allows interpreting a series of AFM images of sapphire surfaces showing the
thermal evolution of initially rough step edges.

Roughening of growing surfaces and interfaces is a ubiquitous phenomenon in nature,
ranging from wetting front [1,2], flame propagation [3,4], bacterial growth [5], fluid flows in
porous media [6,7] and fracture [8–10], to cite a few. Extensive theoretical and experimental
studies have shown that these very different systems follow morphological scaling properties
at large scale that can be classified into few universality classes characterized by the values of
scaling exponents [11]. In most cases, the dynamics can be described by a growth Langevin-
type equation:

∂h

∂t
= Φ(~∇h) + ξ(~x, t) (1)

where h(~x, t) is the height of the interface at substrate location ~x and time t, Φ(~∇h) is a
function that defines a particular model, and ξ is a noise term. In the steady regime, where
the interface fluctuations are statistically time invariant, the morphological scaling features
of the surface can be characterized by computing the height-height correlation function
G(∆~x) =

〈

(h(~x +∆~x)− h(~x))2
〉

that scales as G(|∆x|) ∝ |∆x|ζ . The value of the so-called
roughness exponent ζ is found to be the same in very different systems and depends on the
system dimension, the noise correlation, and the symmetry of Φ(~∇h), only [11].

Kinetic roughening from initially flat conditions has been widely investigated, both exper-
imentally [12–15] and theoretically [16–19]. The time evolution G(∆x, t) of the height-height
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Fig. 1: Sketch and notations introduced in the text: The frame {~ex, ~ey} is chosen so that ~ex and
~ey are perpendicular and parallel to the mean step edges respectively, ϕ denotes the angle between
terrace and the mean surface plane.

correlation function was shown to obey the dynamic scaling:

GRough(∆x, t) = t2βRf(∆x/t1/z)

where f(u) =

{

f0 × (u/u0)
2ζ if u≪ u0

f0 if u≫ u0

(2)

where βR and z refer to the growth exponent and the dynamic exponent, respectively. Two
distinct scaling are defined: (i) Family-Vicsek scaling where the three exponents are related
through z = ζ/βR [16] and (ii) anomalous scaling where this last relation is not fulfilled
[18]. While the constants f0 and u0 depend on the precise form of Φ and ξ, the exponents
ζ, z and βR (or ζ and z only for Family-Vicsek scaling) allow to characterize entirely the
universality class of the considered model.

Beyond this simple situation of perfectly smooth initial conditions (hardly relevant in
experiments), initiating the growth (or smoothening) from various non equilibrium initial
conditions induces transient regimes that, as shown here, may exhibit also universal scaling
properties, the analysis of which allows extracting valuable information on the system. In this
respect, Bustingorry et al. [20–22] have recently considered the case of an interface driven
out from its initial thermal equilibrium by modifying suddenly the working ”temperature”,
i.e. the variance of the noise term in Eq. 1. They evidenced a complex aging dynamics
reminiscent of glassy systems. Here, we consider the transient flattening regime from an
initially highly rough surfaces, and derive an analytical solution for its dynamics. A new
universal dynamic scaling applying far from equilibrium is evidenced. The predictions are
then compared to experimental AFM images showing the thermal relaxation of initially
rough sapphire surfaces. The time evolution of the step height correlation function can be
perfectly reproduced and values of both the step stiffness and the atom hopping rate are
deduced.

Specifically, we consider a vicinal surface as depicted in Fig. 1 where (i) the step den-
sity - controlled by the vicinal angle - is low enough so that step-step interaction can be
neglected and (ii) matter is not conserved along the steps. This situation corresponds to
the one investigated experimentally and will allow for quantitative comparisons between
model’s predictions and experiments. However, as will be discussed, the out-of-equilibrium
scalings obtained thereafter appear to be generic and can be extended to other smoothening
dynamics.

For the considered case (no step-step interaction, no matter conservation along steps),
the time evolution of step profiles can be described by Langevin Eq. 1 with [23–26]:

Φ(∇h) = ν
∂2h

∂x2
, 〈ξ(x, t)ξ(x′, t′)〉 = Dδ(x− x′)δ(t− t′) (3)
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where ν = Γη/kT and D = 2Γ, with Γ the atom hopping rate, η the stiffness of the step edge,
T the temperature, and δ(u) the usual delta function. This equation is classically referred to
as the one-dimensional Edward-Wilkinson (1d-EW) equation. To solve this equation analyt-
ically, we first discretize the step profile: hnx

(t) = h(x = nxax, t) (nx = {−N/2, ..., N/2− 1}
with ax the lattice constant) and call h̃q(t) = (1/

√
N)

∑

nx
hny

(t) exp(−2πiq nx

N ) the x−
discrete Fourier transform of h. The solution of Eq. 1 writes:

h̃q(t) = exp

(

− 4π2

a2xN
2
νq2t

)(

h̃q(0) +

∫ t

0

η̃q(u) exp

(

4π2

a2xN
2
νq2u

)

du

)

(4)

where ξ̃q(t) and h̃q(0) are the x-Fourier transform of ξ(x, t) and of the initial step profile
h(x, 0), respectively. The complete time evolution of the spatial correlation function G(∆x, t)
is deduced:

G(∆x, t) =

2DaxN

π2ν

N/2
∑

q=1

1

q2

(

1− exp

(

− 8π2

a2xN
2
νq2t

))(

1− cos(2π∆x
q

axN
)

)

+
4

N

N/2
∑

q=1

|h̃q(0)|2 exp
(

− 8π2

a2xN
2
νq2t

)(

1− cos(2π∆x
q

axN
)

)

,

(5)

that separates into the sum of two terms:

G = GRough(∆x, t) +GSmooth(∆x, t) (6)

The first term, GRough(∆x, t), describes the roughening of an initially flat step under the
action of the thermal noise ξ and takes the dynamic scaling given by Eq. 2 with 1d-EW
exponents {ζ = 1/2, βR = 1/4, z = ζ/βR = 2} and parameters {f0 ∝ Dν−1/2, u0 ∝ ν1/2}.
The second term, GSmooth(∆x, t), describes the smoothening of the initial profile h(y, t =
0) due to the effective line tension ν in absence of thermal fluctuations. It is then the
competition between the disorder in the initial front morphology and the elastic term that
sets universal dynamic scaling in this latter case. Let us consider the case of an initially
uncorrelated profile with zero average and σ2

0 variance, the dynamics of which is described
by the 1d-EW Eq. 3. Then, GSmooth(∆x, t) is found to take the following scaling form :

GSmooth(∆x, t) = t−2βSg(∆x/t1/z)

where g(v) =

{

g0 × (v/v0)
2 if v≪ v0

g0 if v≫ v0
,

(7)

where the scaling exponents are βS = 1/4, z = 2, and the parameters v0 and g0 are given by
v0 ∝ ν1/2 and g0 ∝ σ2

0axν
−1/2, respectively. Note the existence of an exponent of 2 at small

scales, instead of 2ζ in the case kinetic roughening starting from initially flat conditions (Eq.
2). This dynamic scaling was directly confronted to direct simulation: Starting at t = 0 with
an initial uncorrelated random front h0 of 1024 points with zero average and unit variance,
the time evolution of the profile h(x, t) is computed over t = 8192 units by solving Eq. 3
using (i) a finite difference scheme (time step δt = 0.1) and (ii) periodic boundary conditions
(h(0) = h(L)). The time evolution of the height-height correlation function G(∆x, t) is then
computed and averaged over 50 noise realizations for the initial profile h0. It is found to
obey perfectly the dynamic smoothening scaling given by Eq. 7 with βS = 1/4 and z = 2
(Fig. 2a), as expected.

p-3



T.T.T. Nguyen D. Bonamy L. Phan Van J. Cousty L. Barbier

Similar analytical development holds for any linear growth model, with conserved or not
noise ξ, and yields Equation 7. The two scaling exponents βS and z are found to be related
through:

βS =
1

2z
(8)

This relation is analogue to Family-Viscek’s one, βR = ζ/z, that intervenes in kinetic rough-
ening from initially flat conditions (see Eq. 2). For instance, let us consider the situation of
an initially rough profile that relaxes by diffusion along itself in presence of a conservative
noise. Its dynamics is then described by a Langevin growth equation (Eq. 1) with [27]:

Φ(∇h) = −K
∂4h

∂x4
, 〈ξ(x, t)ξ(x′, t′)〉 = D

∂

∂x
δ(x − x′)δ(t− t′), (9)

As presented in fig. 2b, the numerical solutions of this stochastic equation are found to obey
the kinetic smoothening scaling given by Eqs. 7 and 8 with the dynamic exponent z = 4
expected for linear conservative dynamics and conservative noise [11].

Scaling and relation given by Eqs. 7 and 8 are also conjectured to hold in presence of a
non-linear term, like in KPZ equation for instance. In this latter case, the dynamic exponent
z that intervenes within the out-of-equilibrium smoothening regime (Eqs. 7 and 8) can be
different from that in the standard Family Viseck roughening scaling starting from initially
flat conditions (Eq. 7) [28].

Back to linear growth models, from the forms of GRough(∆x, t) and GSmooth(∆x, t), -
given by Eq. 2 and Eq. 7 respectively -, the global behaviour of G(∆x, t) is deduced [28]. It
is sketched in Fig. 3. Depending on the time t, two cases can be distinguished:

- For small time t ≪ t×, the variation of the spatial correlation function G(∆x, t) can
be decomposed into three regimes. At small scales, thermal equilibrium is reached and
GRough(∆x, t) is the dominant term in G(∆x, t). At medium and large scales, G(∆x, t)
results from the smoothening of the initial roughness and GSmooth(∆x, t) dominates:

∆x ≪ λ(t) G(∆x, t) ∝ ∆x2ζ

λ(t) ≪ ∆x ≪ ξ(t) G(∆x, t) ∝ t−2(βS+1/z)∆x2

∆x ≫ ξ(t) G(∆x, t) ∝ t−2βS , (10)

with λ(t) ∝ t(βS+1/z)/(1−ζ) and ξ(t) ∝ t1/z.

- For large time t ≫ t×, the influence of the initial conditions h(x, t = 0) is not seen
anymore. The spatial correlation function G(∆x, t) is then given by GRough(∆x, t) for
all ∆x with two power-law regimes:

∆x ≪ ξ(t) G(∆x, t) ∝ ∆x2ζ

∆x ≫ ξ(t) G(∆x, t) ∝ t2βR , (11)

with ξ(t) ∝ t1/z .

The crossover t× between these two regimes is given by:

t× =

(

g0v
2
0

f0u2
0

)1/2(βR+βS)

(12)

Eqs. 10, 11 and 12 allow to describe entirely the dynamic scaling of a one-dimensional
interface described by a Langevin equation (Eq. 1) with any linear growth model Φ and
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Fig. 2: Dynamic scaling of the height-height correlation function GSmooth(∆x, t) in the out-of-
equilibrium smoothening regime for (a) EW equation (Eq. 3) with ν = 1, and (b) Langevin equation
incorporating surface diffusion and conservative noise (Eq. 9) with K = 1. The scaling exponents
are found to be {z = 2, βS = 1/2z = 1/4} in (a), and {z = 4, βS = 1/2z = 1/8} in (b). In both cases,
the axis are logarithmic and the straight plain lines correspond to power-laws with an exponent of
2. The initial condition h(t = 0) is a rough uncorrelated profile of uniform distribution, zero average
and σ2

0 = 1 variance. The various symbols correspond to successive time steps, namely t = 2 (o),
t = 8 (⋆), t = 32 (⋄), t = 128 (⊲), t = 512 (△), t = 2048 (�).
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Fig. 3: Schematic illustration of the spatial correlation function describing the time evolution of a
step profile starting from an initially uncorrelated rough profile h(x, t = 0) with zero average and
σ2

0 variance. (a) Smoothing regime observed for small times (see Eq. 10). (b) Roughening regime
observed at large times (see Eq. 11).

conserved or not noise ξ. In the case of a vicinal step described by the 1d-EW Eq. 3, t× can
be related to σ0, D and ν: t× = σ2

0ax/D.

To illustrate the validity and richness of the above approach, it is now applied to analyse
AFM observations during the smoothening of vicinal surfaces of oxide surfaces. The samples
studied here consist in square slabs of sapphire (Le Rubis S.A., 10mm side, 0.2mm thick)
with a surface oriented close to the (1, 1̄, 0, 2) plane (misorientation ≃ 0.06◦). They present
important technological interest as substrate for nanostructures, magnetic thin layers or gi-
ant magnetoresistance devices [29–31]. These surfaces are first chemo-mechanically polished
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to an optical grade, and carefully cleaned in an ultrasonic bath. As a result, one gets an
out-of-equilibrium rough vicinal surface. A series of annealing in air (essential to maintain
the surface stoichiometry) at constant temperature for increasing cumulated durations are
then performed in an oven. After each annealing step, the sample is cooled down to room
temperature (cooling rate of 30K/min) and the vicinal surface is imaged via a Molecular
Imaging Pico+ AFM in contact mode with gold coated Si3N4 cantilevers (0.58N/m stiff-
ness). Special attention was paid so that our setup allows for an accurate and reproducible
positioning of the AFM tip onto the surface and allows to image the very same area after
each annealing treatment (see e.g. [32] for details). This prevents dispersion due to local
variations of the surface roughness.

Depending on the temperature T , two regimes can be observed. At low temperature
973K ≤ T ≤ 1173K, the evolution of the surface morphology is governed by the coarsening
of 2D islands through anisotropic Ostwald ripening during the experimental time. This
regime was studied in a previous paper [32] and will not be discussed further. At high
temperature 1173K ≤ T ≤ 1473K, all the islands shrink up and overhangs in steps disappear
rapidly, in less than one hour for T = 1173K. After this initial regime, the evolution of the
surface morphology is governed by the smoothening of the vicinal steps.

AFM typical images of the vicinal surface taken after cumulated annealing time are pre-
sented in Fig. 4. The meandering lines are the steps defining the terraces. Contrast enhance-
ment, image analysis and edge detection allow measuring h(m,x, t) and then computing
G(∆x, t) = 〈(h(m,x +∆x, t)− h(m,x, t))2〉m,x where the average has been performed over
all edges of a given image to improve the statistics. Note that the mean distance between
two successive steps remains constant and pretty large (≃ 750 nm). This suggests that the
morphological fluctuations of a given step are independent from the neighbouring ones, as
assumed in the 1-d EW description (Eq. 1 and 3).

The experimental correlation functions are plotted in Fig. 5. They exhibit the scaling
given by Eq. 7 (Inset of Fig. 5) expected in the far-from-equilibrium smoothening regime.
Initial conditions are set by the image taken at t0 = 5400 s, the step profiles of which give
the initial Fourier amplitudes |h̃q|2(t0). The subsequent experimental correlation functions
are then fitted successfully using the analytical expression (Eq. 5) (continuous lines in Fig.
5). This provides a severe test in favor of the present extension of Langevin formalism to far
out-of-equilibrium systems.

Note that the linear regime expected at thermal equilibrium is not apparent after more
than 10h annealing. From the fitted values ν = 7.2×10−2 nm2.s−1 andD = 5.3×10−2 nm3.s−1

(Fig. 5), the initial roughness σ0 ≃ 100 nm, and from the pixel size ax = 14.6 nm of the im-
ages, one estimates the time t× to pass from the out-of-equilibrium smoothening regime to
the equilibrium roughening regime: t× = σ2

0ax/D ≃ 32 days. This makes this last regime dif-
ficult to observe experimentally and emphasizes all the importance of the out-of-equilibrium
extension of the Langevin formalism to determine the physical parameters in oxide surfaces.
This also means that the mechanisms of diffusion on the sapphire surface could be identified
before those responsible for the atom mobility in bulk alumina [33]

In 1d Langevin linear growth models, the dynamic exponent z depends usually whether
or not the dynamics and the noise are conservative (see [11] for review). In particular, z = 4
for linear conservative dynamics and conservative noise that is expected at the onset of
active diffusion [34] and commonly observed in metallic surfaces [35]. Such a regime is not
observed for the (1, 1̄, 0, 2) sapphire surfaces investigated here. Two origins of these non-
conservative processes can be invoked: (i) The channeled structure of terraces which was
shown to influence the Ostwald ripening at low T [32]; These channels parallel to [1̄, 1, 0, 1] ,
i.e. roughly perpendicular to the step edge, make the mobility along the step edge difficult.
As a result, atoms emitted from the step are diffusing onto the terraces then captured
on one step at a different site (detachment/attachment mechanism); (ii) The exchange of
oxygen atoms, during annealing, with the surrounding atmosphere, evidenced by a different
morphology of terraces after UHV annealing at 1273K [36]. This makes the detailed extension
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Fig. 4: 5 × 5 µm2 contact mode AFM images of the topography of a (11̄02) vicinal surface of
sapphire after a) 5400s, b) 12600s, c) 23400s et d) 37800s of annealing at 1273K. The axis ex
coincides with the [1̄, 1, 0, 1] direction. Note the defect (black circles) in (a)-(c) that proves the
accurate repositioning of the AFM tip between two successive annealing processes.

of the present work to higher dimensions of high interest. It would also be important to see
to which extent the scaling proposed here (Eqs. 7, 10 and 11) holds in presence of non-linear
terms in the growth models [28]. Work in this direction is currently under progress.

In conclusion, we have derived here an analytical solution for the dynamics of an ini-
tially out-of-equilibrium surface, described by a linear Langevin-like growth equation. For
an initially uncorrelated rough profile, the correlation functions during the smoothening
phase exhibit a universal dynamic scaling (Eq. 7): In the intermediate regime, the correla-
tion function scales with the distance with an exponent of 2 while at large distances, the
correlation function remains a plateau. The time scaling exponents for the crossover is 1/z
and −2βS for the plateau level, where z is dynamic exponent and βS relates to z through
βS = 1/2z. As for other critical systems, these two scaling exponents are function of the
correlation range of the disorder. It is then worth noting that in the smoothening process,
the relevant disorder is set by the initial profile. In other words, the initial conditions will

define the universality class. For example, it is interesting to consider the case on an initially
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Fig. 5: (a) Spatial correlation function G(∆x, t) of the step edges of the (11̄02) alumina surface for
various cumulative durations t of annealing at T = 1273K. The axis are logarithmic. The symbols
correspond to experiments while the continuous lines corresponds to the analytical expression given
Eq. 5 with ν = 7.2 × 10−2 nm2.s−1 and D = 5.3 × 10−2 nm3.s−1. (b) Collapse using Eq. 7 with
scaling exponents {z = 2, βS = 1/2z = 1/2}.
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self-affine profile h(x, t = 0) characterized by an initial roughness exponent ζ0 . This situa-
tion is encountered in the evolution of a profile at thermal equilibrium T0 after a thermal
quenching at a new temperature T considered theoretically in [20–22] or starting from the
various available morphologies reached after growth [37–39]. Then the universality class of
the smoothening is a function of ζ0, and, e.g. z = 2 and βS = −ζ0/2 in a smoothening
process described by the 1d-EW equation (Eq. 3). As a consequence, the study of kinetic
smoothening in experimental systems where the initial morphology can be varied opens
interesting perspectives in the understanding of critical phenomena.
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