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A VANILLA RAO–BLACKWELLISATION OF

METROPOLIS–HASTINGS ALGORITHMS

By Randal Douc and Christian P. Robert

Telecom SudParis, Evry, France

CEREMADE, Université Paris Dauphine, and CREST, INSEE, Paris

Casella and Robert (1996) presented a general Rao–Blackwellisa-
tion principle for accept-reject and Metropolis–Hastings schemes that
leads to significant decreases in the variance of the resulting estima-
tors, but at a high cost in computing and storage. Adopting a com-
pletely different perspective, we introduce instead a universal scheme
that guarantees variance reductions in all Metropolis–Hastings based
estimators while keeping the computing cost under control. We es-
tablish a central limit theorems for the improved estimators and il-
lustrate their performances on toy examples.

1. Introduction. As its accept-reject predecessor, the Metropolis–Has-
tings simulation algorithm relies in part on the generation of uniform vari-
ables to achieve given acceptance probabilities. More precisely, given a target
density f wrt to a dominating measure on the space X , if the Metropolis–
Hastings proposal is associated with the density q(x|y) (wrt the same domi-
nating measure), the acceptance probability of the corresponding Metropolis–
Hastings iteration at time t is

α(x(t), yt) = min

{

1,
π(yt)

π(x(t))

q(x(t)|yt)
π(x(t))q(yt|x(t))

}

when yt ∼ q(yt|x(t)) is the proposed value for x(t+1). In practice, this means
that a uniform ut ∼ U(0, 1) is first generated and that x(t+1) = yt if, and
only if, ut ≤ α(x(t), yt).

Since the uniformity of the ut’s is an extraneous (albeit necessary) noise,
in that it does not directly bring information upon the target f (but only
through its acceptance rate), Casella and Robert (1996) took advantage of
this flow of auxiliary variables ut to reduce the variance of the resulting
estimators while preserving their unbiasedness by integrating out the ut’s
conditional on all simulated yt’s. Unfortunately, this strategy has a non-
negligible cost of O(N2) for a given sample of size N . While extensions have
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be proposed in the literature (Casella and Robert, 1998, Perron, 1999), this
solution is not often considered in practice, in part due to this very cost. The
current paper reproduces the Rao–Blackwellisation argument of Casella and
Robert (1996) by a different representation that allows to reduce the variance
at a fixed computing cost. Section 2 exposes the Rao–Blackwellisation tech-
nique and validates the resulting variance reduction, including a derivation of
the asymptotic variance of the improved estimators, while Section 3 presents
some illustrations of the improvement on toy examples.

2. The Rao–Blackwellisation solution. When considering the out-
come of a Metropolis–Hastings experiment, (x(t))t, and the way it is used in
Monte Carlo approximations,

(1) δ =
1

N

N
∑

t=1

h(x(t)) ,

alternative representations of this estimator are

δ =
1

N

N
∑

t=1

t
∑

j=1

h(yj)Ix(t)=yj
and δ =

1

N

M
∑

i=1

nih(zi) ,

where the yj ’s are the proposed Metropolis–Hastings moves, the zi’s are the
accepted yj ’s, M is the number of accepted yj ’s till time N , and ni is the
number of times zi appears in the sequence (x(t))t. The first representation
is the one used by Casella and Robert (1996), who integrate out the random
elements of the outer sum given the sequence of yt’s. The second represen-
tation is also found in Gȧsemyr (2002), Sahu and Zhigljavsky (1998, 2003)
and is the basis for our construction.

Let us first recall the basic properties of the pairs (zi, ni):

Lemma 1. The sequence (zi, ni) satisfies

1. (zi, ni)i is a Markov chain;
2. zi+1 and ni are independent given zi;
3. ni is distributed as a geometric random variable with probability pa-

rameter

(2) p(zi) :=

∫

α(zi, y) q(y|zi) dy ;

4. (zi)i is a Markov chain with transition kernel Q̃(z,dy) = q̃(y|z)dy and
stationary distribution π̃ such that

q̃(·|z) ∝ α(z, ·) q(·|z) and π̃(·) ∝ π(·)p(·) .
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Proof. We only prove the last point of the lemma. The transition ker-
nel density q̃ of the Markov chain (zi)i is obtained by integrating out the
geometric waiting time, namely q̃(·|zi) = α(zi, ·) q(·|zi) / p(zi) . Thus,

π̃(x)q̃(y|x) =
π(x)p(x)

∫

π(u)p(u)du

α(x, y)q(y|x)
p(x)

= π̃(x)q̃(x|y) ,

where we have used the detailed balance property of the original Metropolis–
Hastings algorithm, namely that π(x)q(y|x)α(x, y) = π(x)q(x|y)α(y, x). This
shows that the Markov chain (zi)i also satisfies a detailed balance property
with respect to π̃, thus that it is π̃-reversible, which concludes the proof.

Since the Metropolis–Hastings estimator δ only involves the zi’s, i.e. the
accepted yt’s, an optimal weight for those random variables would be the im-
portance weight 1/p(zi), leading to the corresponding importance sampling
estimator

δ∗ =
1

N

M
∑

i=1

h(zi)

p(zi)
,

but this quantity is usually unavailable in closed form and needs to be es-
timated by an unbiased estimator. The geometric ni is the obvious solution
that is used in the original Metropolis–Hastings estimate, but solutions with
smaller variance also are available, as shown by the following results:

Lemma 2. If (yj)j is an iid sequence with distribution q(y|zi), the quan-
tity

ξ̂i = 1 +
∞
∑

j=1

∏

ℓ≤j

{1 − α(zi, yℓ)}

is an unbiased estimator of 1/p(zi) which variance, conditional on zi, is lower
than the conditional variance of ni, {1 − p(zi)}/p2(zi).

Proof. Since ni can be written as

ni = 1 +
∞
∑

j=1

∏

ℓ≤j

I {uℓ ≥ α(zi, yℓ)} ,

where the uj ’s are iid U(0, 1), given that the sum actually stops with the
first pair (uj , yj) such that uj ≤ α(zi, yj), a Rao–Blackwellised version of ni
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consists in its expectation conditional on the sequence (yj)j :

ξ̂i = 1 +
∞
∑

j=1

E





∏

ℓ≤j

I {uℓ ≥ α(zi, yℓ)}
∣

∣

∣

∣

∣

∣

(yt)t≥1





= 1 +
∞
∑

j=1

∏

ℓ≤j

P (uℓ ≥ α(zi, yℓ)| (yt)t≥1)

= 1 +
∞
∑

j=1

∏

ℓ≤j

{1 − α(zi, yℓ)} .

Therefore, since ξ̂i is a conditional expectation of ni, its variance is neces-
sarily smaller.

Given that α(zi, yj) involves a ratio of probability densities, α(zi, yj) takes

the value 1 with positive probability and the sum ξ̂i is therefore almost surely
finite. This may however requires far too many iterations to be realistically
computed or it may involve too much variability in the number of iterations
thus required. An intermediate estimator with a fixed computational cost is
fortunately available:

Proposition 1. If (yj)j is an iid sequence with distribution q(y|zi) and
(uj)j is an iid uniform sequence, for any k ≥ 0, the quantity

(3) ξ̂ki = 1 +
∞
∑

j=1

∏

1≤ℓ≤k∧j

{1 − α(zi, yj)}
∏

k+1≤ℓ≤j

I {uℓ ≥ α(zi, yℓ)}

is an unbiased estimator of 1/p(zi) involving an almost sure finite number
of terms. Moreover, for k ≥ 1,

V

[

ξ̂ki

∣

∣

∣ zi

]

=
1 − p(zi)

p2(zi)
− 1 − (1 − 2p(zi) + r(zi))

k

2p(zi) − r(zi)

(

2 − p(zi)

p2(zi)

)

(p(zi)− r(zi)) ,

where p is defined in (2) and r(zi) :=
∫

α2(zi, y) q(y|zi) dy. Therefore, we
have

V

[

ξ̂i
∣

∣

∣ zi

]

≤ V

[

ξ̂ki

∣

∣

∣ zi

]

≤ V

[

ξ̂0i

∣

∣

∣ zi

]

= V [ni| zi] .

The truncation at the k-th proposal thus allows for a calibration of the
computational effort since computing ξ̂ki costs on average k additional simu-
lations of yj and computations of α(zi, yj), when compared with the regular
Metropolis–Hastings weight ni.
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Proof. Define y = (yj)j≥1 and uk:∞ = (uℓ)ℓ≥k. Note that ξ̂0i = ni and

therefore, the conditional variance of ξ̂0i is the variance of a geometric vari-

able. Now, obviously ξ̂k+1
i = E

[

ξ̂ki

∣

∣

∣ zi, y, uk+2:∞

]

; thus, we have

V

[

ξ̂ki

∣

∣

∣ zi

]

= V

[

ξ̂k+1
i

∣

∣

∣ zi

]

+ E

[

V

[

ξ̂ki

∣

∣

∣ zi, y, uk+2:∞

]∣

∣

∣ zi

]

.

To get a closed-form expression of the second term of the rhs, we first intro-
duce a geometric random variable Tk defined by

Tk = 1 +
∞
∑

j=1

∏

ℓ≤j

I {uk+ℓ ≥ α(zi, yk+ℓ)} .

Then, by straightforward algebra, ξ̂ki may be rewritten as

ξ̂ki = C +

(

k
∏

ℓ=1

{1 − α(zi, yj)}
)

Tk+2I{uk+1 > α(zi, yk+1)}

where C does not depend on u1, . . . , uk+1. Thus,

V

[

ξ̂ki

∣

∣

∣ zi, y, uk+2:∞

]

=

(

k
∏

ℓ=1

{1 − α(zi, yj)}2

)

T 2
k+2α(zi, yk+1) {1 − α(zi, yk+1)} ,

Taking the expectation of the above expression, we obtain

E

(

V

[

ξ̂ki

∣

∣

∣ zi, y, uk+2:∞

])

= (1 − 2p(zi) + r(zi))
k
(

2 − p(zi)

p2(zi)

)

(p(zi) − r(zi)) ,

which concludes the proof.

Using those Rao–Blackwellised versions of δ brings an asymptotic im-
provement for the estimation of Eπ[h(X)], as shown by the following result
which, for any M > 0, compares the estimators (k ≥ 0)

δkM =

∑M
i=1 ξ̂

k
i h(zi)

∑M
i=1 ξ̂

k
i

.

For any positive function ϕ, we denote Cϕ = {h; |h/ϕ|∞ < ∞} the set of
functions bounded by ϕ up to a constant and we assume throughout that
the reference (if unavailable) importance sampling estimator is sufficiently
well-behaved, in that there exist positive functions ϕ ≥ 1 and ψ such that

∀h ∈ Cϕ,
∑M
i=1 h(zi)/p(zi)
∑M
i=1 1/p(zi)

P−→ π(h)(4)

∀h ∈ Cψ,
√
M

(

∑M
i=1 h(zi)/p(zi)
∑M
i=1 1/p(zi)

− π(h)

)

L−→ N (0,Γ(h))(5)
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Theorem 1. Under the assumption that π(p) > 0, the following con-
vergence properties hold:

i) If h is in Cϕ, then

δkM
P−→M→∞ π(h)

ii) If, in addition, h2/p ∈ Cϕ and h ∈ Cψ, then

√
M(δkM − π(h))

L−→M→∞ N (0, Vk[h− π(h)]) ,(6)

where Vk(h) := π(p)
∫

π(dz)V
[

ξ̂ki

∣

∣

∣ z

]

h2(z)p(z) + Γ(h).

Proof. We will prove that, for all g ∈ Cϕ,

(7) M−1
M
∑

i=1

ξ̂ki g(zi)
P−→ π(g)/π(p) .

Then, i) directly follows from (7) applied to both g = h and g = 1. Now, de-

note by Fi the σ-field Fi := σ(z1, . . . , zi+1, ξ̂
k
1 , . . . , ξ̂

k
i ). Since E

[

ξ̂ki g(zi)
∣

∣

∣Fi−1

]

=

g(zi)/p(zi), we have

M−1
M
∑

i=1

ξ̂ki g(zi) =

(

M
∑

i=1

UM,i − E [UM,i| Fi−1]

)

+M−1
M
∑

i=1

g(zi)/p(zi) ,

with UM,i := M−1ξ̂ki g(zi). First consider the second term of the rhs. Since

ϕ ≥ 1, the function p is in Cϕ; then, Eq. (4) implies thatM/{∑M
i=1 1/p(zi)} P−→

π(p) > 0 and therefore that

(8) ∀g ∈ Cϕ, M−1
M
∑

i=1

g(zi)/p(zi)
P−→ π(g)/π(p) .

It remains to check that
∑M
i=1 UM,i−E [UM,i| Fi−1]

P−→ 0. We use asymptotic
results for conditional triangular arrays of random variables established in
Douc and Moulines (2008, Theorem 11). Obviously, since |g| ∈ Cϕ,

M
∑

i=1

E [|UM,i|| Fi−1] = M−1
M
∑

i=1

|g(zi)|/p(zi) P−→ π(|g|)/π(p) ,

and we only need to show that
∑M
i=1 E [|UM,i|I{|UM,i| > ǫ}| Fi−1]

P−→ 0. Let

C > 0 and note that {|UM,i| > ǫ} ⊂ {|g(zi)| > (ǫM)/C} ∪ {ξ̂ki > C}. Using
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again E

[

ξ̂ki g(zi)
∣

∣

∣Fi−1

]

= g(zi)/p(zi), we have

(9)
M
∑

i=1

E [|UM,i|I{|UM,i| > ǫ}| Fi−1] ≤

1

M

M
∑

i=1

|g(zi)|I{|g(zi)| > (ǫM)/C}
p(zi)

+
1

M

M
∑

i=1

FC(zi)

p(zi)
,

with FC(zi) := |g(zi)|E
[

ξ̂ki I{ξki > C}
∣

∣

∣ zi

]

p(zi). Since FC ≤ |g|, we have FC ∈
Cϕ. Then, using again (8),

1

M

M
∑

i=1

|g(zi)|I{|g(zi)| > (ǫM)/C}
p(zi)

P−→ 0 ,

1

M

M
∑

i=1

FC(zi)

p(zi)
P−→ π(FC)/π(p) ,

which can be arbitrarily small when taking C sufficiently large. Indeed, using
Lebesgue’s theorem in the definition of FC , for any fixed z, limC→∞ FC(z) =
0 and then, using again Lebesgue’s theorem, limC→∞ π(FC) = 0. Finally,
(7) is proved. The proof of i) follows.

We now consider ii). Without loss of generality, we assume that π(h) = 0.
Write

√
MδkM =

M−1/2∑M
i=1 ξ̂

k
i h(zi)

M−1
∑M
i=1 ξ̂

k
i

.

By (7), the denominator of the rhs converges in probability to 1/π(p). Thus,
by Slutsky’s Lemma, we only need to prove a CLT for the numerator of the
rhs. Set UM,i := M−1/2ξ̂ki h(zi) and write:

M−1/2
M
∑

i=1

ξ̂ki h(zi) =

(

M
∑

i=1

UM,i − E [UM,i| Fi−1]

)

+M−1/2
M
∑

i=1

h(zi)/p(zi) .

Since h ∈ Cψ and M−1∑M
i=1 1/p(zi)

P−→ 1/π(p), the second term, thanks
again to Slutsky’s lemma and Eq. (5), converges in distribution to N (0,Γ(h)/
π2(p)). Now, consider the first term of the rhs. We will once again use
asymptotic results on triangular arrays of random variables (as in Douc and
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Moulines, 2008, Theorem 13). We have

M
∑

i=1

E

[

U2
M,i

∣

∣

∣Fi−1

]

− (E [UM,i| Fi−1])
2

= M−1
M
∑

i=1

(

h2(zi)V
[

ξ̂ki

∣

∣

∣ zi

]

p(zi)
)

/p(zi)
P−→ π

[

V

[

ξ̂ki

∣

∣

∣ ·
]

h2(·)p(·)
]

/π(p) ,

by (8) applied to the non negative function zi 7→ h2(zi)V
[

ξ̂ki

∣

∣

∣ zi

]

p(zi) which

is in Cϕ since it is bounded from above by h2/p ∈ Cϕ. It remains for us to
show that, for any ǫ > 0,

(10)
M
∑

i=1

E

[

|UM,i|2I|UM,i|>ǫ

∣

∣

∣Fi−1

]

P−→ 0 .

Following the same lines as in the proof of i), note that for any C > 0, we
have {|UM,i| > ǫ} ⊂ {|h(zi)| > (ǫ

√
M)/C} ∪ {ξ̂ki > C}. Using that

E

[

(

ξ̂ki

)2
∣

∣

∣

∣

Fi−1

]

= V

[

ξ̂ki

∣

∣

∣ zi

]

+
(

E

[

ξ̂ki

∣

∣

∣ zi

])2
≤ 2/p2(zi),

we have

M
∑

i=1

E [|UM,i|I{|UM,i| > ǫ}| Fi−1]

≤ 2

M

M
∑

i=1

h2(zi)I{|h(zi)| > (ǫ
√
M)/C}

p2(zi)
+

1

M

M
∑

i=1

FC(zi)

p(zi)

with FC(zi) := h2(zi)E

[

(

ξ̂ki

)2
I{ξki > C}

∣

∣

∣

∣

zi

]

p(zi). Since FC ≤ (2h2)/p and

h2/p ∈ Cϕ, we have FC ∈ Cϕ. Then, using again Eq. (8),

1

M

M
∑

i=1

(h2(zi)/p(zi))I{|h(zi)| > (ǫ
√
M)/C}

p(zi)
P−→ 0 ,

1

M

M
∑

i=1

FC(zi)

p(zi)
P−→ π(FC)/π(p) ,

which can be arbitrarily small by taking C sufficiently large. Indeed, as in the
proof of i), one can use Lebesgue’s theorem in the definition of FC so that for
any fixed z, limC→∞ FC(z) = 0. Then, using again by Lebesgue’s theorem,
limC→∞ π(FC) = 0. Finally, (10) is proved. The proof of ii) follows.
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The main consequence of this CLT is thus that, asymptotically, the cor-
relation between the ξi’s vanishes, hence that the variance ordering on the
ξi’s extends to the same ordering on the δM ’s.

It remains for us to link the CLT of the usual MCMC estimator (1) with
the CLT expressed in (6) with k = 0 associated with the accepted values. We
will need some additional assumptions, starting with a maximal inequality
for the Markov chain (zi)i: there exists a measurable function ζ such that
for any starting point x,

(11) ∀h ∈ Cζ , Px





∣

∣

∣

∣

∣

∣

sup
0≤i≤N

i
∑

j=0

[h(zi) − π̃(h)]

∣

∣

∣

∣

∣

∣

> ǫ



 ≤ Ch(x)

(ǫN)2

where Px is the probability measure induced by the Markov chain (zi)i≥0

starting from z0 = x.
Moreover, we assume that there exists a measurable function φ ≥ 1 such

that for any starting point x,

(12) ∀h ∈ Cφ, Q̃n(x, h)
P−→ π̃(h) = π(ph)/π(p) ,

where Q̃ is the transition kernel of (zi)i expressed in Lemma 1.

Theorem 2. In addition to the assumptions of Theorem 1, assume that
h is a measurable function such that h/p ∈ Cζ and {Ch/p, h2/p2} ⊂ Cφ.
Assume moreover that

√
M
(

δ0M − π(h)
)

L−→ N (0, V0[h− π(h)]) .

Then, for any starting point x,

√

MN

(

∑N
t=1 h(x

(t))

N
− π(h)

)

L−→N→∞ N (0, V0[h− π(h)]) ,

where MN is defined by

(13)
MN
∑

i=1

ξ̂0i ≤ N <
MN+1
∑

i=1

ξ̂0i .

Proof. Without loss of generality, we assume that π(h) = 0. In this
proof, we will denote by Px (resp. Ex) the probability (resp. expectation)
associated to the Markov chain (x(t))t≥0 starting from a fixed point x. Using
(7) with g = 1, one may divide (13) by MN and let N go to infinity. This
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yields that MN/N
P−→ π(p) > 0. Then, by Slutski’s lemma, Theorem 2 will

be proved if we are able to show that

√
N

(

∑N
t=1 h(x

(t))

N
− π(h)

)

L−→N→∞ N (0, V0[h− π(h)]/π(p)) .

To that purpose, consider the following decomposition:

N−1/2
N
∑

t=1

h(x(t)) := ∆N,1 + ∆N,2 + ∆N,3 ,

where M⋆
N := ⌊Nπ(p)⌋,

∆N,1 := N−1/2



N −
MN
∑

i=1

ξ̂0i



h(zMN+1) ,

∆N,2 := N−1/2





MN
∑

i=1

ξ̂0i h(zi) −
M⋆

N
∑

i=1

ξ̂0i h(zi)



 ,

∆N,3 := N−1/2

M⋆
N
∑

i=1

ξ̂0i h(zi) .

Using that 0 ≤ N −∑MN

i=1 ξ̂
0
i ≤ ξ̂0MN+1 and Markov’s inequality,

Px(|∆N,1| > ǫ) ≤
Ex(ξ̂

0
MN+1|h(zMN+1)|)

ǫ
√
N

=
Q̃MN+1(x, |h|/p)

ǫ
√
N

which converges in probability to 0 using that |h|/p ≤ h2/p2 + 1 and

{h2/p2, 1} ⊂ Cφ. Thus, ∆N,1
P−→ 0. We now consider ∆N,2. Note that

(14) Px(|∆N,2| > ǫ) ≤ Px(|AN | > ǫ
√
N/2) + Px(|BN | > ǫ

√
N/2)

with

AN =

MN∨M⋆
N

∑

i=MN∧M⋆
N

h(zi)/p(zi) and BN =

MN∨M⋆
N

∑

i=MN∧M⋆
N

(ξ̂0j − 1/p(zi))h(zi) .

Now, pick an arbitrary α ∈ (0, 1) and set MN := M⋆
N (1 − α) and MN :=

M⋆
N (1 + α). Since MN/N

P−→ π(p), for all η > 0, there exists N0 such that
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for all N ≥ N0, Px(MN ≤MN ≤MN ) ≥ 1−η. Then, obviously for N ≥ N0,
the first term of the rhs of (14) is bounded by

(15)

Px(|AN | > ǫ
√
N/2) ≤ η + Px



 sup
M⋆

N
≤i≤MN

∣

∣

∣

∣

∣

∣

i
∑

j=M⋆
N

h(zj)/p(zj)

∣

∣

∣

∣

∣

∣

> ǫ
√
N/2





+ Px



 sup
M⋆

N≤i≤M⋆
N

∣

∣

∣

∣

∣

∣

M⋆
N
∑

j=i

h(zj)/p(zj)

∣

∣

∣

∣

∣

∣

> ǫ
√
N/2



 .

Using (11), the second term of the rhs is bounded by 4 (MN−M⋆
N )Ex[Ch/p(zM⋆

N
)]/

ǫ2N , which converges to 4απ(p)π̃(Ch/p)/ǫ
2 as N goes to infinity using that

Ch/p ∈ Cφ. The obtained bound can thus be arbitrarily small as α goes to 0.
Similarly, one can bound the third term of the rhs of (15) and let N go to

infinity. Letting again α go to 0, we obtain that AN/
√
N

P−→ 0. Similarly,
the second term of the rhs of (14) is bounded by

(16) Px(|BN | > ǫ
√
N/2) ≤ η+

Px



 sup
M⋆

N
≤i≤MN

∣

∣

∣

∣

∣

∣

i
∑

j=M⋆
N

(

ξ̂0j −
1

p(zj)

)

h(zj)

∣

∣

∣

∣

∣

∣

> ǫ
√
N/2





+ Px



 sup
M⋆

N≤i≤M⋆
N

∣

∣

∣

∣

∣

∣

M⋆
N
∑

j=i

(

ξ̂0j −
1

p(zj)

)

h(zj)

∣

∣

∣

∣

∣

∣

> ǫ
√
N/2





Denote RN =
∑N
ℓ=1

(

ξ̂0ℓ − 1
p(zℓ)

)

h(zℓ). Clearly, (RN ) is a F-martingale where

F = (Fi)i≥1 and Fi is the σ-field Fi := σ(z1, . . . , zi+1, ξ̂
0
1 , . . . , ξ̂

0
i ). Then, by

Kolmogorov’s inequality, one can bound the second term of (16) in the
following way:

Px



 sup
M⋆

N
≤i≤MN

|Ri −RMN
| > ǫ

√
N/2



 ≤ 4
Ex

[

(RM⋆
N
−RMN

)2
]

ǫ2N

=
4

ǫ2N
Ex





MN
∑

i=M⋆
N

1 − p(zi)

p2(zi)
h2(zi)



 =
4(MN −M⋆

N + 1)

ǫ2N

∑MN

i=M⋆
N
Q̃i(x, 1−p

p2
h2)

MN −M⋆
N + 1

P−→
4απ

(

1−p
p h2

)

ǫ2
,

which can be arbitrarily small as α goes to 0. Similarly, one can bound the
third term of (16) and let N go to infinity. Finally, letting α go to 0, we
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obtain that BN/
√
N

P−→ 0. Thus, ∆N,2
P−→ 0. Finally, by Slutsky’s lemma,

∆N,3 := (N/M⋆
N )−1/2

∑M⋆
N

i=1 ξ̂
0
i h(zi)

√

M⋆
N

L−→ N (0, V0[h− π(h)]/π(p)) .

The proof now stands completed.

3. Illustrations. We first consider a random walk Metropolis–Hastings
algorithm with target the N (0, 1) distribution and with proposal q(y|x) =
ϕ(x − y; τ), i.e. a normal random walk with scale τ = 10. The acceptance
probability is then the ratio of the targets and Figure 1 illustrates the gain
provided by the Rao–Blackwellisation scheme by repeating the simulation
250 times and by representing the 90% range as well as the whole range
of both estimators. The gain provided by the Rao–Blackwellisation is not
huge wrt to the overlap of both estimates, but one must consider that the
variability of the estimator δ is due to two sources of randomness, one due
to the ni’s and the other one to the zi’s, and that the Rao–Blackwellisation
only impact the first one.

Our second example is an independent Metropolis–Hastings algorithm
with target the N (0, 1) distribution and with proposal a Cauchy C(0, .25)
distribution. The outcome is quite similar to the first example, although
producing a slightly superior improvement, as shown on Figure 2.

Our third example is an independent Metropolis–Hastings algorithm with
target the Exp(λ) distribution and with proposal the Exp(µ) distribution.
In this case, the probability functions p(x)) in (2) and r(x) in Proposition
1 can be derived in closed form as

p(x) = 1 − λ− µ

λ
e−µx and r(x) = 1 − 2(λ− µ)

2λ− µ
e−µx .

This special feature means that we can compare the variability of the orig-
inal Metropolis–Hastings estimator with its Rao–Blackwellised version δ∞M ,
but also with the optimal importance sampling version shown in (4). As
illustrated by Figure 3, the gain brought by the Rao–Blackwellisation is
significant when compared with the reduction in variance of the optimal
importance sampling version.

Our fourth and final example is a geometric Geo(β) target associated with
a one-step random walk proposal:

π(x) = β(1 − β)x and 2q(y|x) =

{

I|x−y|=1 if x > 0 ,

I|y|≤1 if x = 0 .
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Fig 1. Overlay of the variations of 250 iid realisations of the estimates δ (gold) and δ∞

(grey) of E[X] = 0 for 1000 iterations, along with the 90% interquantile range for the

estimates δ (brown) and δ∞ (pink), in the setting of a random walk Gaussian proposal

with scale τ = 10.
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Fig 2. Overlay of the variations of 250 iid realisations of the estimates δ (gold) and δ∞

(grey) of E[X] = 0 for 1000 iterations, along with the 90% interquantile range for the

estimates δ (brown) and δ∞ (pink), in the setting of an independent Cauchy proposal with

scale 0.25.
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Fig 3. Overlay of the variations of 500 iid realisations of the estimates δ (deep grey), δ∞

(medium grey) and of the importance sampling version (light grey) of E[X] = 10 when

X ∼ Exp(.1) for 100 iterations, along with the 90% interquantile ranges (same colour
code), in the setting of an independent exponential proposal with scale µ = 0.02.
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For this problem,

p(x) = 1 − β/2 and r(x) = 1 − β + β2/2 .

We can therefore compute the gain in variance

p(x) − r(x)

2p(x) − r(x)

2 − p(x)

p2(x)
= 2

β(1 − β)(2 + β)

(2 − β2)(2 − β)2

which is optimal for β = 0.174, leading to a gain of 0.578 while the relative
gain in variance is

p(x) − r(x)

2p(x) − r(x)

2 − p(x)

1 − p(x)
=

(1 − β)(2 + β)

(2 − β2)

which is decreasing in β.
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