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In this paper, we study almost sure central limit theorems for sequences of functionals of general Gaussian fields. We apply our result to non-linear functions of stationary Gaussian sequences. We obtain almost sure central limit theorems for these non-linear functions when they converge in law to a normal distribution.

Introduction

Let {X n } n 1 be a sequence of real-valued independent identically distributed random variables with E[X n ] = 0 and E[X 2 n ] = 1, and denote

S n = 1 √ n n k=1 X k .
The celebrated almost sure central limit theorem (ASCLT) states that the sequence of random empirical measures, given by

1 log n n k=1 1 k δ S k
converges almost surely to the N (0, 1) distribution as n → ∞. In other words, if N is a N (0, 1) random variable, then, almost surely, for all x ∈ R,

1 log n n k=1 1 k 1 {S k x} -→ P (N x), as n → ∞,
or, equivalently, almost surely, for any bounded and continuous function ϕ : R → R,

1 log n n k=1 1 k ϕ(S k ) -→ E[ϕ(N)],
as n → ∞.

(1.1)

The ASCLT was stated first by Lévy [START_REF] Lévy | Théorie de l'addition des variables aléatoires[END_REF] without proof. It was then forgotten for half century. It was rediscovered by Brosamler [START_REF] Brosamler | An almost everywhere central limit theorem[END_REF] and Schatte [START_REF] Schatte | On strong versions of the central limit theorem[END_REF] and proven, in its present form, by Lacey and Philipp [START_REF] Lacey | A note on the almost sure central limit theorem[END_REF]. We refer the reader to Berkes and Csáki [START_REF] Berkes | A universal result in almost sure central limit theory[END_REF] for a universal ASCLT covering a large class of limit theorems for partial sums, extremes, empirical distribution functions and local times associated with independent random variables {X n }, as well as to the work of Gonchigdanzan [START_REF] Gonchigdanzan | Almost Sure Central Limit Theorems[END_REF], where extensions of the ASCLT to weakly dependent random variables are studied, for example in the context of strong mixing or ρ-mixing. Ibragimov and Lifshits [START_REF] Ibragimov | On limit theorems of "almost sure" type[END_REF][START_REF] Ibragimov | On the convergence of generalized moments in almost sure central limit theorem[END_REF] have provided a criterion for (1.1) which does not require the sequence {X n } of random variables to be necessarily independent nor the sequence {S n } to take the specific form of partial sums. This criterion is stated in Theorem 3.1 below.

Our goal in the present paper is to investigate the ASCLT for a sequence of functionals of general Gaussian fields. Conditions ensuring the convergence in law of this sequence to the standard N (0, 1) distribution may be found in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF][START_REF] Nourdin | Second order Poincaré inequalities and CLTs on Wiener space[END_REF] by Nourdin, Peccati and Reinert. Here, we shall propose a suitable criterion for this sequence of functionals to satisfy also the ASCLT. As an application, we shall consider some non-linear functions of strongly dependent Gaussian random variables.

The paper is organized as follows. In Section 2, we present the basic elements of Gaussian analysis and Malliavin calculus used in this paper. An abstract version of our ASCLT is stated and proven in Section 3, as well as an application to partial sums of non-linear functions of a strongly dependent Gaussian sequence. In Section 4, we apply our ASCLT to discrete-time fractional Brownian motion. In Section 5, we consider applications to partial sums of Hermite polynomials of strongly dependent Gaussian sequences, when the limit in distribution is Gaussian. Finally, in Section 6, we discuss the case where the limit in distribution is non-Gaussian.

Elements of Malliavin calculus

We shall now present the basic elements of Gaussian analysis and Malliavin calculus that are used in this paper. The reader is referred to the monograph by Nualart [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] for any unexplained definition or result.

Let H be a real separable Hilbert space. For any q 1, let H ⊗q be the qth tensor product of H and denote by H ⊙q the associated qth symmetric tensor product. We write X = {X(h), h ∈ H} to indicate an isonormal Gaussian process over H, defined on some probability space (Ω, F , P ). This means that X is a centered Gaussian family, whose covariance is given in terms of the scalar product of H by E [X(h)X(g)] = h, g H .

For every q 1, let H q be the qth Wiener chaos of X, that is, the closed linear subspace of L 2 (Ω, F , P ) generated by the family of random variables {H q (X(h)), h ∈ H, h H = 1}, where H q is the qth Hermite polynomial defined as

H q (x) = (-1) q e x 2 2 d q dx q e -x 2 2 .
(2.

2)

The first few Hermite polynomials are

H 1 (x) = x, H 2 (x) = x 2 -1, H 3 (x) = x 3 -3x.
We write by convention H 0 = R and I 0 (x) = x, x ∈ R. For any q 1, the mapping I q (h ⊗q ) = H q (X(h)) can be extended to a linear isometry between the symmetric tensor product H ⊙q equipped with the modified norm

• H ⊙q = √ q! • H ⊗q and the qth Wiener chaos H q . Then E[I p (f )I q (g)] = δ p,q × p! f, g H ⊗p (2.3)
where δ p,q stands for the usual Kronecker symbol, for f ∈ H ⊙p , g ∈ H ⊙q and p, q 1. Moreover, if f ∈ H ⊗q , we have

I q (f ) = I q ( f), (2.4) 
where f ∈ H ⊙q is the symmetrization of f . It is well known that L 2 (Ω, F , P ) can be decomposed into the infinite orthogonal sum of the spaces H q . Therefore, any square integrable random variable G ∈ L 2 (Ω, F , P ) admits the following Wiener chaotic expansion

G = E[G] + ∞ q=1 I q (f q ), (2.5) 
where the f q ∈ H ⊙q , q 1, are uniquely determined by G.

Let {e k , k 1} be a complete orthonormal system in H. Given f ∈ H ⊙p and g ∈ H ⊙q , for every r = 0, . . . , p ∧ q, the contraction of f and g of order r is the element of H ⊗(p+q-2r) defined by

f ⊗ r g = ∞ i 1 ,...,ir=1
f, e i 1 ⊗ . . . ⊗ e ir H ⊗r ⊗ g, e i 1 ⊗ . . . ⊗ e ir H ⊗r .

(2.6)

Since f ⊗ r g is not necessarily symmetric, we denote its symmetrization by f ⊗ r g ∈ H ⊙(p+q-2r) . Observe that f ⊗ 0 g = f ⊗ g equals the tensor product of f and g while, for p = q, f ⊗ q g = f, g H ⊗q , namely the scalar product of f and g. In the particular case H = L 2 (A, A, µ), where (A, A) is a measurable space and µ is a σ-finite and non-atomic measure, one has that H ⊙q = L 2 s (A q , A ⊗q , µ ⊗q ) is the space of symmetric and square integrable functions on A q . In this case, (2.6) can be rewritten as

(f ⊗ r g)(t 1 , . . . , t p+q-2r ) = A r f (t 1 , . . . , t p-r , s 1 , . . . , s r )
× g(t p-r+1 , . . . , t p+q-2r , s 1 , . . . , s r )dµ(s 1 ) . . . dµ(s r ), that is, we identify r variables in f and g and integrate them out. We shall make use of the following lemma whose proof is a straighforward application of the definition of contractions and Fubini theorem.

Lemma 2.1 Let f, g ∈ H ⊙2 . Then f ⊗ 1 g 2 H ⊗2 = f ⊗ 1 f, g ⊗ 1 g H ⊗2 .
Let us now introduce some basic elements of the Malliavin calculus with respect to the isonormal Gaussian process X. Let S be the set of all cylindrical random variables of the form

G = ϕ (X(h 1 ), . . . , X(h n )) , (2.7) 
where n 1, ϕ : R n → R is an infinitely differentiable function with compact support and h i ∈ H. The Malliavin derivative of G with respect to X is the element of L 2 (Ω, H) defined as

DG = n i=1 ∂ϕ ∂x i (X(h 1 ), . . . , X(h n )) h i . (2.8)
By iteration, one can define the mth derivative D m G, which is an element of L 2 (Ω, H ⊙m ), for every m 2. For instance, for G as in (2.7), we have

D 2 G = n i,j=1 ∂ 2 ϕ ∂x i ∂x j (X(h 1 ), . . . , X(h n ))h i ⊗ h j .
For m 1 and p 1, D m,p denotes the closure of S with respect to the norm • m,p , defined by the relation

G p m,p = E [|G| p ] + m i=1 E D i G p H ⊗i .
(2.9)

In particular, DX(h) = h for every h ∈ H. The Malliavin derivative D verifies moreover the following chain rule. If ϕ : R n → R is continuously differentiable with bounded partial derivatives and if

G = (G 1 , . . . , G n ) is a vector of elements of D 1,2 , then ϕ(G) ∈ D 1,2 and 
Dϕ(G) = n i=1 ∂ϕ ∂x i (G)DG i .
Let now H = L 2 (A, A, µ) with µ non-atomic. Then an element u ∈ H can be expressed as u = {u t , t ∈ A} and the Malliavin derivative of a multiple integral G of the form

I q (f ) (with f ∈ H ⊙q ) is the element DG = {D t G, t ∈ A} of L 2 (A × Ω) given by D t G = D t I q (f ) = qI q-1 (f (•, t)) .
(2.10)

Thus the derivative of the random variable I q (f ) is the stochastic process qI q-1 f (•, t) , t ∈ A. Moreover,

D I q (f ) 2 H = q 2 A I q-1 (f (•, t)) 2 µ(dt).
For any G ∈ L 2 (Ω, F , P ) as in (2.5), we define

L -1 G = - ∞ q=1 1 q I q (f q ). (2.11)
It is proven in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] that for every centered G ∈ L 2 (Ω, F , P ) and every C 1 and Lipschitz function h : R → C,

E[Gh(G)] = E[h ′ (G) DG, -DL -1 G H ].
(2.12)

In the particular case h(x) = x, we obtain from (2.12) that

Var[G] = E[G 2 ] = E[ DG, -DL -1 G H ], (2.13) 
where 'Var' denotes the variance. Moreover, if G ∈ D 2,4 is centered, then it is shown in [START_REF] Nourdin | Second order Poincaré inequalities and CLTs on Wiener space[END_REF] that

Var[ DG, -DL -1 G ] 5 2 E[ DG 4 H ] 1 2 E[ D 2 G ⊗ 1 D 2 G 2 H ⊗2 ] 1 2 . (2.14) 
Finally, we shall also use the following bound, established in a slightly different way in [START_REF] Nourdin | Second order Poincaré inequalities and CLTs on Wiener space[END_REF]Corollary 4.2], for the difference between the characteristic functions of a centered random variable in D 2,4 and of a standard Gaussian random variable.

Lemma 2.2 Let G ∈ D 2,4 be centered. Then, for any t ∈ R, we have

E[e itG ]-e -t 2 /2 |t| 1-E[G 2 ] + |t| 2 √ 10 E[ D 2 G ⊗ 1 D 2 G 2 H ⊗2 ] 1 4 E[ DG 4 H ] 1 4 . (2.15)
Proof. For all t ∈ R, let ϕ(t) = e t 2 /2 E[e itG ]. It follows from (2.12) that

ϕ ′ (t) = te t 2 /2 E[e itG ] + ie t 2 /2 E[Ge itG ] = te t 2 /2 E[e itG (1 -DG, -DL -1 G H )].
Hence, we obtain that

ϕ(t) -ϕ(0) sup u∈[0, t] |ϕ ′ (u)| |t|e t 2 /2 E |1 -DG, -DL -1 G H | , which leads to E[e itG ] -e -t 2 /2 |t| E |1 -DG, -DL -1 G H | .
Consequently, we deduce from (2.13) together with Cauchy-Schwarz inequality that

E[e itG ] -e -t 2 /2 |t| 1 -E[G 2 ] + |t| E |E[G 2 ] -DG, -DL -1 G H | , |t| 1 -E[G 2 ] + |t| Var DG, -DL -1 G H .
We conclude the proof of Lemma 2.2 by using (2.14). 2

A criterion for ASCLT on the Wiener space

The following result, due to Ibragimov and Lifshits [START_REF] Ibragimov | On limit theorems of "almost sure" type[END_REF], gives a sufficient condition for extending convergence in law to ASCLT. It will play a crucial role in all the sequel.

Theorem 3.1 Let {G n } be a sequence of random variables converging in distribution towards a random variable G ∞ , and set

∆ n (t) = 1 log n n k=1 1 k e itG k -E(e itG∞ ) . (3.16)
If, for all r > 0,

sup |t| r n E|∆ n (t)| 2 n log n < ∞, (3.17) 
then, almost surely, for all continuous and bounded function ϕ : R → R, we have

1 log n n k=1 1 k ϕ(G k ) -→ E[ϕ(G ∞ )], as n → ∞.
The following theorem is the main abstract result of this section. It provides a suitable criterion for an ASCLT for normalized sequences in D 2,4 .

Theorem 3.2 Let the notation of Section 2 prevail. Let {G

n } be a sequence in D 2,4 satisfying, for all n 1, E[G n ] = 0 and E[G 2 n ] = 1. Assume that (A 0 ) sup n 1 E DG n 4 H ] < ∞, and 
E[ D 2 G n ⊗ 1 D 2 G n 2 H ⊗2 ] → 0, as n → ∞. Then, G n law -→ N ∼ N (0, 1) as n → ∞.
Moreover, assume that the two following conditions also hold

(A 1 ) n 2 1 n log 2 n n k=1 1 k E[ D 2 G k ⊗ 1 D 2 G k 2 H ⊗2 ] 1 4 < ∞, (A 2 ) n 2 1 n log 3 n n k,l=1 E(G k G l ) kl < ∞.
Then, {G n } satisfies an ASCLT. In other words, almost surely, for all continuous and bounded function ϕ : R → R,

1 log n n k=1 1 k ϕ(G k ) -→ E[ϕ(N)], as n → ∞. Remark 3.3 If there exists α > 0 such that E[ D 2 G k ⊗ 1 D 2 G k 2 H ⊗2 ] = O(k -α ) as k → ∞, then (A 1 ) is clearly satisfied. On the other hand, if there exists C, α > 0 such that E[G k G l ]
C k l α for all k l, then, for some positive constants a, b independent of n, we have

n 2 1 n log 3 n n l=1 1 l l k=1 E[G k G l ] k C n 2 1 n log 3 n n l=1 1 l 1+α l k=1 k α-1 , a n 2 1 n log 3 n n l=1 1 l b n 2 1 n log 2 n < ∞, which means that (A 2 ) is also satisfied. Proof of Theorem 3.2. The fact that G n law -→ N ∼ N (0, 1) follows from [17, Corollary 4.2].
In order to prove that the ASCLT holds, we shall verify the sufficient condition (3.17), that is the Ibragimov-Lifshits criterion. For simplicity, let g(t) = E(e itN ) = e -t 2 /2 . Then, we have

E|∆ n (t)| 2 (3.18) = 1 log 2 n n k,l=1 1 kl E e itG k -g(t) e -itG l -g(t) , = 1 log 2 n n k,l=1 1 kl E e it(G k -G l ) -g(t) E e itG k + E e -itG l + g 2 (t) , = 1 log 2 n n k,l=1 1 kl E e it(G k -G l ) -g 2 (t) -g(t) E e itG k -g(t) -g(t) E e -itG l -g(t) .
Let t ∈ R and r > 0 be such that |t| r. It follows from inequality (2.15) together with assumption (A 0 ) that

E e itG k -g(t) rξ 2 √ 10 E[ D 2 G k ⊗ 1 D 2 G k 2 H ⊗2 ] 1 4 (3.19) 
where

ξ = sup n 1 E DG n 4 H ] 1 4 . Similarly, E e -itG l -g(t) rξ 2 √ 10 E[ D 2 G l ⊗ 1 D 2 G l 2 H ⊗2 ] 1 4 . (3.20)
On the other hand, we also have via (2.15) that

E e it(G k -G l ) -g 2 (t) = E e it √ 2 G k -G l √ 2 -g( √ 2 t) , √ 2r 1 - 1 2 E[(G k -G l ) 2 ] + rξ √ 5 E[ D 2 (G k -G l ) ⊗ 1 D 2 (G k -G l ) 2 H ⊗2 ] 1 4 , √ 2r|E[G k G l ]| + rξ √ 5 E[ D 2 (G k -G l ) ⊗ 1 D 2 (G k -G l ) 2 H ⊗2 ] 1 4 . 7 Moreover D 2 (G k -G l ) ⊗ 1 D 2 (G k -G l ) 2 H ⊗2 2 D 2 G k ⊗ 1 D 2 G k 2 H ⊗2 + 2 D 2 G l ⊗ 1 D 2 G l 2 H ⊗2 +4 D 2 G k ⊗ 1 D 2 G l 2 H ⊗2 .
In addition, we infer from Lemma 2.1 that

E D 2 G k ⊗ 1 D 2 G l 2 H ⊗2 = E D 2 G k ⊗ 1 D 2 G k , D 2 G l ⊗ 1 D 2 G l H ⊗2 , E D 2 G k ⊗ 1 D 2 G k 2 H ⊗2 1 2 E D 2 G l ⊗ 1 D 2 G l 2 H ⊗2 1 2 , 1 2 E D 2 G k ⊗ 1 D 2 G k 2 H ⊗2 + 1 2 E D 2 G l ⊗ 1 D 2 G l 2 H ⊗2 .
Consequently, we deduce from the elementary inequality (a + b)

1 4 a 1 4 + b 1 4 that E e it(G k -G l ) -g 2 (t) (3.21) √ 2r|E[G k G l ]| + rξ √ 10 E D 2 G k ⊗ 1 D 2 G k 2 H ⊗2 1 4 + E D 2 G l ⊗ 1 D 2 G l 2 H ⊗2 1 4 .
Finally, (3.17) follows from the conjunction of (A 

G n = 1 σ n √ n n k=1 f (X k ) -E[f (X k )]
where σ n is the positive normalizing constant which ensures that E[G 2 n ] = 1. Then, as n → ∞, G n law -→ N and {G n } satisfies an ASCLT. In other words, almost surely, for all continuous and bounded function ϕ : R → R,

1 log n n k=1 1 k ϕ(G k ) -→ E[ϕ(N)], as n → ∞.
Remark 3.5 We can replace the assumption 'f is symmetric and non-constant' by

∞ q=1 1 q! E[f (N)H q (N)] 2 r∈Z |ρ(r)| q < ∞ and ∞ q=1 1 q! E[f (N)H q (N)] 2 r∈Z ρ(r) q > 0.
Indeed, it suffices to replace the monotone convergence argument used to prove (3.22) below by a bounded convergence argument. However, this new assumption seems rather difficult to check in general, except of course when the sum with respect to q is finite, that is when f is a polynomial.

Proof of Theorem 3.4. First, note that a consequence of [17, inequality (3.19)] is that we automatically have

E[f ′ (N) 4 ] < ∞ and E[f (N) 4 ] < ∞.
Let us now expand f in terms of Hermite polynomials. Since f is symmetric, we can write

f = E[f (N)] + ∞ q=1 c 2q H 2q ,
where the real numbers c 2q are given by (2q

)!c 2q = E[f (N)H 2q (N)]. Consequently, σ 2 n = 1 n n k,l=1 Cov[f (X k ), f (X l )] = ∞ q=1 c 2 2q (2q)! 1 n n k,l=1 ρ(k -l) 2q , = ∞ q=1 c 2 2q (2q)! r∈Z ρ(r) 2q 1 - |r| n 1 {|r| n} .
Hence, it follows from the monotone convergence theorem that

σ 2 n -→ σ 2 ∞ = ∞ q=1 c 2 2q (2q)! r∈Z ρ(r) 2q , as n → ∞. (3.22) 
Since f is not constant, one can find some q 1 such that c 2q = 0. Moreover, we also have r∈Z ρ(r) 2q ρ(0) 2q = 1. Hence, σ ∞ > 0, which implies in particular that the infimum of the sequence {σ n } n 1 is positive.

The Gaussian space generated by X = {X k } k∈Z can be identified with an isonormal Gaussian process of the type X = {X(h) : h ∈ H}, for H defined as follows: (i) denote by E the set of all sequences indexed by Z with finite support; (ii) define H as the Hilbert space obtained by closing E with respect to the scalar product

u, v H = k,l∈Z u k v l ρ(k -l).
(3.23)

In this setting, we have X(ε k ) = X k where ε k = {δ kl } l∈Z , δ kl standing for the Kronecker symbol. In view of (2.8), we have

DG n = 1 σ n √ n n k=1 f ′ (X k )ε k . Hence DG n 2 H = 1 σ 2 n n n k,l=1 f ′ (X k )f ′ (X l ) ε k , ε l H = 1 σ 2 n n n k,l=1 f ′ (X k )f ′ (X l )ρ(k -l),
so that

DG n 4 H = 1 σ 4 n n 2 n i,j,k,l=1 f ′ (X i )f ′ (X j )f ′ (X k )f ′ (X l )ρ(i -j)ρ(k -l).
We deduce from Cauchy-Schwarz inequality that

E[f ′ (X i )f ′ (X j )f ′ (X k )f ′ (X l )] (E[f ′ (N) 4 ]) 1 4 
, which leads to

E[ DG n 4 H ] 1 σ 4 n E[f ′ (N) 4 ] 1 4 r∈Z |ρ(r)| 2 . (3.24)
On the other hand, we also have

D 2 G n = 1 σ n √ n n k=1 f ′′ (X k )ε k ⊗ ε k ,
and therefore

D 2 G n ⊗ 1 D 2 G n = 1 σ 2 n n n k,l=1 f ′′ (X k )f ′′ (X l )ρ(k -l)ε k ⊗ ε l . Hence E D 2 G n ⊗ 1 D 2 G n 2 H ⊗2 , = 1 σ 4 n n 2 n i,jk,l=1 E f ′′ (X i )f ′′ (X j )f ′′ (X k )f ′′ (X l ) ρ(k -l)ρ(i -j)ρ(k -i)ρ(l -j), (E f ′′ (N) 4 ) 1 4 σ 4 n n u,v,w∈Z |ρ(u)||ρ(v)||ρ(w)||ρ(-u + v + w)|, (E f ′′ (N) 4 ) 1 4 ρ ∞ σ 4 n n r∈Z |ρ(r)| 3 < ∞. (3.25)
By virtue of Theorem 3.2 together with the fact that inf n 1 σ n > 0, the inequalities (3.24) and (3.25) imply that G n law -→ N. Now, in order to show that the ASCLT holds, we shall also check that conditions (A 1 ) and (A 2 ) in Theorem 3.2 are fulfilled. First, still because inf n 1 σ n > 0, (A 1 ) holds since we have

E D 2 G n ⊗ 1 D 2 G n 2 H ⊗2 = O(n -1
) by (3.25), see also Remark 3.3. Therefore, it only remains to prove (A 2 ). Gebelein's inequality (see e.g. identity (1.7) in [START_REF] Beśka | On sequences of the white noises[END_REF]) states that

Cov[f (X i ), f (X j )] E[X i X j ] Var[f (X i )] Var[f (X j )] = ρ(i -j)Var[f (N)].
Consequently,

E[G k G l ] = 1 σ k σ l √ kl k i=1 l j=1 Cov[f (X i ), f (X j )] Var[f (N)] σ k σ l √ kl k i=1 l j=1 |ρ(i -j)|, = Var[f (N)] σ k σ l √ kl k i=1 i-1 r=i-l |ρ(r)| Var[f (N)] σ k σ l k l r∈Z |ρ(r)|.
Finally, via the same arguments as in Remark 3.3, (A 2 ) is satisfied, which completes the proof of Theorem 3.4.

2

The following result specializes Theorem 3.2, by providing a criterion for an ASCLT for multiple stochastic integrals of fixed order q 2. It is expressed in terms of the kernels of these integrals.

Corollary 3.6 Let the notation of Section 2 prevail. Fix q 2, and let {G n } be a sequence of the form

G n = I q (f n ), with f n ∈ H ⊙q . Assume that E[G 2 n ] = q! f n 2 
H ⊗q = 1 for all n, and that f n ⊗ r f n H ⊗2(q-r) → 0 as n → ∞, for every r = 1, . . . , q -1.

(3.26)

Then, G n law -→ N ∼ N (0, 1)
as n → ∞. Moreover, if the two following conditions are also satisfied

(A ′ 1 ) n 2 1 n log 2 n n k=1 1 k f k ⊗ r f k H ⊗2(q-r) < ∞ for every r = 1, . . . , q -1, (A ′ 2 ) n 2 1 n log 3 n n k,l=1 f k , f l H ⊗q kl < ∞.
then {G n } satisfies an ASCLT. In other words, almost surely, for all continuous and bounded function ϕ : R → R,

1 log n n k=1 1 k ϕ(G k ) -→ E[ϕ(N)], as n → ∞.
Proof of Corollary 3.6. The fact that G n law -→ N ∼ N (0, 1) follows directly from (3.26), which is the Nualart-Peccati [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] criterion of normality. In order to prove that the ASCLT holds, we shall apply once again Theorem 3.2. This is possible because a multiple integral is always an element of D 2,4 . We have, by (2.13),

1 = E[G 2 k ] = E[ DG k , -DL -1 G k H ] = 1 q E[ DG k 2 H ],
where the last inequality follows from -L -1 G k = 1 q G k , using the definition (2.11) of L -1 . In addition, as the random variables DG k 2 H live inside the finite sum of the first 2q Wiener chaoses (where all the L p norm are equivalent), we deduce that condition (A 0 ) of Theorem 3.2 is satisfied. On the other hand, it is proven in [17, page 604] that

E D 2 G k ⊗ 1 D 2 G k 2 H ⊗2 q 4 (q -1) 4 q-1 r=1 (r -1)! 2 q -2 r -1 4 (2q -2-2r)! f k ⊗ r f k 2 H ⊗2(q-r) .
Consequently, condition (A ′ 1 ) implies condition (A 1 ) of Theorem 3.2. Furthermore, by

(2.3), E[G k G l ] = E I q (f k )I q (f l ) = q! f k , f l H ⊗q . Thus, condition (A ′
2 ) is equivalent to condition (A 2 ) of Theorem 3.2, and the proof of the corollary is done.

2

In Corollary 3.6, we supposed q 2, which implies that G n = I q (f n ) is a multiple integral of order at least 2 and hence is not Gaussian. We now consider the Gaussian case q = 1.

Corollary 3.7 Let {G n } be a centered Gaussian sequence with unit variance. If the condition (A 2 ) in Theorem 3.2 is satisfied, then {G n } satisfies an ASCLT. In other words, almost surely, for all continuous and bounded function ϕ : R → R,

1 log n n k=1 1 k ϕ(G k ) -→ E[ϕ(N)], as n → ∞.
Proof of Corollary 3.7. Let t ∈ R and r > 0 be such that |t| r, and let ∆ n (t) be defined as in (3.16). We have

E|∆ n (t)| 2 = 1 log 2 n n k,l=1 1 kl E e itG k -e -t 2 /2 e -itG l -e -t 2 /2 , = 1 log 2 n n k,l=1 1 kl E e it(G k -G l ) -e -t 2 , = 1 log 2 n n k,l=1 e -t 2 kl e E(G k G l )t 2 -1 , r 2 e r 2 log 2 n n k,l=1 E(G k G l ) kl , since |e x -1| e |x| |x| and |E(G k G l )| 1.
Therefore, assumption (A 2 ) implies (3.17), and the proof of the corollary is done. 2

Application to discrete-time fractional Brownian motion

Let us apply Corollary 3.7 to the particular case G n = B H n /n H , where B H is a fractional Brownian motion with Hurst index H ∈ (0, 1). We recall that B H = (B H t ) t 0 is a centered Gaussian process with continuous paths such that

E[B H t B H s ] = 1 2 t 2H + s 2H -|t -s| 2H , s, t 0.
The process B H is self-similar with stationary increments and we refer the reader to Nualart [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] and Samorodnitsky and Taqqu [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF] for its main properties. The increments

Y k = B H k+1 -B H k , k 0,
called 'fractional Gaussian noise', are centered stationary Gaussian random variables with covariance

ρ(r) = E[Y k Y k+r ] = 1 2 |r + 1| 2H + |r -1| 2H -2|r| 2H , r ∈ Z. (4.27)
This covariance behaves asymptotically as

ρ(r) ∼ H(2H -1)|r| 2H-2 as |r| → ∞. (4.28)
Observe that ρ(0) = 1 and 1) For 0 < H < 1/2, ρ(r) < 0 for r = 0,

r∈Z |ρ(r)| < ∞ and r∈Z ρ(r) = 0. 2) For H = 1/2, ρ(r) = 0 if r = 0. 3) For 1/2 < H < 1, r∈Z |ρ(r)| = ∞.
The Hurst index measures the strenght of the dependence when H 1/2: the larger H is, the stronger is the dependence.

A continuous time version of the following result was obtained by Berkes and Horváth [START_REF] Berkes | Limit theorems for logarithmic averages of fractional Brownian motions[END_REF] via a different approach.

Theorem 4.1 For all H ∈ (0, 1), we have, almost surely, for all continuous and bounded function ϕ : R → R,

1 log n n k=1 1 k ϕ(B H k /k H ) -→ E[ϕ(N)], as n → ∞.
Proof of Theorem 4.1. We shall make use of Corollary 3.7. The cases H < 1/2 and H 1/2 are treated separately. From now on, the value of a constant C > 0 may change from line to line, and we set ρ(r)

= 1 2 |r + 1| 2H + |r -1| 2H -2|r| 2H , r ∈ Z.
Case H < 1/2. For any b a 0, we have

b 2H -a 2H = 2H b-a 0 dx (x + a) 1-2H 2H b-a 0 dx x 1-2H = (b -a) 2H . Hence, for l k 1, we have l 2H -(l -k) 2H k 2H so that |E[B H k B H l ]| = 1 2 k 2H + l 2H -(l -k) 2H k 2H . Thus n 2 1 n log 3 n n l=1 1 l l k=1 |E[G k G l ]| k = n 2 1 n log 3 n n l=1 1 l 1+H l k=1 |E[B H k B H l ]| k 1+H , n 2 
1 n log 3 n n l=1 1 l 1+H l k=1 1 k 1-H , C n 2 1 n log 3 n n l=1 1 l C n 2 1 n log 2 n < ∞.
Consequently, condition (A 2 ) in Theorem 3.2 is satisfied.

Case H 1/2. For l k 1, it follows from (4.27)-(4.28) that

|E[B H k B H l ]| = k-1 i=0 l-1 j=0 E[(B H i+1 -B H i )(B H j+1 -B H j )] k-1 i=0 l-1 j=0 |ρ(i -j)|, k l-1 r=-l+1 |ρ(r)| Ckl 2H-1 .
The last inequality comes from the fact that ρ(0) = 1, ρ(1) = ρ(-1) = (2 2H -1)/2 and, if r 2,

|ρ(-r)| = |ρ(r)| = E[(B H r+1 -B H r )B H 1 ] = H(2H -1) 1 0 du r+1 r dv(v -u) 2H-2 H(2H -1) 1 0 (r -u) 2H-2 du H(2H -1)(r -1) 2H-2 .
Consequently,

n 2 1 n log 3 n n l=1 1 l l k=1 |E[G k G l ]| k = n 2 1 n log 3 n n l=1 1 l 1+H l k=1 |E[B H k B H l ]| k 1+H , C n 2 1 n log 3 n n l=1 1 l 2-H l k=1 1 k H , C n 2 1 n log 3 n n l=1 1 l C n 2 1 n log 2 n < ∞.
Finally, condition (A 2 ) in Theorem 3.2 is satisfied, which completes the proof of Theorem 4.1. 2

5 Partial sums of Hermite polynomials: the Gaussian limit case

Let X = {X k } k∈Z be a centered stationary Gaussian process and for all r ∈ Z, set ρ(r) = E[X 0 X r ]. Fix an integer q 2, and let H q stands for the Hermite polynomial of degree q, see (2.2). We are interested in an ASCLT for the q-Hermite power variations of X, defined as

V n = n k=1 H q (X k ), n 1, (5.29) 
in cases where V n , adequably normalized, converges to a normal distribution. Our result is as follows.

Theorem 5.1 Assume that r∈Z |ρ(r)| q < ∞, that r∈Z ρ(r) q > 0 and that there exists α > 0 such that |r|>n |ρ(r)| q = O(n -α ), as n → ∞. For any n 1, define

G n = V n σ n √ n ,
where V n is given by ( 5.29) and σ n denotes the positive normalizing constant which ensures that E[G 2 n ] = 1. Then G n law -→ N ∼ N (0, 1) as n → ∞, and {G n } satisfies an ASCLT. In other words, almost surely, for all continuous and bounded function ϕ : R → R,

1 log n n k=1 1 k ϕ(G k ) -→ E[ϕ(N)], as n → ∞.
Proof. We shall make use of Corollary 3.6. Let C be a positive constant, depending only on q and ρ, whose value may change from line to line. We consider the real and separable Hilbert space H as defined in the proof of Theorem 3.4, with the scalar product (3.23). Following the same line of reasoning as in the proof of (3.22), it is possible to show that σ 2 n → q! r∈Z ρ(r) q > 0. In particular, the infimum of the sequence {σ n } n 1 is positive.

On the other hand, we have G n = I q (f n ), where the kernel f n is given by

f n = 1 σ n √ n n k=1 ε ⊗q k ,
with ε k = {δ kl } l∈Z , δ kl standing for the Kronecker symbol. For all n 1 and r = 1, . . . , q -1, we have

f n ⊗ r f n = 1 σ 2 n n n k,l=1 ρ(k -l) r ε ⊗(q-r) k ⊗ ε ⊗(q-r) l .
We deduce that

f n ⊗ r f n 2 H ⊗(2q-2r) = 1 σ 4 n n 2 n i,j,k,l=1 ρ(k -l) r ρ(i -j) r ρ(k -i) q-r ρ(l -j) q-r .
Consequently, as in the proof of (3.25), we obtain that

f n ⊗ r f n 2 H ⊗(2q-2r)
A n where

A n = 1 σ 4 n n u,v,w∈Dn |ρ(u)| r |ρ(v)| r |ρ(w)| q-r |ρ(-u + v + w)| q-r
with D n = {-n, . . . , n}. Fix an integer m 1 such that n m. We can split A n into two terms

A n = B n,m + C n,m where 
B n,m = 1 σ 4 n n u,v,w∈Dm |ρ(u)| r |ρ(v)| r |ρ(w)| q-r |ρ(-u + v + w)| q-r , C n,m = 1 σ 4 n n u,v,w∈Dn |u|∨|v|∨|w|>m |ρ(u)| r |ρ(v)| r |ρ(w)| q-r |ρ(-u + v + w)| q-r .
We clearly have 

B n,m 1 σ 4 n n ρ 2q ∞ (2m + 
C n,m,u 1 σ 4 n n   u,v,w∈Dn,m,u |ρ(u)| q |ρ(v)| q   r q   u,v,w∈Dn,m,u |ρ(w)| q |ρ(-u + v + w)| q   1-r q . (5.30) However, u,v,w∈Dn,m,u |ρ(u)| q |ρ(v)| q (2n + 1) |u|>m |ρ(u)| q v∈Z |ρ(v)| q Cn |u|>m |ρ(u)| q .
Similarly,

u,v,w∈Dn,m,u |ρ(w)| q |ρ(-u + v + w)| q (2n + 1) v∈Z |ρ(v)| q w∈Z |ρ(w)| q Cn.
Therefore, (5.30) and the last assumption of Theorem 5.1 imply that for m large enough

C n,m,u C   |u|>m |ρ(u)| q   r q
Cm -αr q .

We obtain exactly the same bound for C n,m,v and C n,m,w . Combining all these estimates, we finally find that

f n ⊗ r f n 2 H ⊗(2q-2r) C × inf m n m 3 n + m -αr q
Cn -αr 3q+αr by taking the value m = n q 3q+αr . It ensures that condition (A ′ 1 ) in Corollary 3.6 is met. Let us now prove (A ′

2 ). We have

f k , f l H ⊗q = 1 σ k σ l √ kl k i=1 l j=1 ρ(i -j) q 1 σ k σ l √ kl k i=1 l j=1 |ρ(i -j)| q , 1 σ k σ l k l r∈Z |ρ(r)| q , so (A ′
2 ) is also satisfied, see Remark 3.3, which completes the proof of Theorem 5.1. 2

The following result contains an explicit situation where the assumptions in Theorem 5.1 are in order.

Proposition 5.2 Assume that ρ(r) ∼ |r| -β L(r), as |r| → ∞, for some β > 1/q and some slowly varying function L. Then r∈Z |ρ(r)| q < ∞ and there exists α > 0 such that

|r|>n |ρ(r)| q = O(n -α ), as n → ∞.
Proof. By a Riemann sum argument, it is immediate that r∈Z |ρ(r)| q < ∞. Moreover, by [4, Prop. 1.5.10], we have |r|>n |ρ(r)| q ∼ 2 βq-1 n 1-βq L q (n) so that we can choose α = 1 2 (βq -1) > 0 (for instance). 2

6 Partial sums of Hermite polynomials of increments of fractional Brownian motion

We focus here on increments of the fractional Brownian motion B H (see Section 4 for details about B H ). More precisely, for every q 1, we are interested in an ASCLT for the q-Hermite power variation of B H , defined as

V n = n-1 k=0 H q (B H k+1 -B H k ), n 1, (6.31) 
where H q stands for the Hermite polynomial of degree q given by (2.2). Observe that Theorem 4.1 corresponds to the particular case q = 1. That is why, from now on, we assume that q 2. When H = 1/2, the increments of B H are not independent, so the asymptotic behavior of (6.31) is difficult to investigate because V n is not linear. In fact, thanks to the seminal works of Breuer and Major [START_REF] Breuer | Central limit theorems for nonlinear functionals of Gaussian fields[END_REF], Dobrushin and Major [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF], Giraitis and Surgailis [START_REF] Giraitis | CLT and other limit theorems for functionals of Gaussian processes[END_REF] and Taqqu [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF], it is known (recall that q 2) that, as n → ∞

• If 0 < H < 1 -1 2q , then G n := V n σ n
√ n law -→ N (0, 1). (6.32)

• If H = 1 -1 2q , then G n := V n σ n √ n log n law -→ N (0, 1). (6.33) • If H > 1 -1 2q , then G n := n q(1-H)-1 V n law -→ G ∞ (6.34)
where G ∞ has an 'Hermite distribution'. Here, σ n denotes the positive normalizing constant which ensures that E[G 2 n ] = 1. The proofs of (6.32) and (6.33), together with rates of convergence, can be found in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF] and [START_REF] Breton | Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion[END_REF], respectively. A short proof of (6.34) is given in Proposition 6.1 below. Notice that rates of convergence can be found in [START_REF] Breton | Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion[END_REF]. Our proof of (6.34) is based on the fact that, for fixed n, Z n defined in (6.35) below and G n share the same law, because of the self-similarity property of fractional Brownian motion. Proposition 6.1 Assume H > 1 -1 2q , and define Z n by

Z n = n q(1-H)-1 n-1 k=0 H q n H (B H (k+1)/n -B H k/n ) , n 1. (6.35)
Then, as n → ∞, {Z n } converges almost surely and in L 2 (Ω) to a limit denoted by Z ∞ , which belongs to the qth chaos of B H .

Proof. Let us first prove the convergence in L 2 (Ω). For n, m 1, we have

E[Z n Z m ] = q!(nm) q-1 n-1 k=0 m-1 l=0 E B H (k+1)/n -B H k/n B H (l+1)/m -B H l/m q .
Furthermore, since H > 1/2, we have for all s, t 0,

E[B H s B H t ] = H(2H -1) t 0 du s 0 dv|u -v| 2H-2 . Hence E[Z n Z m ] = q!H q (2H -1) q × 1 nm n-1 k=0 m-1 l=0 nm (k+1)/n k/n du (l+1)/m l/m dv|v -u| 2H-2 q .
Therefore, as n, m → ∞, we have,

E[Z n Z m ] → q!H q (2H -1) q [0,1] 2
|u -v| (2H-2)q dudv, and the limit is finite since H > 1 -1 2q . In other words, the sequence {Z n } is Cauchy in L 2 (Ω), and hence converges in L 2 (Ω) to some Z ∞ .

Let us now prove that {Z n } converges also almost surely. Observe first that, since Z n belongs to the qth chaos of B H for all n, since {Z n } converges in L 2 (Ω) to Z ∞ and since the qth chaos of B H is closed in L 2 (Ω) by definition, we have that Z ∞ also belongs to the qth chaos of B H . In [5, Proposition 3

.1], it is shown that E[|Z n -Z ∞ | 2 ] Cn 2q-1-2qH
, for some positive constant C not depending on n. Inside a fixed chaos, all the L p -norms are equivalent. Hence, for any p > 2, we have

E[|Z n -Z ∞ | p ] Cn p(q-1/2-qH) . Since H > 1-1 2q , there exists p > 2 large enough such that (q -1/2-qH)p < -1. Consequently n 1 E[|Z n -Z ∞ | p ] < ∞,
leading, for all ε > 0, to

n 1 P [|Z n -Z ∞ | > ε] < ∞.
Therefore, we deduce from the Borel-Cantelli lemma that {Z n } converges almost surely to Z ∞ . 2

We now want to see if one can associate almost sure central limit theorems to the convergences in law (6.32), (6.33) and (6.34). We first consider the case H < 1 -1 2q .

Proposition 6.2 Assume that q 2 and that H < 1 -1 2q , and consider

G n = V n σ n √ n
as in (6.32). Then, {G n } satisfies an ASCLT.

Proof. Since 2H -2 > 1/q, it suffices to combine (4.28), Proposition 5.2 and Theorem 5.1.

Next, let us consider the critical case H = 1 -1 2q . In this case, r∈Z |ρ(r)| q = ∞. Consequently, as it is impossible to apply Theorem 5.1, we propose another strategy which relies on the following lemma established in [START_REF] Breton | Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion[END_REF]. Lemma 6.3 Set H = 1 -1 2q . Let H be the real and separable Hilbert space defined as follows: (i) denote by E the set of all R-valued step functions on [0, ∞), (ii) define H as the Hilbert space obtained by closing E with respect to the scalar product

1 [0,t] , 1 [0,s] H = E[B H t B H s ].
For any n 2, let f n be the element of H ⊙q defined by

f n = 1 σ n √ n log n n-1 k=0 1 ⊗q [k,k+1] , (6.36) 
where σ n is the positive normalizing constant which ensures that q! f n 2 H ⊗q = 1. Then, there exists a constant C > 0, depending only on q and H such that, for all n 1 and r = 1, . . . , q -1

f n ⊗ r f n H ⊗(2q-2r) C(log n) -1/2 .
We can now state and prove the following result. Proposition 6.4 Assume that q 2 and H = 1 -1 2q , and consider

G n = V n σ n √ n log n
as in (6.33). Then, {G n } satisfies an ASCLT.

Proof of Proposition 6.4. We shall make use of Corollary 3.6. Let C be a positive constant, depending only on q and H, whose value may change from line to line. We consider the real and separable Hilbert space H as defined in Lemma 6.3. We have G n = I q (f n ) with f n given by (6.36). According to Lemma 6.3, we have for all k 1 and r = 1, . . . , q -1, that f k ⊗ r f k H ⊗(2q-2r) C(log k) -1/2 . Hence

n 2 1 n log 2 n n k=1 1 k f k ⊗ r f k H ⊗(2q-2r) C n 2 1 n log 2 n n k=1 1 k √ log k , C n 2 1 n log 3/2 n < ∞.
Consequently, assumption (A ′ 1 ) is satisfied. Concerning (A ′ 2 ), note that

f k , f l H ⊗q = 1 σ k σ l √ k log k √ l log l k-1 i=0 l-1 j=0 ρ(j -i) q .
We deduce from Lemma 6.5 below that σ 2 n → σ 2 ∞ > 0. Hence, for all l k 1

f k , f l H ⊗q C √ k log k √ l log l k-1 i=0 l-1 j=0 ρ(j -i) q , = C √ k log k √ l log l k-1 i=0 l-1-i r=-i ρ(r) q , C √ k √ log k √ l log l l r=-l ρ(r) q C k log l l log k .
The last inequality follows from the fact that l r=-l ρ(r) q C log l since, by (4.28), as |r| → ∞,

ρ(r) ∼ 1 - 1 q 1 - 1 2q |r| -1/q .
Finally, assumption (A ′ 2 ) is also satisfied as 

2

In the previous proof, we used the following lemma. Lemma 6.5 Assume that q 2 and H = 1 -1 2q . Then,

σ 2 n → 2q! 1 - 1 q q 1 - 1 2q q > 0, as n → ∞. Proof. We have E[(B H k+1 -B H k )(B H l+1 -B H l )] = ρ(k -l)
where ρ is given in (4.27). Hence,

E[V 2 n ] = n-1 k,l=0 E H q (B H k+1 -B H k )H q (B H l+1 -B H l ) = q! n-1 k,l=0
ρ(kl) q , = q! n-1 l=0 n-1-l r=-l ρ(r) q = q! |r|<n n -1 -|r| ρ(r) q , = q!   n |r|<n ρ(r) q -|r|<n |r| + 1 ρ(r) q   .

1 ) 3

 13 Cm 3 n . On the other hand, D n ∩ {|u| ∨ |v| ∨ |w| > m} ⊂ D n,m,u ∪ D n,m,v ∪ D n,m,w where the set D n,m,u = {|u| > m, |v| n, |w| n} and a similar definition for D n,m,v and D n,m,w . DenoteC n,m,u = 1 σ 4 n n u,v,w∈Dn,m,u |ρ(u)| r |ρ(v)| r |ρ(w)| q-r |ρ(-u + v + w)| q-rand a similar expression for C n,m,v and C n,m,w . It follows from Hölder inequality that
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On the other hand, as |r| → ∞, ρ(r) q ∼ 1 -

|r| .

Therefore, as n → ∞, |r|<n ρ(r) q ∼ 1 -

Consequently, as n → ∞,

Finally, we consider

We face in this case some difficulties. First, since the limit of {G n } in (6.34) is not Gaussian, we cannot apply our general criterion Corollary 3.6 to obtain an ASCLT. To modify adequably the criterion, we would need a version of Lemma 2.2 for random variables with an Hermite distribution, a result which is not presently available. Thus, an ASCLT associated to the convergence in law (6.34) falls outside the scope of this paper. We can nevertheless make a number of observations. First, changing the nature of the random variables without changing their law has no impact on CLTs as in (6.34), but may have a great impact on an ASCLT. To see this, observe that for each fixed n, the ASCLT involves not only the distribution of the single variable G n , but also the joint distribution of the vector (G 1 , . . . , G n ).

Consider, moreover, the following example. Let {G n } be a sequence of random variables converging in law to a limit G ∞ . According to a theorem of Skorohod, there is a sequence {G * n } such that for any fixed n, G * 

that is, different from the limit if one had an ASCLT.

Consider now the sequence {G n } defined by (6.37).

Proposition 6.6

The Skorohod version of Hence, in the case of Hermite distributions, by suitably modifying the argument of the Hermite polynomial H q in a way which does not change the limit in law, namely by considering Z n in (6.39) instead of G n in (6.38), we obtain the almost sure convergence

The limit ϕ(Z ∞ ) is, in general, different from the limit expected under an ASCLT, namely E[ϕ(Z ∞ )], because Z ∞ is a non-constant random variable with an Hermite distribution (Dobrushin and Major [START_REF] Dobrushin | Non-central limit theorems for nonlinear functionals of Gaussian fields[END_REF], Taqqu [START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF]). Thus, knowing the law of G n in (6.38), for a fixed n, does not allow to determine whether an ASCLT holds or not.