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Abstract: In this paper, we study almost sure central limit theorems for multiple stochastic

integrals and provide a criterion based on the kernel of these multiple integrals. We apply our

result to normalized partial sums of Hermite polynomials of increments of fractional Brownian

motion. We obtain almost sure central limit theorems for these normalized sums when they

converge in law to a normal distribution.
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1 Introduction

Let {Xn}n>1 be a sequence of real-valued independent identically distributed random
variables with E[Xn] = 0 and E[X2

n] = 1, and denote

Sn =
1√
n

n∑

k=1

Xk.

The celebrated almost sure central limit theorem (ASCLT) states that the sequence of
random empirical measures, given by

1

log n

n∑

k=1

1

k
δSk

,

converges almost surely to the N (0, 1) distribution as n → ∞. In other words, if N is a
N (0, 1) random variable, then, almost surely, for all x ∈ R,

1

log n

n∑

k=1

1

k
1{Sk6x} −→ P (N 6 x), as n → ∞.
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or, equivalently, almost surely, for any bounded and continuous function ϕ : R → R,

1

log n

n∑

k=1

1

k
ϕ(Sk) −→ E[ϕ(N)], as n → ∞. (1.1)

The ASCLT was stated first by Lévy [14] without proof. It was then forgotten for half
century. It was rediscovered by Brosamler [8] and Schatte [19] and proven, in its present
form, by Lacey and Philipp [13]. We refer the reader to Berkes and Csáki [1] for a universal
ASCLT covering a large class of limit theorems for partial sums, extremes, empirical
distribution function and local times associated with independent random variables {Xn},
as well as the PhD thesis by Gonchigdanzan [9], where extensions of the ASCLT to weakly
dependent random variables are studied, for example in the context of strong mixing or
ρ-mixing. Ibragimov and Lifshits [10, 11] have provided a criterion for (1.1) which does
not require the sequence {Xn} of random variables to be necessarily independent nor
that the sequence {Sn} have the specific form of partial sums. This criterion is stated in
Proposition 3.1 below.

Our goal is to investigate the ASCLT for a sequence of multiple stochastic integrals.
Conditions ensuring the convergence in law of this sequence to the standard N (0, 1)
distribution are now well-known, see Nuarlart and Peccati [16]. We will derive a criterion
for this sequence of multiple integrals to satisfy also the ASCLT.

As an application, we consider some non-linear functions of strongly dependent Gaus-
sian random variables. We will generate strong dependence by using increments of a
standard fractional Brownian motion BH . Recall that BH = (BH

t )t>0 is a centered Gaus-
sian process with continuous paths such that

E[BH
t BH

s ] =
1

2

(
t2H + s2H − |t − s|2H

)
, s, t > 0.

The process BH is self-similar with stationary increments and we refer the reader to
Nualart [17] and Samorodnitsky and Taqqu [18] for its main properties. The increments

Yk = BH
k+1 − BH

k , k > 0,

called “fractional Gaussian noise”, are centered stationary Gaussian random variables
with covariance

ρ(r) = E[YkYk+r] =
1

2

(
|r + 1|2H + |r − 1|2H − 2|r|2H

)
, r ∈ Z. (1.2)

This covariance behaves asymptotically as

ρ(r) ∼ H(2H − 1)|r|2H−2 as |r| → ∞.

Observe that ρ(0) = 1 and (i) for 0 < H < 1/2: ρ(r) < 0 for r 6= 0,
∑

r∈Z
|ρ(r)| < ∞

and
∑

r∈Z
ρ(r) = 0; (ii) for H = 1/2: ρ(r) = 0 if r 6= 0; and (iii) for 1/2 < H < 1:∑

r∈Z
|ρ(r)| = ∞. The Hurst index measures the strenght of the dependence when H >

1/2: the larger H , the stronger the dependence.
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We shall consider random variables

Hq(Yk) = Hq(B
H
k+1 − BH

k ), k > 0, (1.3)

where Hq is a Hermite polynomial of order q > 1. The first few Hermite polynomials
are H1(x) = x, H2(x) = x2 − 1 and H3(x) = x3 − 3x. Why Hermite polynomials? This
is because they can be expressed as multiple stochastic integrals. and because the limit
distribution, as n → ∞, of the partial sums

∑n−1
k=0 Hq(Yk), adequably normalized, is known

(see Breuer and Major [4], Dobrushin and Major [6], Giraitis and Surgailis [7] and Taqqu
[20]). This limit can be Gaussian or not, depending on the order q of the polynomial and
on the Hurst index H .

Using our multiple stochastic integral criterion for ASCLT and results from Malliavin
calculus, we will show that the normalized sums of

∑n−1
k=0 Hq(Yk), when q > 2, satisfy an

ASCLT if their limit is Gaussian, that is, when the Hurst index H satisfies 0 < H 6 1− 1
2q

.
Our criterion, when applied to the simple linear case q = 1, yields the following ASCLT

for fractional Brownian motion. We show that, almost surely, for any bounded continuous
function ϕ : R → R and any 0 < H < 1,

1

log n

n∑

k=1

1

k
ϕ

(
BH

k

kH

)
−→ E[ϕ(N)] as n → ∞, (1.4)

where N ∼ N (0, 1). Berkes and Horváth [2], using other techniques, have obtained a
continuous-time version of (1.4).

The paper is organized as follows. In Section 2, we present the basic elements of
Gaussian analysis and Malliavin calculus used in this paper. The ASCLT criterion is
stated and proved in Section 3. Its application to partial sums of Hermite polynomials
of increments of fractional Brownian motion is presented in Section 4, when the limit in
distribution is Gaussian. In section 5, we discuss the case where the limit in distribution
is non-Gaussian.

2 Multiple stochastic integrals and Malliavin calcu-

lus

We shall now present the basic elements of Gaussian analysis and Malliavin calculus that
are used in this paper. The reader is referred to the monograph by Nualart [17] for any
unexplained definition or result.

Let H be a real separable Hilbert space. For any q > 1, let H⊗q be the qth tensor
product of H and denote by H⊙q the associated qth symmetric tensor product. We write
X = {X(h), h ∈ H} to indicate an isonormal Gaussian process over H, defined on some
probability space (Ω,F , P ). This means that X is a centered Gaussian family, whose
covariance is given in terms of the inner product of H by E [X(h)X(g)] = 〈h, g〉H.

For every q > 1, let Hq be the qth Wiener chaos of X, that is, the closed linear
subspace of L2(Ω,F , P ) generated by the random variables of the type {Hq(X(h)), h ∈
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H, ‖h‖
H

= 1}, where Hq is the qth Hermite polynomial defined as

Hq(x) = (−1)qe
x2

2
dq

dxq

(
e−

x2

2

)
. (2.5)

We write by convention H0 = R and I0(x) = x, x ∈ R. For any q > 1, the mapping
Iq(h

⊗q) = q!Hq(X(h)) can be extended to a linear isometry between the symmetric tensor
product H⊙q equipped with the modified norm ‖·‖

H⊙q =
√

q! ‖·‖
H⊗q and the qth Wiener

chaos Hq. Then

E[Ip(f)Iq(g)] = δp,q × p!〈f, g〉H⊗p (δp,q stands for the Kronecker symbol)

for f ∈ H⊙p, g ∈ H⊙q and p, q > 1. Moreover, if f ∈ H⊗q, we have

Iq(f) = Iq(f̃), (2.6)

where f̃ ∈ H⊙q is the symmetrization of f .
Let {ek, k > 1} be a complete orthonormal system in H. Given f ∈ H⊙p and g ∈ H⊙q,

for every r = 0, . . . , p∧q, the contraction of f and g of order r is the element of H⊗(p+q−2r)

defined by

f ⊗r g =

∞∑

i1,...,ir=1

〈f, ei1 ⊗ . . . ⊗ eir〉H⊗r ⊗ 〈g, ei1 ⊗ . . . ⊗ eir〉H⊗r . (2.7)

Since f ⊗r g is not necessarily symmetric, we denote its symmetrization by f⊗̃rg ∈
H⊙(p+q−2r). Observe that f ⊗0 g = f ⊗ g equals the tensor product of f and g while, for
p = q, f ⊗q g = 〈f, g〉H⊗q , namely the scalar product of f and g. In the particular case
H = L2(A,A, µ), where (A,A) is a measurable space and µ is a σ-finite and non-atomic
measure, one has that H⊙q = L2

s(A
q,A⊗q, µ⊗q) is the space of symmetric and square

integrable functions on Aq. In this case, (2.7) can be written as

(f ⊗r g)(t1, . . . , tp+q−2r) =

∫

Ar

f(t1, . . . , tp−r, s1, . . . , sr)

× g(tp−r+1, . . . , tp+q−2r, s1, . . . , sr)dµ(s1) . . . dµ(sr),

that is, we identify r variables in f and g and integrate them out. The following useful
multiplication formula holds: if f ∈ H⊙p and g ∈ H⊙q, then

Ip(f)Iq(g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg). (2.8)

Let us now introduce some basic elements of the Malliavin calculus with respect to
the isonormal Gaussian process X. Let S be the set of all cylindrical random variables of
the form

F = ϕ (X(h1), . . . , X(hn)) , (2.9)
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where n > 1, ϕ : Rn → R is an infinitely differentiable function with compact support
and hi ∈ H. The Malliavin derivative of F with respect to X is the element of L2(Ω, H)
defined as

DF =

n∑

i=1

∂ϕ

∂xi
(X(h1), . . . , X(hn))hi.

By iteration, one can define the mth derivative DmF , which is an element of L2(Ω, H⊙m),
for every m > 2. For m > 1 and p > 1, Dm,p denotes the closure of S with respect to the
norm ‖ · ‖m,p, defined by the relation

‖F‖p
m,p = E [|F |p] +

m∑

i=1

E
(
‖DiF‖p

H⊗i

)
.

In particular, DX(h) = h for every h ∈ H. The Malliavin derivative D verifies moreover
the following chain rule. If ϕ : Rn → R is continuously differentiable with bounded partial
derivatives and if F = (F1, . . . , Fn) is a vector of elements of D1,2, then ϕ(F ) ∈ D1,2 and

Dϕ(F ) =

n∑

i=1

∂ϕ

∂xi
(F )DFi.

Let now H = L2(A,A, µ) with µ non-atomic. Then an element u ∈ H can be expressed
as u = {ut, t ∈ A} and the Malliavin derivative of a multiple integral F of the form Iq(f)
(with f ∈ H⊙q) is the element DF = {DtF, t ∈ A} of L2(A × Ω) given by

DtF = Dt

[
Iq(f)

]
= qIq−1 (f(·, t)) . (2.10)

Thus the derivative of the random variable Iq(f) is the stochastic process qIq−1

(
f(·, t)

)
,

t ∈ A. Moreover,

‖D
[
Iq(f)

]
‖2

H = q2

∫

A

Iq−1 (f(·, t))2 µ(dt).

We shall also use the following bound, proved by Nourdin and Peccati in [15], for the
difference between the law of multiple integrals of order q > 2 with unit variance and the
law of a standard Gaussian random variable.

Proposition 2.1 Let q > 2 be an integer, f ∈ H⊙q with q!‖f‖2
H⊗q = E

[
Iq(f)2

]
= 1 and

N ∼ N (0, 1). Then, for all h : C → R such that

|h(x) − h(y)| 6 |x − y|, x, y ∈ C, (2.11)

we have

∣∣E[h(Iq(f))] − E[h(N)]
∣∣ 6

√√√√E

[(
1 − 1

q
‖D[Iq(f)]‖2

H

)2
]
. (2.12)
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3 A multiple stochastic integral criterion for ASCLT

The following result, due to Ibragimov and Lifshits [10] (Theorem 1.1 therein), gives a
sufficient condition for extending convergence in law to an almost sure limit theorem.

Proposition 3.1 Let {Gn} be a sequence of random variables converging in distribution
towards a random variable G∞, and set

∆n(t) =
1

log n

n∑

k=1

1

k

(
eitGk − E(eitG∞)

)
.

If

sup
|t|6r

∑

n

E|∆n(t)|2
n log n

< ∞ for all r > 0, (3.13)

then, almost surely, for all continuous and bounded functions ϕ : R → R, we have

1

log n

n∑

k=1

1

k
ϕ(Gk) −→ E[ϕ(G∞)] as n → ∞.

The following theorem provides a criterion for an ASCLT for multiple stochastic inte-
grals. It is expressed in terms of the kernels of these integrals.

Theorem 3.2 Let the notation of Section 2 prevail. Fix q > 2, and let {Gn} be a sequence
of the form Gn = Iq(fn), with fn ∈ H⊙q. Assume that E[G2

n] = q!‖fn‖2
H⊗q = 1 for all n,

and that Gn
law−→ N ∼ N (0, 1) as n → ∞. If the following two conditions are satisfied:

(A1)
∑

n>2

1

n log2 n

n∑

k=1

1

k
‖fk ⊗r fk‖H⊗2(q−r) < ∞ for every r = 1, . . . , q − 1;

(A2)
∑

n>2

1

n log3 n

n∑

k,l=1

∣∣〈fk, fl〉H⊗q

∣∣
kl

< ∞,

then {Gn} satisfies an ASCLT. In other words, almost surely, for all continuous and
bounded ϕ : R → R,

1

log n

n∑

k=1

1

k
ϕ(Gk) −→ E[ϕ(N)], as n → ∞.

Remark 3.3 We have E
(
GkGl

)
= q!〈fk, fl〉H⊗q . Consequently, condition (A2) can be

replaced by the following equivalent condition:

(A′
2)

∑

n>2

1

n log3 n

n∑

k,l=1

∣∣E(GkGl)
∣∣

kl
< ∞.
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Proof of Theorem 3.2. We shall verify the sufficient condition (3.13), that is the
Ibragimov-Lifshits criterion. For simplicity, let g(t) = E(eitN ) = e−t2/2. Then

E|∆n(t)|2

=
1

log2 n

n∑

k,l=1

1

kl
E
[(

eitGk − g(t)
)(

e−itGl − g(t)
)]

=
1

log2 n

n∑

k,l=1

1

kl

[
E
(
eit(Gk−Gl)

)
− g(t)

(
E
(
eitGk

)
+ E

(
e−itGl

))
+ g2(t)

]

=
1

log2 n

n∑

k,l=1

1

kl

[(
E
(
eit(Gk−Gl)

)
− g2(t)

)
− g(t)

(
E
(
eitGk

)
− g(t)

)
− g(t)

(
E
(
e−itGl

)
− g(t)

)]
.

Let t ∈ R and r > 0 be such that |t| 6 r. The function ϕ(x) = 1
r
eitx satisfies |ϕ′(x)| 6 1

and hence (2.11). Therefore, by (2.12), we have, for j ∈ {k, l},

∣∣E
(
e±itGj

)
− g(t)

∣∣ 6 r

√√√√E

[(
1 − 1

q
‖DGj‖2

H

)2
]
.

Similarly,

∣∣E
(
eit(Gk−Gl)

)
− g2(t)

∣∣ =
∣∣∣E
(
e

it
√

2
Gk−Gl√

2

)
− g(

√
2 t)
∣∣∣

6
√

2 r

√√√√√E




(

1 − 1

q

∥∥∥∥D
(Gk − Gl√

2

)∥∥∥∥
2

H

)2




=
√

2 r

√√√√E

[(
1 − 1

2q
‖DGk − DGl‖2

H

)2
]
.

But

1 − 1

2q
‖DGk − DGl‖2

H =
1

2

(
1 − 1

q
‖DGk‖2

H

)
+

1

2

(
1 − 1

q
‖DGl‖2

H

)
+

1

q
〈DGk, DGl〉H

so that, since (x + y + z)2 6 3(x2 + y2 + z2) and
√

u + v + w 6
√

u +
√

v +
√

w,
√√√√E

[(
1 − 1

q
‖DGk − DGl‖2

H

)2
]

6

√
3

2

√√√√E

[(
1 − 1

q
‖DGk‖2

H

)2
]

+

√
3

2

√√√√E

[(
1 − 1

q
‖DGl‖2

H

)2
]

+

√
3

q

√
E
[
〈DGk, DGl〉2H

]
.
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Consequently, to get (3.13), it suffices to prove that the two following conditions hold:

∑

n

1

n log3 n

n∑

k,l=1

1

kl

√

E

(
1 − 1

q
‖DGk‖2

H

)2

< ∞ (3.14)

and

∑

n

1

n log3 n

n∑

k,l=1

1

kl

√
E〈DGk, DGl〉2H < ∞. (3.15)

Since
∑n

l=1
1
l
6 1 + log n, one can observe that (3.14) is a consequence of

∑

n

1

n log2 n

n∑

k=1

1

k

√

E

(
1 − 1

q
‖DGk‖2

H

)2

< ∞. (3.16)

We shall now prove that (3.16) and (3.15) are satisfied.

Proof of (3.16). In view of the normalization q!‖fk‖2
H = 1 for all k, we have, by Lemma

3.4 below:

1

q
‖DGk‖2

H − 1 = q

q−1∑

r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(fk⊗̃rfk).

Hence, taking into account the orthogonality between multiple stochastic integrals, we
have

E

[(
1 − 1

q
‖DGk‖2

H

)2
]

= q2

q−1∑

r=1

(r − 1)!2
(

q − 1

r − 1

)4

(2q − 2r)! ‖fk⊗̃rfk‖2
H⊗(2q−2r).

Via the straightforward inequality
√

x2
1 + . . . + x2

q 6 |x1| + . . . + |xq|, (3.17)

and since ‖fk⊗̃rfk‖H⊗(2q−2r) 6 ‖fk ⊗r fk‖H⊗(2q−2r), we get
√√√√E

[(
1 − 1

q
‖DGk‖2

H

)2
]

6 q

q−1∑

r=1

(r − 1)!

(
q − 1

r − 1

)2√
(2q − 2r)! ‖fk ⊗r fk‖H⊗(2q−2r).

Combining all these bounds, we obtain

∑

n

1

n log2 n

n∑

k=1

1

k

√

E

(
1 − 1

q
‖DGk‖2

H

)2

6 q

q−1∑

r=1

(r − 1)!

(
q − 1

r − 1

)2√
(2q − 2r)! ×

∑

n

1

n log2 n

n∑

k=1

1

k
‖fk ⊗r fk‖H⊗(2q−2r),
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so that assumption (A1) immediately implies (3.16).

Proof of (3.15). By Lemma 3.4 below and the orthogonality between multiple stochas-
tic integrals, we have

E〈DGk, DGl〉2H = q4

q−1∑

r=1

(r−1)!2
(

q − 1

r − 1

)4

(2q−2r)! ‖fk⊗rfl‖2
H⊗(2q−2r)+(q q!)2

∣∣〈fk, fl〉H⊗q

∣∣2.

By Lemma 3.5 below, we also have

‖fk ⊗r fl‖2
H⊗(2q−2r) = 〈fk ⊗q−r fk, fl ⊗q−r fl〉H⊗2r ,

so that, by Cauchy-Schwarz inequality:

‖fk ⊗r fl‖2
H⊗(2q−2r) 6 ‖fk ⊗q−r fk‖H⊗2r‖fl ⊗q−r fl‖H⊗2r

6
1

2

(
‖fk ⊗q−r fk‖2

H⊗2r + ‖fl ⊗q−r fl‖2
H⊗2r

)
.

Consequently, using again (3.17), we obtain that

√
E〈DGk, DGl〉2H 6 q2

q−1∑

r=1

(r − 1)!

(
q − 1

r − 1

)2√
(2q − 2r)!

× 1√
2

(‖fk ⊗q−r fk‖H⊗2r + ‖fl ⊗q−r fl‖H⊗2r) + q q!
∣∣〈fk, fl〉H⊗q

∣∣.

Finally, we obtain (3.15) from the conjunction of (A1) and (A2), which completes the
proof of Theorem 3.2.

2

In the previous proof, we used the two following lemmas:

Lemma 3.4 Consider two random variables F = Iq(f), G = Iq(g), with f, g ∈ H⊙q.
Then

〈DF, DG〉H = q2

q−1∑

r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(f⊗̃rg) + q q!〈f, g〉H⊗q .

Proof. Without loss of generality, we can assume that H = L2(A, A , µ) where (A, A ) is
a measurable space, and µ is a σ-finite and non-atomic measure. Thus, we can write

〈DF, DG〉H =

∫

A

DtF DtG µ(dt)

= q2

∫

A

Iq−1

(
f(·, t)

)
Iq−1

(
g(·, t)

)
µ(dt) by (2.10)

= q2

∫

A

q−1∑

r=0

r!

(
q − 1

r

)2

I2q−2−2r

(
f(·, t)⊗̃rg(·, t)

)
µ(dt) by (2.8)

= q2

∫

A

q−1∑

r=0

r!

(
q − 1

r

)2

I2q−2−2r

(
f(·, t) ⊗r g(·, t)

)
µ(dt) by (2.6)
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= q2

q−1∑

r=0

r!

(
q − 1

r

)2

I2q−2−2r(f ⊗r+1 g) by linearity

= q2

q−1∑

r=0

r!

(
q − 1

r

)2

I2q−2−2r(f⊗̃r+1g)

= q2

q∑

r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(f⊗̃rg)

= q2

q−1∑

r=1

(r − 1)!

(
q − 1

r − 1

)2

I2q−2r(f⊗̃rg) + q q!〈f, g〉H⊗q .

2

Lemma 3.5 Let f, g ∈ H⊙q. Then ‖f ⊗r g‖2
H⊗(2q−2r) = 〈f ⊗q−r f, g ⊗q−r g〉H⊗2r .

Proof. Without loss of generality, we can assume that H = L2(A, A , µ) where (A, A ) is
a measurable space, and µ is a σ-finite and non-atomic measure. Using the definition of
contractions and Fubini theorem, we can write

‖f ⊗r g‖2
H⊗(2q−2r)

=

∫

A2q−2r

µ(dx1) . . . µ(dxq−r)µ(dy1) . . . µ(dyq−r)

×
(∫

Ar

µ(dz1) . . . µ(dzr) f(x1, . . . , xq−r, z1, . . . , zr)g(y1, . . . , yq−r, z1, . . . , zr)

)2

=

∫

A2q−2r

µ(dx1) . . . µ(dxq−r)µ(dy1) . . . µ(dyq−r)

×
∫

Ar

µ(dz1) . . . µ(dzr) f(x1, . . . , xq−r, z1, . . . , zr)g(y1, . . . , yq−r, z1, . . . , zr)

×
∫

Ar

µ(dt1) . . . µ(dtr) f(x1, . . . , xq−r, t1, . . . , tr)g(y1, . . . , yq−r, t1, . . . , tr)

=

∫

A2r

µ(dz1) . . . µ(dzr)µ(dt1) . . . µ(dtr)

×
∫

Aq−r

µ(dx1) . . . µ(dxq−r) f(x1, . . . , xq−r, z1, . . . , zr)f(x1, . . . , xq−r, t1, . . . , tr)

×
∫

Aq−r

µ(dy1) . . . µ(dyq−r)g(y1, . . . , yq−r, z1, . . . , zr) g(y1, . . . , yq−r, t1, . . . , tr)

=

∫

A2r

µ(dz1) . . . µ(dzr)µ(dt1) . . . µ(dtr)

×f ⊗q−r f(z1, . . . , zr, t1, . . . , tr)g ⊗q−r g(z1, . . . , zr, t1, . . . , tr) = 〈f ⊗q−r f, g ⊗q−r g〉H⊗2r .

2

10



When q = 1, we have the following result:

Proposition 3.6 Let {Gn} be a centered Gaussian sequence with unit variance. If the
following condition is satisfied,

(A′
2)

∑

n>2

1

n log3 n

n∑

k,l=1

∣∣E(GkGl)
∣∣

kl
< ∞,

then {Gn} satisfies an ASCLT. In other words, almost surely, for all continuous and
bounded ϕ : R → R,

1

log n

n∑

k=1

1

k
ϕ(Gk) −→ E[ϕ(N)], as n → ∞.

Proof. Let t ∈ R and r > 0 be such that |t| 6 r. Since E[eitGk ] equals g(t) = e−t2/2, we
have

E|∆n(t)|2 =
1

log2 n

n∑

k,l=1

1

kl
E
[(

eitGk − e−t2/2
)(

e−itGl − e−t2/2
)]

=
1

log2 n

n∑

k,l=1

1

kl

[
E
(
eit(Gk−Gl)

)
− e−t2

]

=
1

log2 n

n∑

k,l=1

e−t2

kl

(
eE(GkGl)t

2 − 1
)

6
r2er2

log2 n

n∑

k,l=1

∣∣E(GkGl)
∣∣

kl
since |ex − 1| 6 e|x||x| and |E(GkGl)| 6 1.

Therefore, assumption (A′
2) implies (3.13), and the proof of the proposition is done.

2

4 Partial sums of Hermite polynomials of increments

of fBm: the Gaussian case

Let BH be a fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1). We are
interested in an ASCLT for the q-Hermite power variations of BH , defined as

Vn =

n−1∑

k=0

Hq(B
H
k+1 − BH

k ), n > 1, (4.18)

in cases where Vn, adequably normalized, converges to a normal distribution. Here, Hq

stands for the Hermite polynomial of degree q, given by (2.5).

11



We first treat the case q = 1 and 0 < H < 1. Convergence in distribution of

Gn =
Vn

nH
=

BH
n

nH

to a normal law is trivial because, by self-similarity, Gn
law
= BH

1 ∼ N (0, 1). The following
theorem provides the corresponding ASCLT. A continuous time version of the result was
obtained by Berkes and Horváth [2] using different methods.

Theorem 4.1 For all H ∈ (0, 1), the sequence {Gn} satisfies an ASCLT. In other words,
almost surely, for all continuous and bounded ϕ : R → R,

1

log n

n−1∑

k=0

1

k
ϕ(BH

k /kH) −→ E[ϕ(N)] as n → ∞.

Proof. We shall apply Proposition 3.6. The cases H < 1/2 and H > 1/2 are treated
separately. From now on, the value of a constant C > 0 may change from line to line.

Case H < 1/2. For any b > a > 0, we have

b2H − a2H = 2H

∫ b−a

0

dx

(x + a)1−2H
6 2H

∫ b−a

0

dx

x1−2H
= (b − a)2H .

Hence, for l > k > 1, we have l2H − (l − k)2H 6 k2H so that

|E[BH
k BH

l ]| =
1

2

(
k2H + l2H − (l − k)2H

)
6 k2H .

Thus

∑

n>2

1

n log3 n

n∑

l=1

1

l

l∑

k=1

|E[GkGl]|
k

=
∑

n>2

1

n log3 n

n∑

l=1

1

l1+H

l∑

k=1

|E[BH
k BH

l ]|
k1+H

6
∑

n>2

1

n log3 n

n∑

l=1

1

l1+H

l∑

k=1

1

k1−H

6 C
∑

n>2

1

n log3 n

n∑

l=1

1

l
6 C

∑

n>2

1

n log2 n
< ∞.

Consequently, condition (A′
2) in Proposition 3.6 is fulfilled.

Case H > 1/2. For l > k > 1, it follows from (1.2) that

|E[BH
k BH

l ]| =

∣∣∣∣∣

k−1∑

i=0

l−1∑

j=0

E[(BH
i+1 − BH

i )(BH
j+1 − BH

j )]

∣∣∣∣∣ 6
k−1∑

i=0

l−1∑

j=0

|ρ(i − j)|

6 k
l−1∑

r=−l+1

|ρ(r)| 6 Ckl2H−1.
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The last inequality comes from the fact that ρ(0) = 1, ρ(1) = ρ(−1) = (22H − 1)/2 and,
if r > 2,

|ρ(−r)| = |ρ(r)| =
∣∣E[(BH

r+1 − BH
r )BH

1 ] = H(2H − 1)

∫ 1

0

du

∫ r+1

r

dv(v − u)2H−2

6 H(2H − 1)

∫ 1

0

(r − u)2H−2du 6 H(2H − 1)(r − 1)2H−2.

Consequently,

∑

n>2

1

n log3 n

n∑

l=1

1

l

l∑

k=1

|E[GkGl]|
k

=
∑

n>2

1

n log3 n

n∑

l=1

1

l1+H

l∑

k=1

|E[BH
k BH

l ]|
k1+H

6 C
∑

n>2

1

n log3 n

n∑

l=1

1

l2−H

l∑

k=1

1

kH

6 C
∑

n>2

1

n log3 n

n∑

l=1

1

l
6 C

∑

n>2

1

n log2 n
< ∞.

Finally, condition (A′
2) in Proposition 3.6 is satisfied, which completes the proof of The-

orem 4.1.
2

In the remaining part of this section, we assume that q > 2 and 0 < H 6 1 − 1/(2q).
When H 6= 1/2, since the increments of BH are not independent and Vn is not linear,
the asymptotic behavior of (4.18) is more difficult to investigate. In fact, thanks to the
seminal works of Breuer and Major [4], Giraitis and Surgailis [7] and Taqqu [20], it is
known that, as n → ∞:

• If q > 2 and 0 < H < 1 − 1/(2q) then

Gn :=
Vn

σn

√
n

Law−→ N (0, 1). (4.19)

• If q > 2 and H = 1 − 1/(2q) then

Gn :=
Vn

σn

√
n log n

Law−→ N (0, 1). (4.20)

Here, σn denotes the positive normalizing constant which ensures that E[G2
n] = 1. The

case H > 1− 1
2q

will be considered in Section 5. Proofs of (4.19) and (4.20), together with

rates of convergence, can be found in [15] and [3], respectively.
We want to see if one can associate almost sure central limit theorems to the conver-

gences (4.19) and (4.20). To do so, we need a few lemmas.
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Lemma 4.2 Let q > 2. As n → ∞,

1. if H < 1 − 1
2q

, then σn → q!
∑

r∈Z
ρ(r)q > 0;

2. if H = 1 − 1
2q

, then σn → 2q!
(
1 − 1

2q

)q(
1 − 1

q

)q
> 0.

Proof. We have E[(BH
k+1 −BH

k )(BH
l+1 −BH

l )] = ρ(k − l) where ρ is given in (1.2). Recall
that ρ is an even function and that

ρ(r) = H(2H − 1)r2H−2 + o(r2H−2), as |r| → ∞.

We deduce that
∑

r∈Z
|ρ(r)|q < ∞ if and only if H < 1 − 1/(2q). On the other hand,

E[V 2
n ] =

n−1∑

k,l=0

E
(
Hq(B

H
k+1 − BH

k )Hq(B
H
l+1 − BH

l )
)

= q!

n−1∑

k,l=0

ρ(k − l)q

= q!

n−1∑

l=0

n−1−l∑

r=−l

ρ(r)q = q!
∑

|r|<n

(
n − 1 − |r|

)
ρ(r)q

= q!


n

∑

|r|<n

ρ(r)q −
∑

|r|<n

(
|r| + 1

)
ρ(r)q


 .

Assume first that H < 1 − 1/(2q). In this case,

σ2
n = q!

∑

r∈Z

ρ(r)q

(
1 − |r| + 1

n

)
1{|r|<n}.

In addition, we also have
∑

r∈Z
|ρ(r)|q < ∞. Hence, we deduce by bounded Lebesgue

convergence that

σ2
n → q!

∑

r∈Z

ρ(r)q, as n → ∞.

Assume now that H = 1 − 1
2q

. In that case, as |r| → ∞,

ρ(r)q ∼ Hq(2H − 1)q|r|(2H−2)q =

(
1 − 1

2q

)q (
1 − 1

q

)q
1

|r| .

Therefore, as n → ∞,

∑

|r|<n

ρ(r)q ∼
(

1 − 1

2q

)q (
1 − 1

q

)q ∑

0<|r|<n

1

|r| ∼ 2

(
1 − 1

2q

)q (
1 − 1

q

)q

log n

and

∑

|r|<n

(
|r| + 1

)
ρ(r)q ∼

(
1 − 1

2q

)q (
1 − 1

q

)q ∑

|r|<n

1 ∼ 2n

(
1 − 1

2q

)q (
1 − 1

q

)q

.

The desired conclusion follows.
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2

The next lemma follows from Nourdin and Peccati [15] and Breton and Nourdin [3].
It will play a crucial role in the proof of Theorem 4.4.

Lemma 4.3 Fix q > 2, and let H be the real and separable Hilbert space defined as
follows: (i) denote by E the set of all R-valued step functions on [0,∞), (ii) define H as
the Hilbert space obtained by closing E with respect to the scalar product

〈
1[0,t], 1[0,s]

〉
H

= E[BH
t BH

s ].

For any n > 2, let fn be the element of H⊙q defined by

fn =






1
σn

√
n

∑n−1
k=0 1

⊗q
[k,k+1] if H < 1 − 1

2q

1
σn

√
n log n

∑n−1
k=0 1

⊗q
[k,k+1] if H = 1 − 1

2q

(4.21)

with σn the positive normalizing constant which ensures that Gn = Iq(fn) has variance
one. Then there exists a constant C > 0, depending only on q and H (but not on n), such
that, for all n > 1 and r = 1, . . . , q − 1:

‖fn ⊗r fn‖H⊗(2q−2r) 6 C ×





n−1/2 if H 6
1
2

nH−1 if 1
2

6 H 6
2q−3
2q−2

nqH−q+1/2 if 2q−3
2q−2

6 H < 1 − 1
2q

(log n)−1/2 if H = 1 − 1
2q

.

We can now state and prove the main result of this section.

Theorem 4.4 Let q > 2 and H 6 1 − 1/(2q). For n > 1, set

Vn =
n−1∑

k=0

Hq(B
H
k+1 − BH

k ),

and define

Gn =





Vn/(σn

√
n) if H < 1 − 1

2q

Vn/(σn

√
n log n) if H = 1 − 1

2q

.

Here, σn denotes the positive normalizing constant which ensures that E[G2
n] = 1. Then

{Gn} satisfies an ASCLT. In other words, almost surely, for all continuous and bounded
ϕ : R → R,

1

log n

n∑

k=1

1

k
ϕ(Gk) −→ E[ϕ(N)] as n → ∞.
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Proof. We shall apply Theorem 3.2, and let C be a positive constant, depending only
on q and H , whose value changes from line to line. We consider the real and separable
Hilbert space H as defined in Lemma 4.3.

First, we focus on the case H < 1 − 1/(2q). We have Gn = Iq(fn) with fn given by
(4.21). Let us verify assumptions (A1) and (A2) in Theorem 3.2. According to Lemma
4.3, there exists α > 0, depending only on q and H (but not on k and r), such that, for
all k > 1 and r = 1, . . . , q − 1, ‖fk ⊗r fk‖H⊗(2q−2r) 6 Ck−α. Hence

∑

n>2

1

n log2 n

n∑

k=1

1

k
‖fk ⊗r fk‖H⊗(2q−2r) 6 C

∑

k>1

1

k1+α
×
∑

n>2

1

n log2 n
< ∞,

that is assumption (A1) is verified. On the other hand, we have

〈fk, fl〉H⊗q =
1

σkσl

√
kl

k−1∑

i=0

l−1∑

j=0

ρ(j − i)q

with ρ given by (1.2). Since σk → σ∞ > 0 as k → ∞ (see Lemma 4.2), we have, for
l > k > 1,

∣∣〈fk, fl〉H⊗q

∣∣ 6
C√
kl

k−1∑

i=0

l−1∑

j=0

∣∣ρ(j − i)
∣∣q =

C√
kl

k−1∑

i=0

l−1−i∑

r=−i

∣∣ρ(r)
∣∣q

6 C

√
k

l

∑

r∈Z

∣∣ρ(r)
∣∣q 6 C

√
k

l
,

where the last inequality follows from the fact that
∑

r∈Z

∣∣ρ(r)
∣∣q < ∞. Consequently,

assumption (A2) is verified as well, because

∑

n>2

1

n log3 n

n∑

k,l=1

∣∣〈fk, fl〉H⊗q

∣∣
kl

6 2
∑

n>2

1

n log3 n

n∑

l=1

l∑

k=1

∣∣〈fk, fl〉H⊗q

∣∣
kl

6 C
∑

n>2

1

n log3 n

n∑

l=1

1

l3/2

l∑

k=1

1√
k

6 C
∑

n>2

1

n log3 n

n∑

l=1

1

l
6 C

∑

n>2

1

n log2 n
< ∞.

It remains now to consider the critical case H = 1 − 1/(2q). We have Gn = Iq(fn)
with fn = 1

σn

√
n log n

∑n−1
k=0 1

⊗q
[k,k+1] ∈ H⊙q. According to Lemma 4.3, we have, for all k > 1

and r = 1, . . . , q − 1, ‖fk ⊗r fk‖H⊗(2q−2r) 6 C/
√

log k. Hence

∑

n>2

1

n log2 n

n∑

k=1

1

k
‖fk ⊗r fk‖H⊗(2q−2r) 6 C

∑

n>2

1

n log2 n

n∑

k=1

1

k
√

log k

6 C
∑

n>2

1

n log3/2 n
< ∞,
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that is assumption (A1) is verified. Concerning (A2), note that

〈fk, fl〉H⊗q =
1

σkσl

√
k log k

√
l log l

k−1∑

i=0

l−1∑

j=0

ρ(j − i)q.

Since σk → σ∞ > 0 as k → ∞ (see Lemma 4.2), we have, for l > k > 1,

∣∣〈fk, fl〉H⊗q

∣∣ 6
C√

k log k
√

l log l

k−1∑

i=0

l−1∑

j=0

∣∣ρ(j − i)
∣∣q

=
C√

k log k
√

l log l

k−1∑

i=0

l−1−i∑

r=−i

∣∣ρ(r)
∣∣q

6 C

√
k√

log k
√

l log l

l∑

r=−l

∣∣ρ(r)
∣∣q 6 C

√
k log l

l log k
.

The last inequality follows from the fact that
∑l

r=−l

∣∣ρ(r)
∣∣q 6 C log l since, as |r| → ∞,

ρ(r) ∼ (1 − 1

q
)(1 − 1

2q
)|r|−1/q.

Consequently, assumption (A2) is verified because

∑

n>2

1

n log3 n

n∑

k,l=2

∣∣〈fk, fl〉H⊗q

∣∣
kl

6 2
∑

n>2

1

n log3 n

n∑

l=2

l∑

k=2

∣∣〈fk, fl〉H⊗q

∣∣
kl

6 C
∑

n>2

1

n log3 n

n∑

l=2

√
log l

l3/2

l∑

k=2

1√
k log k

6 C
∑

n>2

1

n log3 n

n∑

l=2

1

l
6 C

∑

n>2

1

n log2 n
< ∞.

2

5 Partial sums of Hermite polynomials of increments

of fBm: the non-Gaussian case

Fix q > 2. In the previous section, we saw that the limit distribution of Vn =
∑n−1

k=0 Hq(B
H
k+1−

BH
k ), adequably normalized, is Gaussian when H 6 1−1/(2q). We consider here the case

H > 1 − 1/(2q). In contrast to (4.19)-(4.20), we have

Gn := nq(1−H)−1Vn
Law−→ G∞. (5.22)
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The law of G∞ is called the “Hermite distribution”. A short proof of (5.22) is given in
Proposition 5.1 below. It is based on the fact that, for fixed n, Zn defined in (5.23) below
and Gn share the same law, because of the self-similarity property of fractional Brownian
motion.

Proposition 5.1 Fix q > 2 and H > 1 − 1/(2q), and define Zn by

Zn = nq(1−H)−1
n−1∑

k=0

Hq

(
nH(BH

(k+1)/n − BH
k/n)

)
, n > 1. (5.23)

Then, as n → ∞, {Zn} converges almost surely and in L2(Ω) to a limit denoted by Z∞.

Proof. Let us first prove the convergence in L2(Ω). For n, m > 1, we have

E[ZnZm] = q!(nm)q−1

n−1∑

k=0

m−1∑

l=0

(
E
[(

BH
(k+1)/n − BH

k/n

)(
BH

(l+1)/m − BH
l/m

)])q
.

On the other hand, since H > 1/2, we have, for all s, t > 0,

E[BH
s BH

t ] = H(2H − 1)

∫ t

0

du

∫ s

0

dv|u− v|2H−2.

Hence

E[ZnZm] = q!Hq(2H − 1)q × 1

nm

n−1∑

k=0

m−1∑

l=0

(
nm

∫ (k+1)/n

k/n

du

∫ (l+1)/m

l/m

dv|v − u|2H−2

)q

.

Therefore, as n, m → ∞, we have,

E[ZnZm] → q!Hq(2H − 1)q

∫

[0,1]2
|u − v|(2H−2)qdudv,

and the limit is finite since H > 1− 1/(2q). In other words, the sequence {Zn} is Cauchy
in L2(Ω), and hence converges in L2(Ω) to some Z∞.

Let us now prove that {Zn} converges also almost surely. Observe first that, since Zn

belongs to the qth chaos of BH for all n and because {Zn} converges in L2(Ω) to Z∞, we
have that Z∞ also belongs to the qth chaos of BH . In [3, Proposition 3.1], it is shown that
E[|Zn − Z∞|2] 6 Cn2q−1−2qH , for some positive constant C not depending on n. Inside a
fixed chaos, all the Lp(Ω)-norms are equivalent (see e.g. [12, Theorem 5.10]). Hence, for
any p > 2, we have E[|Zn − Z∞|p] 6 Cnp(q−1/2−qH). Since H > 1 − 1/(2q), there exists
p > 2 large enough such that (q − 1/2 − qH)p < −1. Consequently

∑

n>1

E[|Zn − Z∞|p] < ∞

leading, for all ε > 0, to
∑

n>1

P [|Zn − Z∞| > ε] < ∞.

Therefore, we deduce from the Borel-Cantelli lemma that {Zn} converges almost surely
to Z∞.
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We now face some difficulties. First, since the limit of Gn in (5.22) is not Gaussian,
we cannot apply our general criterion Theorem 3.2 to obtain an ASCLT. To modify
adequably the criterion, we would need a version of Proposition 2.1 for random variables
with a Hermite distribution, a result which is not presently available. Thus an ASCLT
associated to the convergence in law (5.22) falls outside the scope of this paper. We can
nevertheless make a number of observations. First, changing the nature of the random
variables without changing their law has no impact on CLTs as in (5.22), but may have a
great impact on an ASCLT. To see this, observe that for each fixed n, the ASCLT involves
not only the distribution of Gn, but also that of (G1, . . . , Gn). Consider, moreover, the
following example. Let {Gn} be a sequence of random variables converging in law to a
limit G∞. According to a theorem of Skorohod, there is a sequence {G∗

n} such that for any

fixed n, G∗
n

Law
= Gn and such that {G∗

n} converges almost surely as n → ∞ to a random

variable G∗
∞ with G∗

∞
Law
= G∞. Then, for any bounded continuous function ϕ : R → R,

we have ϕ(G∗
n)

a.s.−→ ϕ(G∗
∞) and by a classical theorem of Hardy (see [5] p.35), as n → ∞,

1

log n

n∑

k=1

1

k
ϕ(G∗

k)
a.s.−→ ϕ(G∗

∞).

This limit is different from E[ϕ(G∗
∞)] (or equivalently E[ϕ(G∞)]), that is, different from

the limit if one had an ASCLT. Thus, knowing the law of Gn, for a fixed n, does not allow
to determine whether an ASCLT holds or not.

Remark 5.2 In view of Proposition 5.1, the Skorohod version of

Gn = nq(1−H)−1

n−1∑

k=0

Hq(B
H
k+1 − BH

k )

is

G∗
n = Zn = nq(1−H)−1

n−1∑

k=0

Hq

(
nH(BH

(k+1)/n − BH
k/n)

)
,

since G∗
n

law
= Gn and G∗

n converges almost surely.

Hence, in the case of Hermite distributions, by suitably modifying the argument of
the Hermite polynomial Hq in a way which does not change the limit in law, namely by
considering Zn in (5.23) instead of Gn in (5.22), we obtain the almost sure convergence

1

log n

n∑

k=1

1

k
ϕ(Zk) → ϕ(Z∞).
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Note that the limit is different from the limit expected under an ASCLT, namely E[ϕ(Z∞)].
Recall indeed that Z∞ is a non-constant random variable with a Hermite distribution (Do-
brushin and Major [6], Taqqu [20]) and therefore one has E[ϕ(Z∞)] 6= ϕ(Z∞) in general.
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