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Abstract

We present a methodology for modeling heterogeneous
real-time components. Components are obtained as the su-
perposition of three layers : Behavior, specified as a set
of transitions; Interactions between transitions of the be-
havior; Priorities, used to choose amongst possible inter-
actions. A parameterized binary composition operator is
used to compose components layer by layer.

We present the BIP language for the description and
composition of layered components as well as associated
tools for executing and analyzing components on a dedi-
cated platform. The language provides a powerful mecha-
nism for structuring interactions involving rendezvous and
broadcast. We show that synchronous and timed systems
are particular classes of components. Finally, we provide
examples and compare the BIP framework to existing ones
for heterogeneous component-based modeling.

1. Introduction

A central idea in systems engineering is that complex
systems are built by assembling components. System de-
signers deal with a large variety of components, each hav-
ing different characteristics, from a large variety of view-
points, each highlighting different dimensions of a system.
A central problem is the meaningful composition of hetero-
geneous components to ensure their correct inter-operation
[12].

One fundamental source of heterogeneity is the com-
position of subsystems with different execution and inter-
action semantics. At one extreme of the semantic spec-
trum are fully synchronized components, which proceed in
lockstep with a global clock and interact in atomic transac-
tions. Such a tight coupling of components is the standard
model for most synthesizable hardware and for synchronous
real-time software. At the other extreme are completely
asynchronous components, which proceed at independent
speeds and interact non-atomically. Such a loose coupling
of components is the standard model for most multithreaded

software. Between the two extremes, a variety of interme-
diate and hybrid models exist (e.g., globally-asynchronous
locally-synchronous models).

Another fundamental source of heterogeneity is the use
of models that represent a system at varying degrees of de-
tail and are related to each other in an abstraction (or equiv-
alently, refinement) hierarchy. A key abstraction in system
design is the one relating application software to its im-
plementation on a given platform. Application software is
largely untimed, in the sense that it abstracts away from
physical time. The application code running on a given
platform, however, is a dynamic system that can be mod-
eled as a timed or hybrid automaton [3]. The run-time state
includes not only the variables of the application software,
but also all variables that are needed to characterize its dy-
namic behavior, such as time variables and other quanti-
ties used to model resources. We need tractable theories
to relate component-based models at application and imple-
mentation levels. In particular, such theories must provide
means for preserving, in the implementation, all essential
properties of the application software.

Unified frameworks encompassing heterogeneity in sys-
tems design have been proposed in [5, 8, 6, 4]. Neverthe-
less, in these works unification is achieved by reduction to a
common low-level semantic model. We need a framework
which is not just a disjoint union of submodels, but one
which preserves properties during model composition and
supports meaningful analyses and transformations across
heterogeneous model boundaries.

We present the BIP (Behavior, Interaction, Priority)
framework for modeling heterogeneous real-time compo-
nents. BIP integrates results developed at Verimag over the
past five years. It is characterized by the following:

• It supports a component construction methodology
based on the thesis that components are obtained as
the superposition of three layers. The lower layer de-
scribes behavior. The intermediate layer includes a
set of connectors describing the interactions between
transitions of the behavior. The upper layer is a set of
priority rules describing scheduling policies for inter-
actions. Layering implies a clear separation between



behavior and structure (connectors and priority rules).

• It uses a parameterized binary composition operator on
components. The product of two components consists
in composing their corresponding layers separately.
Parameters are used to define new interactions as well
as new priority rules between the composed compo-
nents [11, 13]. The use of such a composition opera-
tor allows incremental construction. That is, any com-
pound component can be obtained by successive com-
position of its constituents. This is a generalization of
the associativity/commutativity property for composi-
tion operators whose parameters depend on the order
of composition.

• It encompasses heterogeneity. It provides a power-
ful mechanism for structuring interactions involving
strong synchronization (rendezvous) or weak synchro-
nization (broadcast). Synchronous execution is charac-
terized as a combination of properties of the three lay-
ers. Finally, timed components can be obtained from
untimed components by applying a structure preserv-
ing transformation of the three layers.

• It allows considering the system construction pro-
cess as a sequence of transformations in a three-
dimensional space: Behavior × Interaction ×
Priority. A transformation is the result of the su-
perposition of elementary transformations for each di-
mension. This provides a basis for the study of prop-
erty preserving transformations or transformations be-
tween subclasses of systems such as untimed/timed,
asynchronous/synchronous and event-triggered/data-
triggered.

The paper is structured as follows. Section 2 presents the
BIP language and the underlying concepts for component
composition. Section 3 presents the operational semantics
of the language and associated tools for execution and anal-
ysis. Section 4 shows that timed and synchronous systems
correspond to particular classes of BIP components. This is
illustrated by examples provided in Section 5. Finally, Sec-
tion 6 discusses some more fundamental issues about the
component construction space and its properties.

2. The BIP language — Basics for Component
Composition

The BIP language supports a methodology for building
components from:

• atomic components, a class of components with behav-
ior specified as a set of transitions and having empty
interaction and priority layers. Triggers of transitions

include ports which are action names used for synchro-
nization.

• connectors used to specify possible interaction pat-
terns between ports of atomic components.

• priority relations used to select amongst possible inter-
actions according to conditions depending on the state
of the integrated atomic components.

We provide a description of the main features of the lan-
guage.

2.1. Atomic Components

An atomic component consists of:

• A set of ports P = {p1 . . . pn}. Ports are action names
used for synchronization with other components.

• A set of control states S = {s1 . . . sk}. Control states
denote locations at which the components await for
synchronization.

• A set of variables V used to store (local) data.

• A set of transitions modeling atomic computa-
tion steps. A transition is a tuple of the form
(s1, p, gp, fp, s2), representing a step from control
state s1 to s2. It can be executed if the guard (boolean
condition on V ) gp is true and some interaction in-
cluding port p is offered. Its execution is an atomic
sequence of two microsteps: 1) an interaction includ-
ing p which involves synchronization between compo-
nents with possible exchange of data, followed by 2)
an internal computation specified by the function fp on
V . That is, if v is a valuation of V after the interaction,
then fp(v) is the new valuation when the transition is
completed.

full

empty
in

[0<x]

y:=f(x)

in

ou
t

out

Figure 1. An atomic component.

Figure 1 shows an atomic reactive component with two
ports in, out, variables x, y, and control states empty, full.
At control state empty, the transition labeled in is possible
if 0 < x. When an interaction through in takes place, the
variable x is eventually modified and a new value for y is
computed. From control state full, the transition labeled
out can occur. The omission of guard and function for this



transition means that the associated guard is true and the
internal computation microstep is empty. The syntax for
atomic components in BIP is the following:

atom::=
component component id

port port id+

[data type id data id+]
behavior
{state state id

{on port id [provided guard]
[do statement] to state id}+}+

end
end

That is, an atomic component consists of a declaration fol-
lowed by the definition of its behavior. Declaration consists
of ports and data. Ports are identifiers and for data, basic C
types can be used. In the behavior, guard and statement
are C expressions and statements respectively. We assume
that these are adequately restricted to respect the atomicity
assumption for transitions e.g. no side effects, guaranteed
termination.

Behavior is defined by a set of transitions. The keyword
state is followed by a control state and the list of outgoing
transitions from this state. Each transition is labelled by a
port identifier followed by its guard, function and a target
state.

The BIP description of the reactive component of fig-
ure 1 is:

component Reactive
port in, out
data int x, y
behavior

state empty
on in provided 0 < x do y:=f(x) to full

state full
on out to empty

end
end

2.2. Connectors and Interactions

Components are built from a set of atomic components
with disjoint sets of names for ports, control states, variables
and transitions.

Notation: We simplify the notation for sets of ports
in the following manner. We write p1|p2|p3|p4 for the
set {p1, p2, p3, p4} by considering that singletons are com-
posed by using the associative and commutative operation
|.

A connector γ is a set of ports of atomic components
which can be involved in an interaction. We assume that

connectors contain at most one port from each atomic com-
ponent. An interaction of γ is any non empty subset of this
set. For example, if p1, p2, p3 are ports of distinct atomic
components, then the connector γ = p1|p2|p3 has seven
interactions: p1, p2, p3, p1|p2, p1|p3, p2|p3, p1|p2|p3. Each
non trivial interaction i.e., interaction with more than one
port, represents a synchronization between transitions la-
beled with its ports.

Following results in [11], we introduce a typing mech-
anism to specify the feasible interactions of a connector γ,
in particular to express the following two basic modes of
synchronization:

• Strong synchronization or rendezvous, when the only
feasible interaction of γ is the maximal one, i.e., it con-
tains all the ports of γ.

• Weak synchronization or broadcast, when feasible in-
teractions are all those containing a particular port
which initiates the broadcast. That is, if γ = p1|p2|p3

and the broadcast is initiated by p1, then the feasible
interactions are p1, p1|p2, p1|p3, p1|p2|p3.

The typing mechanism distinguishes between complete
and incomplete interactions with the following restriction:
All the interactions containing some complete interaction
are complete; dually, all the interactions contained in in-
complete interactions are incomplete. An interaction of a
connector is feasible if it is complete or if it is maximal.

Preservation of completeness by inclusion of interactions
allows a simple characterization of interaction types. It is
sufficient, for a connector γ to give the set of its minimal
complete interactions. For example, if γ = p1|p2|p3|p4 and
the minimal complete interactions are p1 and p2|p3, then the
set of the feasible interactions are p1, p2|p3, p1|p4, p2|p3|p4,
p1|p2|p3, p1|p2|p3|p4.

If the set of the complete interactions of a connector is
empty, that is all its interactions are incomplete, then syn-
chronization is by rendezvous. Broadcast through a port
p1 triggering transitions labeled by ports p2, . . . , pn can be
specified by taking p1 as the only minimal complete inter-
action.

The syntax for connectors is the following:

interaction ::= port id+

connector::=
connector conn id = port id+

[complete = interaction+]
[behavior

{on interaction [provided guard] [do statement]}+

end]

That is, a connector description includes its set of ports fol-
lowed by the optional list of its minimal complete interac-
tions and its behavior. If the list of the minimal complete



interactions is omitted, then this is considered to be empty.
Connectors may have behavior specified as for transitions,
by a set of guarded commands associated with feasible in-
teractions. If α = p1|p2|...|pn is a feasible interaction then
its behavior is described by a statement of the form: on α
provided Gα do Fα, where Gα and Fα are respectively a
guard and a statement representing a function on the vari-
ables of the components involved in the interaction. As for
atomic components, guards and statements are C expression
and statements respectively.

The execution of α is possible if Gα is true. It atom-
ically changes the global valuation v of the synchronized
components to Fα(v).

x1

x2
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x2
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C1 C2

Figure 2. Interaction types.

We use a graphical notation for connectors in the form of
trees. The leaves are singleton interactions and the higher
level nodes are synchronization types. We denote an incom-
plete interaction by a bullet and a complete interaction by a
triangle. For example, consider the connector C1 described
below:

connector C1 = p1|p2|p3

behavior
on p1|p2|p3 provided ¬(x1 = x2 = x3)
do x1, x2, x3 := MAX(x1, x2, x3)

end

It represents a strong synchronization between p1, p2 and
p3 which is graphically represented in figure 2(a), where the
singleton incomplete interactions p1, p2, p3 are marked by
bullets. The behavior for the interaction p1|p2|p3 involves a
data transfer between the interacting components: the vari-
ables xi are assigned the maximum of their values if they
are not equal.

The following connector describes a broadcast initiated
by p1. The corresponding graphical representation is shown
in fig 2(b).

connector C2 = p1|p2|p3

complete = p1

behavior
on p1 do skip
on p1|p2 do x2 := x1

on p1|p3 do x3 := x1

on p1|p2|p3 do x2, x3 := x1

end

This connector describes transfer of value from x1 to x2 and
x3.

Notice that contrary to other formalisms, BIP does not
allow explicit distinction between inputs and outputs. For
simple data flow relation, variables can be interpreted as
inputs or outputs. For instance, x1 is an output and x2, x3

are inputs in C2.

2.3. Priorities

Given a system of interacting components, priorities are
used to filter interactions amongst the feasible ones depend-
ing on given conditions. The syntax for priorities is the fol-
lowing:

priority::=
priority priority id [if cond] interaction < interaction

That is, priorities are a set of rules, each consisting of
an ordered pair of interactions associated with a condition
(cond). The condition is a boolean expression in C on the
variables of the components involved in the interactions.
When the condition holds and both interactions are enabled,
only the higher one is possible. Conditions can be omitted
for static priorities. The rules are extended for composition
of interactions. That is, the rule begin1 < begin2 means
that any interaction of the form begin2|q has higher priority
over interactions of the form begin1|q where q is an inter-
action.

2.4. Compound Components

A compound component allows defining new compo-
nents from existing sub-components (atoms or compounds)
by creating their instances, specifying the connectors be-
tween them and the priorities. The syntax of a compound
component is defined by:

compound::=
component component id

{contains type id {instance id[parameters]}+}+

[connector+]
[priority+]

end

The instances can have parameters providing initial values
to their variables through a named association.

An example of a compound component named System
is shown in figure 3. It is the serial connection of three
reactive components, defined as:

component System
contains Reactive r1, r2, r3

connector C1 = r1.in
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Figure 3. A compound component.

complete = r1.in
connector C2 = r1.out|r2.in
behavior

on r1.out|r2.in do r2.x := r1.y
end
connector C3 = r2.out|r3.in
behavior

on r2.out|r3.in do r3.x := r2.y
end
connector C4 = r3.out
complete = r3.out
priority P1 r1.in < r2.out|r3.in
priority P2 r1.in < r3.out
priority P3 r1.out|r2.in < r3.out

end

We use priorities to enforce a causal order of execution as
follows: once there is an in through C1, the data are pro-
cessed and propagated sequentially, finally producing an
out through C4 before a new in occurs through C1. This
is achieved by a priority order which is the inverse of the
causal order.

3. Implementation

In this section, we describe briefly the operational se-
mantics and the execution platform for BIP.

3.1. Operational semantics

A detailed and fully formalized operational semantics is
beyond the scope of this paper. We focus on aspects that
are crucial for understanding the underlying mechanism for
execution of interactions between a set of components. For
the sake of simplification, we consider components without
priorities. These are only a filtering mechanism for interac-
tions.

Consider a compound component built from w atomic
components by using a set of connectors and without prior-
ity rules. Its meaning is an extended automaton with:

• A set of variables, which is the union of the sets of
variables of the atomic components.

• A set of states, which is the cartesian product of the
sets of control states of the atomic components.

The extended automaton has a set of transitions of the form
(s, α, g, f, s′), where:

• s = (s1, . . . , sw), si being a control state of the ith

atomic component.

• α is a feasible interaction associated with a guarded
command (Gα, Fα), such that there exists a subset
J ⊆ {1, . . . , w} of atomic components with transi-
tions {(sj , pj , gj , fj , s

′
j)}j∈J and α = {pj}j∈J .

• g = (
∧

j∈J gj) ∧ Gα.

• f = Fα; [fj ]j∈J . That is, the computation starts with
the execution of Fα followed by the execution of all
the functions fj in some arbitrary order. The result is
independent of this order as components have disjoint
sets of variables.

• s′(j) = s′j if j ∈ J ; otherwise s′(j) = sj . That is, the
states from which there are no transitions labeled with
ports in α, remain unchanged.

The extended automaton is a machine with moves of the
form (s, v) α→ (s′, v′), where s is a state of the automaton
and v is a valuation of its variables. The move (s, v) α→
(s′, v′) is possible if there exists a transition (s, α, g, f, s′),
such that g(v) = true and v′ = f(v).

3.2. The BIP Execution Platform

The BIP framework has been partially implemented in
the IF toolset [7] and the PROMETHEUS tool [10]. We have
developed a full implementation of the toolset that includes:

• A frontend for editing and parsing BIP and generating
C++ code to be executed and analyzed on a backend
platform.

• A backend platform consisting of an engine and the
infrastructure for executing the generated C++ code.

• Connections to analysis tools of the IF tool-set.

The execution engine directly implements the opera-
tional semantics. At control states, atomic components post
the port names of enabled transitions. The execution engine
monitors the state of atomic components and finds all the
enabled interactions by evaluating the guards on the connec-
tors. Then, between the enabled interactions, priority rules
are used to eliminate the ones with low priority. Amongst
the maximal enabled interactions, it executes one and noti-
fies the atomic components involved in this interaction. The
notified components continue their local computation inde-
pendently and eventually reach new control states.



Two options, one for multithreaded execution (each
atomic component having a thread) and the other for a sin-
gle threaded execution (the execution engine being the only
thread) are implemented.

The engine has a state space exploration mode, which
under some restrictions on the code for guards and func-
tions, generates state graphs that can be analyzed by using
model-checking tools.

The backend, which is the BIP exploration platform,
has been entirely implemented in C++ on Linux and uses
POSIX threads. This choice has been made mainly for
efficiency reasons but also to allow a smooth integration
of components with behavior expressed using plain C/C++
code. The BIP frontend which includes the C++ code gener-
ator and some editing facilities, is implemented in Java. In
particular, the frontend uses Eclipse EMF technology and
associated tools for model representation and model trans-
formations.

4. Subclasses of Components

In this section, we show that timed and synchronous sys-
tems can be represented as BIP components.

4.1. Timed Components

We define timed components and provide a structure pre-
serving mapping from timed components to BIP compo-
nents defined in section 2.

Timed components are built from atomic timed compo-
nents. The definition of atomic timed components for dis-
crete time is inspired from [2]. They have:

• A set of ports P = {p1 . . . pn}.

• A set of control states S = {s1 . . . sk}.

• A set of variables V partitioned into two sets U and
X , respectively the set of untimed and timed variables.

• A set of transitions of the form (s1, p, gu
p ∧

gt
p, fp, s2)τp , representing a step from control state s1

to s2. The urgency type τp which can be either eager
or lazy is used to characterize the urgency of the tran-
sition. As for ordinary transitions, gp = gu

p ∧ gt
p is a

guard, conjunction of conditions on untimed and timed
variables respectively and fp is a function on V .

• A set of evolution functions {φi}1≤i≤k in bijection
with control states. The function φi gives for a given
valuation x of X at control state si and a given value
of a discrete time parameter t, the valuation φi(x, t)
reached when time progresses by t. Further, it satisfies
the following properties:

– φi(x, 0) = x, and

– φi(x, t1 + t2) = φi(φi(x, t1), t2).

An atomic timed component C represents a transition
system [2] in the following manner.

Let si be a control state of C and (u, x) be a valuation of
(U,X). From the state (si, u, x),

• Either an enabled transition can be executed indepen-
dently of its urgency type - the semantics is the same
as for transitions of BIP components.

• Or time can progress by one unit, leading to state
(si, u, φi(x, 1)), if all eager transitions are disabled.
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Figure 4. Transformation from Timed Compo-
nent to BIP Component.

We provide a translation from timed to BIP atomic com-
ponents. The principle of the translation is explained in
figure 4. It consists in implementing for each atomic com-
ponent, time progress from si and subsequent state changes,
by a loop transition with guard true and function φi(x, 1).
This transition has a port tick for synchronization with
other timed components.

p

Si

tick

tick
x:= φi(x,1)

r

Sj

tick

tick
x:= φj(x,1)

m

Sm

tick

tick
x:= φm(x,1)

Tick

Priority: for all eager transition p, if(gp) Tick < p|q
for some interaction q

Figure 5. Composition of Timed Compo-
nents.

In the composition of the resulting BIP components from
the timed components, strong synchronization is necessary
for the tick ports as shown in the architecture of figure 5.
That is, a connector Tick relating all the tick ports is used.
Tick has an empty set of complete interactions.

Furthermore, to take into account urgency of the transi-
tions, we use priorities. For each eager transition with guard
gp, a rule of the form: priority P if gp Tick < p|q is used



where q is an interaction. This means that strong synchro-
nization through Tick can occur only if there are no enabled
eager transitions.

4.2. Synchronous Components

Synchronous components are a subclass of components
built from synchronous atomic components which have:

• A set of control states S, partitioned into three sets
Sst �= ∅, Sun, Ssyn �= ∅, respectively the sets of sta-
ble, unstable and synchronization states.

• A particular class of transitions, synchronization tran-
sitions. These have a special port syn, their guards are
true and functions are empty. From synchronization
states only synchronization transitions are possible and
lead to stable states.

• Transitions from unstable states leading either to un-
stable states or to synchronization states.

• Stable states with synchronization transition loops. All
other transitions from these states lead to unstable or
synchronization states. There is a finite number of
transitions in a path between two successive distinct
stable states in the transition graph. This guarantees
that for dealockfree execution, stable states are visited
infinitely often.

syn

syn
syn

syn

syn
syn

Figure 6. Synchronous Atomic Component.

The general form of a synchronous atomic component
is shown in figure 6. Composition of synchronous compo-
nents is characterized by the following requirements:

• Ports of transitions from unstable states must belong
to complete interactions, that is, their execution cannot
be blocked due to synchronization constraints.

• All the syn ports are strongly synchronized via a con-
nector Syn with empty set of complete interactions.

• Any interaction has higher priority than the syn inter-
action. This enforces progress from stable states and
prevents livelock by looping on syn transitions.

The general form of a synchronous architecture is shown
in figure 7. The above requirements ensure lockstep exe-
cution. For such an execution, a run is a sequence of steps

syn syn syn

Syn
Priority: Syn < all interactions

Figure 7. Composition of Synchronous Com-
ponents.

leading from one global stable state to another. If all the
components are at stable states, then each component can
execute a sequence of transitions leading to a synchroniza-
tion state. From synchronization states, strong synchroniza-
tion through syn is enforced. This interaction cannot oc-
cur as long as other interactions are possible, as it has the
lowest priority. It may happen that during a synchronous
step some components stay at the same stable state, if the
transitions leaving this state are not enabled. The synchro-
nization transition loops from stable states allow transitions
from synchronization states of the other components to be
executed.

5. Applications and Case Studies

In this section we provide examples that were modeled
and executed in BIP. The first example, taken from [1], is a
performance evaluation problem with timed tasks process-
ing events from a bursty event generator. The second exam-
ple is a synchronous modulo-8 counter.

5.1. Tasks with Bursty Event Generator

We model System which is the serial connection of a
bursty event generator with three tasks t1, t2 and t3, running
on independent CPU’s. A task can execute as soon as its
predecessor has finished. The block diagram for System is
shown in figure 8(a).

CPU1

CPU3

CPU2

t1

t3

t2Even
tGen

CPU1

CPU2

t1

t3

t2Even
tGen

(a) (b)

Figure 8. End to end delay measurement for
tasks.

The atomic components of System are Task and
EventGenerator. For each atomic component, we spec-
ify its ports, variables and behavior.
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Figure 9. The Task component.

φRUN((x,y), 1)=(x+1,y+1)

period ε

[x=T]
x:=0, k:=k+1

go δ

[k ≥ 0 ∧ x + k T ≤ J ∧ y ≥ D]
y:=0, k:=k-1

RUN

goperiod

Figure 10. The EventGenerator component.

A generic timed model of Task is shown in figure 9,
which can be used either as a simple task, or as a preempt-
able task. It has a timed variable d to enforce worst case
execution time WCET . In the graphical notation, urgency
types are associated with ports. We use the notation pτ ,
where τ can be either ε (eager), λ (lazy), or δ (delayable).
The latter is a composite type very useful in practice. It
means that the transition labeled with p is considered to be
lazy at some state if it remains enabled at the next time unit;
otherwise, it is eager. For instance, the notation finishδ in
figure 9 means that the transition is lazy when d < WCET
and eager when d = WCET .

The ports and behavior of EventGenerator are shown
in figure 10. It has a period T and a jitter J with J > T
and has a minimum inter-arrival time D between successive
events being generated.

The compound component System is a serial connec-
tion of the EventGenerator and three instances of Task,
t1, t2 and t3, as shown in figure 11. In this model, the tasks
are non-preemptable, so the ports preempt and resume are
not associated to connectors. Component instances are pa-
rameterized: EventGenerator instance by the time-period
T, jitter J and minimum inter-arrival time D; Task instances
by their worst case execution time WCET. The BIP descrip-
tion of System without the priorities enforcing urgency is
shown below:

component System
contains EventGenerator e(T = 10, J = 40,D = 1)
contains Task t1(WCET = 8), t2(WCET = 4),

t3(WCET = 1)
connector C0 = e.tick|t1.tick|t2.tick|t3.tick
connector C1 = e.period
complete = e.period
connector C2 = e.go|t1.get
connector C3 = t1.finish|t2.get
connector C4 = t2.finish|t3.get
connector C5 = t3.finish
complete = t3.finish
connector C6 = t1.start
complete = t1.start
connector C7 = t2.start
complete = t2.start
connector C8 = t3.start
complete = t3.start
priority . . .

end

The maximum end-to-end delay was calculated by exhaus-
tive state space exploration of System composed with an ob-
server component measuring the end to end delay of the
events. With the values of the parameters as used in the
BIP description above, the maximum delay obtained was
43 time units (tick transitions).
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Figure 11. Architecture of System.

Consider a modification of System where tasks t1 and
t3 share CPU1 and t1 can preempt t3, whereas t2 runs on
CPU2, as shown in figure 8(b). Its BIP description without
the priorities enforcing urgency is given below:

component System
contains EventGenerator e(T = 10, J = 40,D = 1)
contains Task t1(WCET = 8), t2(WCET = 4),

t3(WCET = 1)
connector C0 e.tick|t1.tick|t2.tick|t3.tick
connector C1 = e.period
complete = e.period
connector C2 = e.go|t1.get
connector C3 = t1.finish|t2.get|t3.resume
complete = t1.finish|t2.get



connector C4 = t3.finish|t1.resume
complete = t3.finish
connector C5 = t1.start|t3.preempt
complete = t1.start
connector C6 = t3.start|t1.preempt
complete = t3.start
connector C7 = t2.start
complete = t2.start
connector C8 = t2.finish|t3.get
priority P1 t3.start < t1.start
priority P2 t3.start|t1.preempt < t1.finish|t2.get
priority . . .

end

Mutual exclusion between t1 and t3 is enforced by the con-
nectors C3, C4, C5 and C6. They guarantee that a task will
preempt if the other has to start, and similarly a task can re-
sume only when the executing task finishes, as depicted in
the architecture of figure 12. Priority P1 enforces the static
priority between t1, t3 and priority P2 ensures non preemp-
tion of t1 by t3. The maximum end to end delay recorded
by the observer component in this example was 194 time
units.

e

tick

t1

fin
is

htickget

resume

preempt start

tick
get

resume

preemptstart

fin
is

h

t3

System

go

t2

tickget

resume

preempt finish

st
ar

t

C0

C2
C3

C8

C7

C6 C5C4

period

C1

Figure 12. Architecture of System with mu-
tual exclusion.

5.2. Synchronous Modulo-8 Counter

We model a synchronous modulo-8 counter producing a
3 bit count value. A bit is modeled as an atomic component
representing a modulo-2 counter. The modulo-8 counter is
obtained by composing three modulo-2 counters.

The behavior of the atomic component
Modulo2Counter is depicted in figure 13. Zero’
and One’ are stable states whereas Zero and One are syn-
chronization states respectively. The port flip corresponds
to a complete interaction. The variable x is the input and y
is the output.

Zero’

One’

flip

[x=1]

y:=1

syn

flip

[x=1]

y:=0

Zero

One
syn

syn

flip

syn

syn

Figure 13. The Modulo2Counter component.

The compound component Counter consists of 3 in-
stances of Modulo2Counter namely b0, b1, and b2, where
b0 is the least significant bit. The C0 connector consists of
all the syn ports requiring strong synchronization. All the
flip interactions are complete.

component Counter
contains Modulo2Counter b0, b1, b2

connector C0 = b0.syn|b1.syn|b2.syn
behavior

on b0.syn|b1.syn|b2.syn
do b0.x:=1, b1.x:=b0.y, b2.x:=b0.y∧b1.y

end
connector C1 = b0.f lip
complete = b0.f lip
connector C2 = b1.f lip
complete = b1.f lip
connector C3 = b2.f lip
complete = b2.f lip
priority P0 b0.syn|b1.syn|b2.syn < b0.f lip
priority P1 b0.syn|b1.syn|b2.syn < b1.f lip
priority P2 b0.syn|b1.syn|b2.syn < b2.f lip

end

The global data flow is encoded in the behavior of the syn
connector C0. The input (x) of b0 representing the least sig-
nificant bit of the counter, is always set to 1, for b2, the in-
put is the conjunction of the outputs(y) of the previous two
bits(b0, b1). The y values form the output of the Counter
on execution generates the count sequence 000 to 111. Low
priority of the syn interaction favours internal computations
of the atomic components.

6. Discussion

The BIP framework shares features with existing ones
for heterogeneous components, such as [5, 8, 6, 4]. A com-
mon key idea is to encompass high-level structuring con-
cepts and mechanisms. Ptolemy was the first tool to sup-
port this by distinguishing between behavior, channels, and
directors. Similar distinctions are also adopted in Metropo-
lis and BIP, which offer interaction-based and control-based
mechanisms for component integration. The two types of



mechanisms correspond to cooperation and competition,
two complementary fundamental concepts for system orga-
nization.

There is evidence through numerous examples treated in
BIP, that the combination of interaction and control mech-
anism allows enhanced modularity and direct modeling of
schedulers, quality controllers and quantity managers.

BIP characterizes components as points in a three-
dimensional space: Behavior × Interaction× Priority,
as represented in figure 14. Elements of the Interaction×
Priority space characterize the overall architecture. Each
dimension, can be equipped with an adequate partial order,
e.g., refinement for behavior, inclusion of interactions, in-
clusion of priorities. Some interesting features of this rep-
resentation are the following:

(+interaction)

System

architecture

B  (+ refinement)

P (+ restriction)

I

Figure 14. The Construction Space.

Separation of concerns: Any combination of behavior, in-
teraction and priority models meaningfully defines a
component. This is not the case for other formalisms
e.g., in Ptolemy [8], for a given model of computation,
only particular types of channels can be used. Separa-
tion of concerns is essential for defining a component’s
construction process as the superposition of elemen-
tary transformations along each dimension.

Unification: Different subclasses of components
e.g.,untimed/timed, asynchronous/synchronous,
event-triggered/data-triggered, can be unified through
transformations in the construction space. These
often involve displacement along the three coordi-
nates. They allow a deeper understanding of the
relations between existing semantic frameworks in
terms of elementary behavioral and architectural
transformations.

Correctness by construction: The component construc-
tion space provides a basis for the study of architecture
transformations allowing preservation of properties of
the underlying behavior. The characterization of such
transformations can provide (sufficient) conditions for
correctness by constructions such as compositionality
and composability results for deadlock-freedom [11].

Current work on BIP deals with both theoretical issues
and applications. Theoretical work directions include the
study of a notion of glue for components and its properties
as well as a notion of expressiveness for component-based
description languages. Applications aim at “componentiz-
ing” existing real-time software written in C++ including an
MPEG encoder and an adaptive robotic application. Finally,
we are developing a tool for translating a subset of the BIP
language into THINK [9], from which implementations on
bare machines can be generated.
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