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Scaling law for out-of-equilibrium smoothening of rough vicinal steps. Application to

oxide surfaces during annealing

T.T.T. Nguyen,1 D. Bonamy,1 L. Phan Van,1 J. Cousty,1 and L. Barbier1

1CEA, IRAMIS, SPCSI, F-91191 Gif sur Yvette, France

(Dated: April 14, 2009)

Langevin formalism approach is used to derive analytically the time evolution of the correlation
function of steps in vicinal surfaces during annealing back to thermal equilibrium. A new generic
scaling form is obtained for smoothening far-from-equilibrium one dimension objects. This approach
allows interpreting a series of AFM images of sapphire surfaces showing the thermal evolution of
initially rough step edges. From this analyse, we deduce that the step smoothening for (1, 1̄, 0, 2)
vicinal surfaces is governed by surface diffusion via a detachment-attachment mechanism during
annealing at 1273K (≃ 0.6Tmelting).

PACS numbers: 05.70.Np;64.60.Ht;68.35.Ct;68.37.-d;

Understanding how the competition between elasticity
and disorder sets the morphological dynamics of inter-
faces is a central theme of current research in statistical
physics. It appears in the context of surface growth [1, 2],
thermal fluctuations of vicinal surfaces [3], domain wall
motion in magnetic [4] or ferroelectric [5] materials, flux
lines in superconductors [6], cracks in solids [7], among
other realizations. One of the most striking results in this
field is the observation of spatio-temporal scale-invariant
features characterized by exponents remarkably similar
in systems with no apparent connection between them
(see [1] for a review). Guided by this universality, it was
then suggested that the interface motion should be de-
scribed by the simplest possible Langevin equations com-
patible with the symmetries of the problem [8].

This Langevin formalism was successfully applied to
describe the fluctuations of crystal surfaces at thermal
equilibrium. This approach was used to interpret the spa-
tial and temporal correlation functions measured from
STM images [3, 9, 10, 11] and allowed to measure quan-
tities as e.g. the elementary kink energy [9, 10] or atomic
diffusion energies [3, 11]. This is central for understand-
ing and predicting the stability of surfaces/interfaces,
and therefore the stability of associated nanostructure
together with their physical and reactivity properties.

Beyond thermal equilibrium studies, one may observe
the evolution towards stability of initially flat (low T
equilibrated surface below its roughening transition TR

[12]) or rough surfaces (after initial preparation, high T
annealing, growth or other surface processes). Such sit-
uations are the most common and in the following we
show that the Langevin formalism approach may be ex-
tended to give interpretation of these very far from equi-
librium states, leading to the determination of physical
parameters (surface tension, relaxation time constant).
For illustration of the method we applied this Langevin
formalism to the experimental study of a vicinal surface
of oxides. Such surfaces are difficult to equilibrates as
long annealing at high temperature are needed during
which it is difficult to maintain the stoichiometry. In ad-

dition, very few studies, except for scarcely AFM inves-
tigations [13], concern the surfaces of insulating oxides.
To follow the smoothening of the atomic steps, we derive
analytically the time evolution of the spatial correlation
function of the step position. This one is found to ex-
hibit a generic form that generalizes the Family-Viseck
scaling classically used to describe roughening of initially
flat interfaces. The predictions are then compared to ex-
perimental results on vicinal (1, 1̄, 0, 2)-sapphire surfaces.
The time evolution of the step height correlation function
can be perfectly reproduced and values of both the step
stiffness and the atom hopping rate are deduced.

Langevin equation of the out-of-equilibrium interface

dynamics – Specifically, we consider a vicinal surface such
as the one depicted in Fig. 1. The vicinal angle being
small, the step density is low allowing to neglect the
step-step interaction and allowing the use of a 1-d model.
The morphological evolution is characterized by the se-
ries displacement h(m, y, t) of the step numbered m (for
an ideally ordered system, x = mL, L being the nominal
step-step distance) at time t and location y. Within the
capillary wave model, the Hamiltonian H of an isolated
step such as the ones represented on Fig. 1 can be written
[14]:

H =

∫

η

2

(

∂h

∂y

)2

dy (1)

where η refers to the stiffness parallel to the step edge.
In the Langevin formalism, the step profile is assumed
to relax locally to minimize its energy. The back force
depends on the diffusion processes. Without matter con-
servation, i.e. for evaporation-condensation of atoms at
isolate steps, this force is simply proportional to the en-
ergy gradient δH/δh(y), and the 1D Langevin equation
takes the form of an Edwards-Wilkinson equation [9, 10]:

∂h(y)

∂t
=

ηΓ

kT

∂2h

∂y2
+ ξ(y, t) (2)

where Γ denotes the atom hopping rate and ξ(y, t) is a
noise term allowing for thermal fluctuations. This noise is
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FIG. 1: Sketch and notations introduced in the text: The
frame {~ex, ~ey} is chosen so that ~ex and ~ey are perpendicular
and parallel to the mean step edges respectively, ϕ denotes
the angle between terrace and the mean surface plane.

uncorrelated in space and time and its correlation func-
tion can be written:

〈ξ(y′, t′)ξ(y, t)〉 = 2Γδ(y′ − y)δ(t′ − t) (3)

Note that the very same constant Γ appears in Eqs. 2
and 3 making the principle of energy partition at thermal
equilibrium satisfied.

To characterize the dynamics of a fluctuating in-
terface h(y, t), one usually computes the time evolu-
tion of the spatial correlation function G(∆y, t) =
〈

(h(y + ∆y, t) − h(y, t))2
〉

. This function can be ana-
lytically derived from Eq. 2. Let us first discretize
the step profile: hny(t) = h(y = nyay, t) (ny =
{−N/2, ..., N/2 − 1} with ay the lattice constant) and

call h̃q(t) = (1/
√

N)
∑

ny
hny(t)e−2πiq

ny
N the y− discrete

Fourier transform of h. η̃q(t) is similarly defined. Then
Eq. 2 writes:

∂h̃q(t)

∂t
= − 4π2

a2
yN

2
νqh̃q(t) + η̃q(t) (4)

with ν = ηΓ/kT . Its solution is given by:

h̃q(t) = e
−

4π2

a2
yN2

νq2t
(

h̃q(0) +

∫ t

0

η̃q(u)e
4π2

a2
yN2

νq2u
du

)

(5)
where h̃q(0) is the y-Fourier transform of the step profile
h(y, 0) at time t = 0. Back into real space, the step profile
can be computed, and the complete time evolution of the
spatial correlation function G(∆y, t) is deduced:

G(∆y, t) =

2ΓayN

π2ν

N/2
∑

q=1

1

q2

(

1 − e
−

8π2

a2
yN2

νq2t
) (

1 − cos(2π∆y
q

ayN
)

)

+
4

N

N/2
∑

q=1

|h̃q|2(0)e
−

8π2

a2
yN2

νq2t
(

1 − cos(2π∆y
q

ayN
)

)

(6)

The form of G can now be discussed. It is written as the
sum of two terms G = Grough(∆y, t) + Gsmooth(∆y, t).
The first term Grough(∆y, t) describes the roughening of

an initially flat step under the action of the thermal noise
ξ. This situation has been extensively studied in the con-
text of interface roughening problems and Grough(∆y, t)
was shown to take the specific form, so-called Family-
Viseck form[15]:

Grough(∆y, t) = t2βf(∆y/t1/z)

where f(u) =

{

f0(u/u0)
2ζ if u≪ u0

f0 if u≫ u0

(7)

Where the exponents ζ = 1/2, β = 1/4 and z = ζ/β = 2
refer to the roughness, growth and dynamic exponents,
respectively. The two parameters f0 and u0 can be related
to the two parameters ν and Γ of the Langevin equation
(Eq. 2): f0 ≃ 1.5Γν−1/2 and u0 ≃ 1.7ν1/2. The second
term Gsmooth(∆y, t) of Eq. 6 describes the smoothen-
ing of the initial profile h(y, t = 0) because of the line
tension ν in absence of thermal fluctuations. Without
loss of generality, let us consider an initially rough un-
correlated profile with zero average and variance set to
σ2

0
: 〈h(y, t = 0)h(y′, t = 0)〉 = σ2

0
δ(y − y′). Gsmooth is

then given by Gsmooth = (2σ2

0
/N)

∑

q e
−

8π2

a2
yN2

νq2t
(1 −

cos(2π∆y(q/ayN))) which takes the new generic form
(Note the minus sign of the exponents and the abscence
of the ζ exponent):

Gsmooth(∆y, t) = t−2βg(∆y/t1/z)

where g(v) =

{

g0(v/v0)
2 if v≪ v0

g0 if v≫ v0

(8)

Where the two parameters g0 and v0 can be related to
the two parameters ν and Γ of the Langevin equation
(Eq. 2): g0 ≃ 0.2σ2

0
ayν−1/2 and v0 ≃ 2.9ν1/2.

From the forms of Grough(∆y, t) and Gsmooth(∆y, t),
- given by Eq. 7 and Eq. 8 respectively -, one can de-
duce the global behaviour of G(∆y, t). This is sketched
in Fig. 2. Depending on the time t, two cases can be
distinguished:

• For small time, i.e. for t ≪ σ2

0ay/Γ), the varia-
tion of the spatial correlation function G(∆y, t) can
be decomposed into three regimes. At small scales,
thermal equilibrium is reached and Grough(∆y, t)
dominates G(∆y, t). At medium and large scales,
G(∆y, t) results from the smoothening of the ini-
tial roughness and Gsmooth(∆y, t) dominates:

∆y ≪ λ(t) G(∆y, t) ≈ (Γ/ν)∆y

λ(t) ≪ ∆y ≪ ξ(t) G(∆y, t) ≈ 0.025σ2

0
ay(νt)−3/2∆y2

∆y ≫ ξ(t) G(∆y, t) ≈ 0.2σ2

0ay(νt)−1/2 (9)

with λ(t) ≈ Γ

νσ2

0
a
1/2

y

(νt)3/2 and ξ(t) ≈ (νt)1/2.

• For large time, i.e. for t ≫ σ2
0ay/Γ, the influence

of the initial conditions h(y, t = 0) is not seen any-
more. The spatial correlation function G(∆y, t) is
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FIG. 2: Schematic illustration of the spatial correlation func-
tion describing the time evolution of a step profile starting
from an initially uncorrelated rough profile h(y, t = 0) with
zero average and σ2

0 variance. (a) Smoothing regime observed
for small times (see Eq. 9). (b) Roughening regime observed
at large times (see Eq. 11).

then given by Grough(∆y, t) for all ∆y with two
power-law regimes:

∆y ≪ ξ(t) G(∆y, t) ≈ (Γ/ν)∆y (10)

∆y ≫ ξ(t) G(∆y, t) ≈ 1.5(Γ/ν)(νt)1/2

with ξ(t) ≈ (νt)1/2.

Experiments – This can now be confronted to ob-
servations performed on the smoothening dynamics of
vicinal surfaces in oxide surfaces. The samples studied
here consist in square slabs of sapphire (Le Rubis S.A.,
10mm side, 0.2mm thick) with a surface oriented close
to the (1, 1̄, 0, 2) plane (misorientation ≃ 0.06◦). They
present important technological interest as substrate for
nanostructures, magnetic thin layers or giant magne-
toresistance devices [17]. These surfaces are first chemo-
mechanically polished to an optical grade, and carefully
cleaned in an ultrasonic bath. As a result, one gets a
rough out-of-equilibrium vicinal surface. A series of an-
nealing in air (essential to maintain the surface stoichiom-
etry) at constant temperature for increasing cumulated
durations are then performed in an oven. After each an-
nealing phase, the sample is cooled down to room temper-
ature (cooling rate of 30K/min) and the vicinal surface
is imaged via a Molecular Imaging Pico+ AFM in con-
tact mode with gold coated Si3N4 cantilevers (0.58 N/m
stiffness). Special attention was paid so that our setup al-
lows for an accurate and reproducible positioning of the
AFM tip onto the surface and allows to image the very

FIG. 3: 5 × 5 µm2 contact mode AFM images of the topog-
raphy of a (11̄02) vicinal surface of sapphire after a) 5400s,
b) 12600s, c) 23400s et d) 37800s of annealing at 1273K. The
axis ex coincides with the [1̄, 1, 0, 1] direction. Note the defect
(black circles) in (a)-(c) that proves the accurate repositioning
of the AFM tip between two successive annealing processes.

same area after each annealing treatment (see e.g. [16]
for details).

Depending on the temperature T , two regimes can
be observed. At low temperature 973 K ≤ T ≤ 1173 K,
the evolution of the surface morphology is governed by
the coarsening of 2D islands through anisotropic Oswald
ripening during the experimental time. This regime was
studied in a previous paper [16] and will not be discussed
thereafter. At high temperature 1173 K ≤ T ≤ 1473 K,
all the islands shrink up and overhangs in steps disappear
rapidly, in less than one hour for T = 1173 K. After this
initial regime, the evolution of the surface morphology
is governed by the smoothening of the vicinal steps that
can be described by Eq. 2.

Typical AFM images of the vicinal surface taken after
increasing cumulated annealing durations are presented
in Fig. 3. The meandering lines are the steps defining the
terraces. Contrast enhancement, image analysis and edge
detection allow measuring h(m, y, t) and then comput-
ing G(∆y, t) = 〈(h(m, y + ∆y, t)−h(m, y, t))2〉m,y where
the average has been performed over all edges of a given
image to improve the statistics. Note that the mean dis-
tance between two successive steps remains constant and
pretty large (≃ 750 nm). This suggests that the morpho-
logical fluctuations of a given step is independent from
the neighbouring ones, as assumed in the Langevin de-
scription proposed in Eq. 2.
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FIG. 4: spatial correlation function G(∆y, t) of the step edges
of the (11̄02) alumina surface for various cumulative durations
t of annealing at T = 1273K K. The axis are logarithmic.
The symbols correspond to experiments while the continuous
lines corresponds to the analytical expression given Eq. 6 with
ν = 7.2 × 10−2 nm2.s and Γ = 5.3 × 10−2 nm3.s

The experimental correlation functions are plotted in
Fig. 4. They exhibit the scaling given by Eq. 8 (Inset of
Fig. 4) expected in the far-from-equilibrium smoothen-
ing regime. Initial conditions are set by the image taken
at t0 = 5400 s, the step profiles of which give the initial
Fourier amplitudes |h̃q|2(t0). The subsequent experimen-
tal correlation functions are then fitted successfully using
the analytical expression (Eq. 6) (continuous lines in Fig.
4). This provides a severe test in favour of the present ex-
tension of Langevin formalism to far out-of-equilibrium
systems.

Note that the linear regime expected at thermal equi-
librium is not apparent after more than 10h anneal-
ing. From the fitted values ν = 7.2 × 10−2 nm2.s−1 and
Γ = 5.3 × 10−2 nm3.s−1 (Fig. 4), the initial roughness
σ0 ≃ 100 nm, and from the pixel size ay = 14.6 nm
of the images, one estimates the time τeq to pass from
the out-of-equilibrium smoothening regime to the equi-
librium roughening regime: τeq = σ2

0ay/Γ ≃ 32 days.
This makes this last regime difficult to observe experi-
mentally and emphasizes all the importance of the out-
of-equilibirum extension of the Langevin formalism to de-
termine the physical parameters in oxyde surfaces.

In summary, we used here Langevin formalism to de-
rive analytically the time evolution of the spatial cor-
relation function of initially rough steps of vicinal sur-
faces relaxing toward thermal equilibrium. Far from equi-
librium, this one is found to exhibit a generic scaling
(Eq. 8) independent of the details of the considered sys-
tem provided that the dynamics remains linear. On the
other hand, the value of the exponents {β, z} depends
whether the dynamics and the noise are conservative or

not (see [1] for review). In particular they are found
to be {β = 1/8, z = 4} for conservative dynamics and
noise that is expected at the onset of active diffusion [3]
and commonly observed in metallic surfaces [11]. Such
a regime is surprisingly not observed for the (1, 1̄, 0, 2)
sapphire surfaces investigated here. Two origins of these
non-conservative processes can be invoked: (i) The chan-
nelled structure of terraces which was shown to influence
the Ostwald ripening at low T [16]; These channels par-
allel to [1̄, 1, 0, 1] and roughly perpendicular to the step
edge makes the mobility along the step edge difficult. As
a result, atoms emitted from the step are diffusing on the
terraces then captured on the same step at a different site
(detachment/attachment mechanism); (ii) The exchange
of oxygen atoms, during annealing, with the surrounding
atmosphere, evidenced by a different morphology of ter-
races after UHV annealing at 1273K [18]. This makes the
extension of the present work to the various conservative
cases and to higher dimensions of high interest. Work in
this direction is under progress.
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